Forecasting Financial Time Series with Support Vector Machines.
更新时间:2023-07-26 10:19:01 阅读量: 实用文档 文档下载
- forecasting推荐度:
- 相关推荐
ForecastingFinancialTimeSerieswithSupportVectorMachinesBasedonDynamicKernels
JohannesMager
InstituteofComputerArchitecturesUniversityofPassau,GermanyEmail:mager@ m.uni-passau.de
UlrichPaasche
NeuralResearchCenterMunichGmbH
Munich,Germany
Email:ulrich.paasche@nrcm.de
BernhardSick
InstituteofComputerArchitecturesUniversityofPassau,GermanyEmail:sick@ m.uni-passau.de
Abstract—Thetechnicalanalysisof nancialtimeseriesandinparticularthepredictionoffuturedevelopmentsisachallengingproblemthathasbeenaddressedbymanyresearchersandpractitionersduetothepossiblepro t.Weprovideaforecastingtechniquebasedonacertainmachinelearningparadigm,namelysupportvectormachines(SVM).SVMgainedmoreandmoreimportanceforpracticalapplicationsinthepastyearsastheyhaveexcellentgeneralizationabilitiesduetotheprincipleofstructuralriskminimization.However,standardkernelfunctionsforSVMarenotabletocomparetimeseriesofvariablelengthappropriately,i.e.,whenweassumethatthesetimeseriesmustbescaledinanon-linearway.Therefore,weusethedynamictimewarping(DTW)techniqueasakernelfunction.Wedemonstratefortwo nancialtimeseries(FDAXandFGBLfutures)thatexcellentresultscanbeobtainedwiththisapproach.
I.INTRODUCTION
Thepredictionoffuturestockmarketdevelopmentsisaproblemthathasbeenattractingtheattentionofbothpracti-tionersandresearchersformanydecades.Itcaneasilybeseenthattherearecertainrecurringpatternsinthehistoryofmarketprices,andtherearevariousapproachesforclassifyingthem[1],[2].Butamuchhardertaskistorecognizesuchpatternsintheconstantlyevolving nancialmarketsearlyandwithsuf cientreliability.Evenworse:Itstillisheavilydisputed,whetherchartpatternsallowforapredictionofcertainfutureeventsatall.
Inthisarticle,weproposeamachinelearningtechniqueforforecasting nancialtimeseries,whichreliesonthepopulartechniqueofsupportvectormachines(SVM).Usingalargehistoricalsetofreal-world nancialtimeseries,weexaminetheperformanceofdifferentvariantsandparametersettings.Tofurtherincreasethepredictionaccuracyontimeseries,standardkernelsoftheSVMarereplacedbyspecialdynamickernelfunctions,whichareadaptedforanalyzingtemporaldata.Wewillshowthattheutilizationofthesekernelsresultsinasigni cantlybetteraccuracyanditbecomespossibletooutperformthemarket’soveralldevelopment.
Withtheintegrationofthistechniqueintoaframeworkfortechnicalanalysis,Investox,itisalsopossibletoevaluatetheperformanceusingavirtualtradingagentonhistoricaldataandusethesystemon“live”datafeeds.
Thearticleisorganizedasfollows:InSectionII,weprovideashortinsightintotheprinciplesoftechnicalanalysisand nancialmarketdataanddiscusssomerelatedwork.In
SectionIII,SVManddynamickernelfunctionsareintroduced.SectionIVfollowswiththeexperiments:We rstexplaintherationalebehindtheconstructeddatasetsandsetouttheutilizederrormeasures.Thereafter,theresultsofourexperimentsaredocumented.Finally,SectionVsummarizesthemajorinsightandgivesanoutlooktofutureresearch.
