2012年武汉市中考数学模拟试题(2)学知报2
更新时间:2023-09-14 20:50:01 阅读量: 初中教育 文档下载
2012年武汉市中考数学逼真模拟试题(二)
一、选择题(共12小题,每小题3分,共36分) 1.在-3,1,-2,0中,绝对值最大的数是 A.0 B.1 C.-2 2.函数y=
D.-3
1中x的取值范围是
x?3
D.x≤3
A.x≠3 B.x≥3 C.x>3 3.解集在数轴上表示如图的不等式组可能为
?x?2?0A.?
?1?x?0?x?2?0 C.?
?1?x?0?x?2?0B.?
?1?x?0?x?2?0D.?
?1?x?0-2-1012第3题图 4.下列事件中是必然事件的为
A.掷两枚普通的骰子,掷得的点数之和为6 B.今年国庆节这一天,我市的最高气温是28℃ C.掷6枚相同的硬币,3枚正面向上3枚正面向下 D.367人中至少有2人的生日相同
5.已知x1、x2是方程x2-2x-5=0的两根,则x1+x2的值是 2
A.
5
2
B.- 5
C.2 D.-2
6.温家宝总理在2012年政府工作报告中提出,中央财政用于“三农”的投入拟安排人民币
12287亿元.“12287亿元”用科学记数法表示为 A.1.2287×1012元 B.12.287×1011元 C.0.12287×1013元 D.12287×108元 7.如图, 梯形ABCD中, AD//BC, AB=BD=BC, 若∠C=50°, 则∠ABD的度数为 A. 15° B. 20° C. 25° D. 30°
8.如下右图是由四个相同的小正方体叠成的一个几何体,那么它的俯视图是
A. B. C. D.
9.如图,我们可以发现,图(1)中有1个正方形,图(2)中有5个正方形,图(3)中有14个正方形,按此规律,第5个图形共有正方形 A.45个 B.55个 C.66个 D.78个
(2) (3) (1)
第9题图
2012年武汉市中考数学逼真模拟试题(二) 第1页 共4页
10. 如图, Rt△ABC中, ∠C=90°, ⊙O内切于Rt△ABC, AC边切⊙O于点D, 若AC=4,
BC=3, 则tan∠CAO的值为
A. C.
1 3 B.
1 2
3
D. 2
4211.某集团2008年至2011年共投资200万元进行产品开发与销售,如图是这四年的投资额及
所获利润率统计图.(利润率=利润÷投资额)
2008年 ~2011年利润率统计图 2008 年~2011年投资额统计图
30%
30% 24% 年 2008年 2009 25% 20% 25% 20%
18% 15% 2010年 2011年 10% 30% 5% 2008 2009 2010 2011 年份
根据图中信息,下列判断:①前3年2009年所获利润最少;②2010年获得的利润比2008年少6%;③若2010年至2012年投资额的年均增长率相同,那么2012年的投资额为72万元.其中正确的是 A.只有①② B.只有①③ C.只有②③ D.①②③ CDE12.如图,梯形ABCD中AB∥CD,∠DAB=90°,AB=4CD, E是腰BC
上一点, CE=CD,过点E作EF⊥BC交AD于点F,若F是AB的
F4中点,则下列结论:①AE⊥DE;②AB=AD;③tan∠EFD=;
3BA④S△ABE=16S△CDE.其中正确结论的个数是 第12题图 A.4个 B.3个 C.2个 D.1个 二、填空题(共4小题,每小题3分,共12分) 13.计算:cos60°=_________.
14.小明六次数学考试成绩如下:86、92、87、90、98、92.这组数据的众数是________,
中位数是________,极差是_________. 15.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶.甲车途经配货站C,并在C地用1小时配货,然后按原速开往B地,乙车从B地经C站直达A地.如图是甲、乙两车间的距离y(千米)与乙车出发时间x(时)的函数的部分图象,则B、C两地间的距离是___________千米. y/千米yD16.如图,矩形ABCD的顶点A、B的坐标分别是 300EkA(-2,0)、B(0,-4).反比例函数y?的
xOAxC图象经过顶点C,AD边交y轴于点E.若四边 形BCDE的面积等于△ABE面积的5倍,则k 30B的值等于_______.
x/时 01.52 第16题图 第15题图
2012年武汉市中考数学逼真模拟试题(二) 第2页 共4页
三、解答下列各题:
17.(本题6分)解方程:x?3?2.
x?44?x 18.(本题6分)在直角坐标系中,直线y=kx+b(k≠0)经过点A(2,2)、B(1,3),求不等
式kx+b≥1的解集.
DA19.(本题6分)如图,AB∥DE,B、E、C、F在同一条直线上,
且BE=CF,AB=DE, 求证:AC=DF.
BFCE
20.(本题7分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.
(1)请用画树状图或列表的方法列举两枚鸟卵全部成功孵化所有可能的结果; (2)现有三枚鸟卵全部成功孵化,求至少有一只雄鸟的概率. 21.(本题7分)如图,△ABC中, A(-2,3),B(-3,1),C(-1,2). (1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1; (2)画出△ABC关于x轴对称的△A2B2C2; (3)将△ABC绕原点O旋转1800,画出旋转后的△A3B3C3, 并写
出A点对称点A3的坐标.
22.如图, AB为⊙O的直径, AC为⊙O的弦, ∠BAC的平分线交⊙O于点D, DE⊥AC于点E. (1)求证: DE为⊙O的切线;
(2)连接OE交AD于点F, 连接BD,
若cos∠BAC=
4, 求OF的值. 5BD 2012年武汉市中考数学逼真模拟试题(二) 第3页 共4页
23.(本题10分)用19米长的铝合金条制成如图所示的矩形窗框,
FCD长表示窗框的宽,EF=0.5米.(铝合金条的宽度忽略不计) A0.5米G(1)求窗框的透光面积S(平方米)与窗框的宽x(米)之间 BE的函数关系式;
(2)如何设计才能使窗框的透光面积最大?最大面积是多少? (3)当窗框的面积不小于10平方米时,试结合函数图象,
直接写出x的取值范围.
CDH
图7
24.(本题10分)(1)如图1,△ABC中,D是BC边上一点,且CD=2BD,连接AD, 过AD
上一点P作MN∥BC交AB、AC于M、N两点, 求证:PN=2PM;
(2)如图2,△ABC中,D、E是BC边的三等分点,过AE上一点P作AB的平行线交AC
于点M,交AD的延长线于点N,判断PN与PM之间的数量关系并证明你的结论. (3)如图3, △ABC中, D、E在BC上, 且BD=CE, 过AE上一点P作AB的平行线交AC
于点M, 交AD的延长线于点N, 若PN=5PM, 请直接写出:
DE= . BCA A
M
P PMN
DBC BCED N图1 图2
25.(本题12分)如图,抛物线y=ax2-2ax+b与x轴交于A、B两点,交y轴负半轴于点C.已
知B(3,0),tan∠OAC=3. (1)求抛物线解析式;
(2)将抛物线作适当平移, 平移后的抛物线始终经过点C, 设平移后的抛物线交x轴于M、N
两点, 若S△CMN=2S△CAB, 求平移后的抛物线的解析式;
(3)已知D点是抛物线的顶点,E是抛物线在第三象限部分上的点,是否存在这样的点E,
使点E关于直线BC的对称点恰好在直线BD上,若存在,求E点的坐标;若不存在,请说明理由.
yy
O OABx ABxE CD
C 图2 图1
2012年武汉市中考数学逼真模拟试题(二) 第4页 共4页
2012年武汉市中考数学逼真模拟试题(二) 参考答案
一、选择题(共12小题,每小题3分,共36分)
题号 答案 1 D 2 A 3 C 4 D 5 C 6 A 7 B 8 B 9 B 10 A 11 B 12 A
二、填空题(共4小题,每小题3分,共12分) 13.
1 14.92,91,12 15.120 16.-6 2
三、解答下列各题:
17.x=11 18.x≤3 19.略 20.(1)略;(2)
7 21.图略, A3(2, -3) 822.(1)连接OD, 证OD//AE, ∴OD⊥DE, ∴DE为⊙O的切线; (2)过O作OH⊥AC于H点, 设OA=OD=EH=5, AH=4, ∴AE=9. ∵OD//AE,
∴
OF?OD?5. ∵OE=23?52?34,
EFAE9∴OF=5?OE?534.