II.FINANCIALANALYSIS
A.PrinciplesofTechnicalAnalysis
Theanalysisof nancialmarketscanbedividedintotwobig elds:Whereasfundamentalanalysistriestoanalyzealleconomicfactorsofacompanyoramarketinordertocalcu-latethetruevalueofacommercialpaper,technicalanalystsassumethatallimportantinformationforthepaper’sfuturedevelopmentisalreadycontainedinitspastbehavior[3].Therefore,futuremovementscanbeanticipatedbythoroughlyanalyzingthestock’shistoryanditsinherentpatterns[4].Whiletheprinciplesofsomeofthetechniquesutilizedforatechnicalanalysisdatebacktothe18thcentury,theirvalidityhaspermanentlybeendisputed.Mostpopularly,theef cientmarkethypothesis[5]statesthat nancialmarketsareinformationallyef cient,and,therefore,allpastinformationisalreadycontainedineachstock’slastvalue.Asaresult,itisclaimedthattechniquesforatechnicalanalysiscannotperformbetterthanarandomwalkonthechartortheoveralldevelopmentofthemarket.Despiteallobjections,itstillwasnotpossibletoprooftheinvalidityoftechnicalanalysis,anditstechniquesaregainingpopularityamongboth,investorsandresearchers.
B.CharacteristicsofFinancialMarketData
The nancialinstrumentsusedforourworkaretwofu-tures,derivativeinstrumentstradedattheEuropeanderivativesexchangeEurex[6].Afuturescontractgivestheholdertheobligationtobuy(longposition)orsell(shortposition)aspeci edunderlyingassetatadistinctdateinthefutureandatapre-speci edprice.Thisdualitygivesthetraderthepossibilitytobene tfromrisingaswellasfromfallingmarketprices[7].
Aseverytransactioninamarketvariestheratioofsupplyanddemand,marketpricescanchangeinverysmallandir-regularintervals.Tofacilitateanalysis,thedataiscompressedintointervalsofacertainsize.Consequently,itispossibleto
notonlyidentifyasinglepriceforeachinterval,buttoextractadditionalinformation:Theopen,high,low,andclosepricesforthisinterval,namedOHLC-data(seeFig.
1).
Fig.1.Ontheleftsideweseethemarketrateofacertainequityduringoneday.Ontherightside,thesedatahavebeencompressedanddepictedusingtheso-calledcandlesticklayout:Theupperandlowershadowsmarktheday’shighestandlowesttradedprices,whereasthebodyofthecandlespansfromtheopentothecloseprice.Thecolorofthebodyillustratestheequity’sdevelopmentduringtheday:Ifthepricewentup,thebodyiswhiteandblackotherwise.
C.RelatedResearchintheFieldofTechnicalAnalysisOverthelast15years,therehasbeenavastamountofscienti cinvestigationstousingmachinelearningmethodsfortechnicalanalysis.
[8],forexample,useabackpropagationneuralnetwork(multilayerperceptron)withonehiddenlayertopredictthedailyclosepricesofthestockindexS&P500,andcomparetheresultstoanARIMA-model.Asaresult,theyshowthatalthoughtheneuralnetworkhasahighertolerancetomarket uctuations,itsoutputistoovolatiletoindicatelong-termtrends.Abettersuitedapproachisdescribedin[9],whichutilizesrecurrentElmanneuralnetworks[10]forforecastingforeignexchangeprices.Itiscombinedwithamechanismtoautomaticallychooseandoptimizethenetwork’sparameters.Asaresult,itishighlightedthattheforecastsdonotdifferasmuchbetweendifferentmodelsasbetweendifferentinputdata.Foronlytwooutof veexchangerates(JPY/USDandGBP/USD),reliablepredictionsarepossible,whereasfortheotherrates,thepredictionaccuracyissimilartoanaiveforecast.
[11]usesamodi edSVMmodelforregressionwiththe(static)Gaussiankernel.ByadjustingtheregularizationconstantCwithaweightfunction,recenterrorsaremoreheavilypenalizedthandistanterrors,thusincreasingthein uenceofthemostrecentstockprices.Inadditiontothat,[12]addsasimilarweightfunctiontothethresholdε,whichlimitsthetoleranceofVapnik’sε-insensitiveerrorfunction[13].Thisapproachhelpstofurtherreducethecomplexityofthebuiltmodelandthenumberofsupportvectors.Furtheremphasizingtheneedofthoroughdatapreparation,[14]usessupportvectorclassi cationcombinedwithavarietyofdifferentpre-processingmethods.Asakernelfunction,
theyusethepolynomialkernelinadditiontotheGaussiankernelfunction,paredtoabackpropagationnetwork,theGaussianversionheavilyincreasesthemeasuredpredictionaccuracy.
Althoughallthesearticleswereabletopresentsomesuccessintheirexperiments,themajor awisobvious:Withastatickernelfunctionitisonlypossibletoincorporateacertain(limited)amountofinformationaboutthechart’shistory.Theinherenttemporalstructureofthedatacannotbeanalyzedap-propriately,leadingtorelativelypoorandunstablepredictionresults.
III.SUPPORTVECTORMACHINESWITHDYNAMIC
KERNELFUNCTIONSA.FundamentalsofSupportVectorMachines
Inthisarticle,cost-sensitivesupportvectormachines(C-SVM)andν-SVMareusedtoclassifythetimeseriesusingcharacteristicattributesextractedfromthetimeseriesasinputs.Basically,SVMuseahyperplanetoseparatetwoclasses[15]–[18].Forclassi cationproblemsthatcannotbelinearlyseparatedintheinputspace,SVM ndasolutionusinganon-linearmappingfromtheoriginalinputspaceintoahigh-dimensionalso-calledfeaturespace,whereanoptimallyseparatinghyperplaneissearched.Thosehyperplanesarecalledoptimalthathaveamaximalmargin,wheremarginmeanstheminimaldistancefromtheseparatinghyperplanetotheclosest(mapped)datapoints(so-calledsupportvectors).Thetransformationisusuallyrealizedbynonlinearkernelfunctions.C-SVMandν-SVMbothallow,butalsominimizemisclassi cation.
Comparedtothepopulararti cialneuralnetworks,SVMhaveseveralkeyadvantages:Bydescribingtheproblemasaconvexquadraticoptimizationproblem,theyareensuredtoconvergetoauniqueglobaloptimuminsteadofonlyapossiblylocaloptimum.Additionally,byminimizingthestructuralriskofmisclassi cation,SVMarefarlessvulnerabletoover tting,oneofthemajordrawbacksofstandardneuralnetworks.B.RelatedWorkintheFieldofDynamicKernelFunctionsAnoverviewandcomparisonofmethodsfortimeseriesclassi cationwithSVMcanbefoundin[19]or[20],forinstance.OnecommonmethodforclassifyingtimeserieswithSVMistouseoneofthedefaultstatickernels(i.e.,poly-nomialorGaussian).Forspeakerveri cation[21],phoneticclassi cation[22],orinstrumentclassi cation[23]thishassuccessfullybeendone.Abigdisadvantageofthisapproachisthatstatickernelsareunabletodealwithdataofdifferentlength.Therefore,itisnecessarytore-samplethetimeseriestoacommonlength,ortoextracta xednumberoffeaturesbeforestatickernelscanbeapplied.Itisobviousthatthere-samplingorthereductiontosomeextractedfeaturesinducesalossofinformationandisnotverywellsuitedtodealwithtimeseriesofvariablelength,wherealinearfunctionforre-scalingisnotapplicable.Amoresophisticatedapproachistousemethodsthatdirectlycomparethedatapointsoftwotimeseriesinamore exibleway,forexamplewith
tangentdistance[24],timealignment[25]–[27],ordynamictimewarpingkernels[28].Alsoprobabilisticmodels,suchasHMM8hiddenMarkovmodels)andGMM(Gaussianmixturemodels),thataretrainedonthetimeseriesdata,canbeusedincombinationwithSVM.Theso-calledFisher-kernelshavebeenwidelyused,e.g.,forspeechrecognition[29],[30],speakeridenti cation[31]–[33],orwebaudioclassi cation[34].[35],[36]usedanothersimilaritymeasureonGMM,theKullback-Leiblerdivergence,forspeakeridenti cationandveri cation.