1414∵EH=5, CH=AH=4, ∴CE=1. ∵DE=OH=3, ∴CD=10=BD,
534OF?14?85. ∴BD141023.(1)由3BC+230.5+3x=19得BC=6-x,∴AC=6.5-x, 所以S=AC2CD=-x2+6.5x(0
131695<x<6);(2)当x=时,有最大值平方米;(3)≤x≤4
416224.(1)证明
MPPN; ?BDCDMPPN.而?EGEH(2)过点E作AB的平行线交AC于G,交AD的延长线于H.由(1)可证明
1EH=AB,EG=AB,∴PN=3PM;
3(3)7?26.
5 25.(1)y=x2-2x-3;
(2)∵MN=2AB=8, ∴xM?xN?8. 设平移后解析式为y=x2+ax-3. ∴xM?xN=-3, ∴a2+12=64, ∴a=±213, ∴y=x2±213x-3;
2012年武汉市中考数学逼真模拟试题(二) 第5页 共4页
(3)设BE交y轴于G,延长BD交y轴于H.易得直线BD的关系式为y=2x-6,
∴H(0,-6).由题意知∠CBE=∠CBD,∵∠CBD+∠CHB=∠OCB=∠OBC=45°,
3∴∠OBG=∠CHB,∴△OBG∽△OHB.∴OB2=OH·OG,∴OG=,
2∴BG的关系式为y?1317x?,∴E(?,?).
2422
2012年武汉市中考数学逼真模拟试题(二) 第6页 共4页
正在阅读:
典故大全02-17
ab触摸屏维修02-01
我用我的眼睛看世界作文600字06-22
基于养殖过程的水产养殖技术专业“池塘养鱼”课程建设与实践 - 图文01-16
马克思主义哲学原理试题及答案08-15
学校传染病预防控制管理制度08-27
我学会了跳绳作文700字07-09
- 二甲基甲酰胺安全技术说明书
- 南邮计算机网络复习题
- 高分子物理实验指导书 - 图文
- 2009.9.25 莞惠环控专业施工图设计技术要求
- 学生工作简报
- 揭阳市斯瑞尔环境科技有限公司废酸综合利用项目可行性研究报告-广州中撰咨询
- 今日靓汤(佘自强)
- 奥数 - 二年级 - 数学 - 第三讲时间的教师版计算答案 - 图文
- 如何命制一份好的物理试卷
- 数据库开题报告
- 禁用未经批准或已经废止或淘汰技术的制度流程
- 大学英语(二)第2阶段测试题
- 湘教版一年级上册美术教案(全)
- (整套)学生顶岗(毕业)实习手册
- 高频 二极管包络检波 - 图文
- 2018届中考英语复习题型四任务型完形填空备考精编含解析 - 186
- 郑煤集团超化煤矿一采区开采设计 - 图文
- 财政学习题
- 摄影摄像复习资料
- SMC D-A93接线方式 - 图文
- 武汉市
- 模拟试题
- 中考
- 数学
- 2012
- 二级同轴式圆柱齿轮减速器设计说明书
- 郑西客运专线北环线轨道精测、精调作业指导书 - 图文
- 高一物理竞赛课程1-6次课讲义
- 3131+药用分析化学
- MFC实践总结
- 抱春2
- 波谱分析试题(C)
- §2.4串联电路和并联电路
- 广联达钢筋算量中容易漏算的项目大汇总
- 学生综合素质发展性评价方案实施细则(试行)
- 西方政治思想史(徐大同版)笔记
- 尔雅通识课--音乐鉴赏章节测试答案
- 新人教版三年级英语下册第三单元Unit3 - 图文
- 全国电力行业风电运行检修技能竞赛
- 质量月试卷题库
- 河大版三年级科学《让小灯泡亮起来》教学设计
- (项目) 咨询服务 合同 - v1
- 高中语文拼音字音专项训练试题及答案分析之高考复习(140题)
- 2006年1月数量方法试题答案
- 咸宁市房地产项目比较分析