Altogether,wecanstatethatdynamickernelfunctions[20]incorporatetemporalinformationdirectlyintoansupportvectormachine’skernelanduseitforcalculatingthesimilaritybetweendifferentinputtimeseries.Therefore,itbecomespos-sibletoalsodetectsimilaritiesbetweenmisalignedsequencesoravaryingfrequencyofthecontainedpatterns.C.DynamicTimeWarpingasKernelFunctionforSVMInourwork,weusedakernelbasedonthedynamictimewarping(DTW)method,whichhaspreviouslybeenutilizedforhandwritingandspeechrecognitionin[27],[28].Wealsorelyonownresultsdescribedin
[37].
Fig.2.ExamplefortheresultsobtainedwithDTW:Thecorrespondenceofpointsoftwosimilartimeseries(oneisdrawnwithaconstantoffsethere)isindicatedbyconnectinglines.
TheDTWkerneltakestwoinputtimeseriesandcalculatestheirsimilaritybydetermininganoptimalso-calledwarpingpathconsistingofpairsoftheirrespectivepoints.Eachpointofoneseriesisassignedtooneormorepointsoftheotherseries,obeyingthreeconstraints:
The rstandthelastpointsofbothseriesareassignedtoeachother.
Allassignmentsrespecttheseries’temporalorder.
Everypointofbothseriesbelongstoatleastoneassign-ment.
Thewarpingpathwiththeminimumsumofdistancesinitsassignmentswillbechosenastheoptimalwarpingpath.Otherdynamickernels,suchasthelongestcommonsubse-quence(LCSS)kernelwepresentedandinvestigatedin[37]followasimilarapproach.
IV.TESTSANDEXPERIMENTS
A.PreparationsandDataSetConstruction
Forourwork,weusedtheSVMroutinesfromthesoftwarepackageLibSVM[38].Theimplementationofthedynamickernelfunctionsfollows[37].
Tocomparetheforecastingaccuracyofthedifferentmodels,avarietyofdifferentmeasuresareusedintheliterature.How-ever,[39]and[40]showthatallofthepopularmeasuresareeithernotinvarianttoscalingorcontainunde nedintervals.Therefore,weusedthemeanabsolutescalederror(MASE)asproposedby[40],whichscalesthemeasurederrorusingthemeanabsoluteerrorofanaiveforecast(alsocalledrandomwalk).Thisforecastingtechniquesimplyassumesthattheresultforthenextpatternequalsthepreviousresult.
IfYtdenotestheobservationattimet∈{1,...,n}andFtistheforecast,wecallet=Yt Fttheforecasterror.Themeanabsolutescalederrorisde nedasthearithmeticmeanoftheforecasterrorsscaledbytheaverageerrorofarandomwalk:
MASE=mean
et |Y (1)i Yi 1| .
i=2Consequently,aMASEsmallerthan1.0indicatesthattheforecastingmethodperformsbetterthananaiveforecast.Appliedtothedomainoftechnicalanalysis,wecanseethatconstantMASEvaluessmallerthan1.0contradicttheef cientmarkettheory.Additionally,wespeci edthehitrateHITSofallforecasts,whichsimplyisthepercentageofcorrectlypredictedtrendsinthechart:HITS=
|{Fi|(Yi Yi 1)·(Fi Fi 1)>0,i=1,...,n}|
n
.
(2)
Fig.3.Inthediagram,weseehowthehistoryoftheFDAXwasdividedintosixdifferent,overlappingseriesofasizeof1000dayseach.Thelast250valuesofeachpart(approximatelyoneyear)wasusedtocalculatethepredictionaccuracyofthedevelopedsystemonthisspeci ctimeseries.Asaresult,amaximumnumberof750valueswasusedfortraining.
Forourexperiments,wedecidedtousetwopopularfutures:TheFDAXfutureonthestockindexDAX,andtheFGBLfutureonGermangovernmentbonds.Asallfuturespriceshaveapre-de nedenddateand,therefore,containperiodicbehaviorandpointsofdiscontinuity,thedatawasmanuallyadjusted.Tominimizetheimpactoftemporaryanomalies,we
decidedtoverifyourresultspiecewiseontheentirehistoryofthetwocharts,bydividingthemintoatotalof20differenttimeseriesofdailyvalues(seeFig.3).Forallexperiments,adailycompressionofthedatawasused.B.ExperimentSetupandResults
Theoverallorganizationoftheconductedexperimentswasmadeupofseveralparts:Firstofall,weexaminedtheperformanceofseveraldifferentinputandoutputseries.Wethencompareddifferentkernelfunctionsanddeterminedtheirbestparametersettings.Inthefollowingstep,differentvariantsoftheSVMtechniquewerecompared.Finally,weinvestigatedoptimalsettingsforthetotalamountandthelengthoftheinputseriesusedfortrainingandprediction.
Asoutputdata,itisalwayspossibletotrytopredicttheactualclosepriceofthenextday.Forusingthepredictioninatradingsystem,itismoreinterestingtopredictanupcomingtrend.ThiscanbedoneusingtherateofchangeROCnforagivenperiodnonatimeseriesY:
ROCn(Yt)=100·
Yt Yt n
Y.
(3)
t n
Earlyexperimentsshowedthatthetheforecastingaccuracycanbeconsiderablyincreasedusingthispre-processingfunc-tion.
Weconductedextensivetests,whereweexaminedmanydifferentinputtimeseriesandtheirperformanceinconjunctionwiththeoutputseries.Thebestresultswereachievedusingamultidimensionalinputvectorconsistingofseveralratesofchangewithdifferentperiods.ThisvectorincorporatesthetimeseriesROC1,ROC2,ROC3,ROC5,andROC8,andwillbedenotedROC5inthefollowing.Asaresult,thedifferentvaluesateachtimeexpress,bywhichratiothecurrentpricediffersfromadistinctpriceinthepast.TheresultsofourtestsaresetoutinTableI.
TABLEI
THEVALUESSHOWTHEPREDICTIONACCURACYOFAν-SUPPORTVECTORREGRESSIONSYSTEMUSINGTHEDYNAMICTIMEWARPINGKERNELFORDIFFERENTINPUTANDOUTPUTSERIES:WHILETHEOUTPUTSERIESROC2ANDROC5DESCRIBEROCOUTPUTSWITHDIFFERENTPERIODS,CLOSE–OPENDENOTESTHEDEVIATIONBETWEENADAY’S
OPENANDCLOSEPRICES.INCONTRASTTOTHEONE-DIMENSIONAL
INPUTSERIES
CLOSE,OHLC4ANDROC5AREMULTI-DIMENSIONAL
INPUTS,BUILTOFTHEDAY’SFOUROHLCVALUESORDIFFERENTRATES
OFCHANGE.
THELASTROWSHOWSTHEPERFORMANCEOFTHENAIVE
FORECASTINGMETHOD.ASTHEERRORMEASUREMASEISSCALEDBYTHEERROROFNAIVEFORECAST,ITALWAYSRESULTSINTHEVALUE1.
Output→ROC2
ROC5
Close–Open↓InputMASEHITSMASEHITSMASEHITSClose0.95350.49901.51310.48650.64390.4958OHLC40.96130.50011.52990.48910.64540.4924ROC50.77560.76041.09410.82630.53640.7382naive
1.0000
0.6727
1.0000
0.8027
1.0000
0.4829
Inasecondstep,wecomparedtheperformanceofSVMwithdifferentkernelfunctions.Fortheseexperiments,threedifferentdynamickernelfunctionstakenfrom[41]wereused:Thedynamictimewarpingkernel(DTW)aswellasthelongestcommonsubsequencekernelswithglobal(LCSS-global)aswellaslocalscaling(LCSSlocal).Asaresult,theDTW-kernelwasnotonlyconsiderablyfasterthanitsopponents.Duringthewholetraining,theLCSSkernelswerenotonceabletooutperformthepredictionaccuracyoftheDTWkernelonthetestdata(seeFig.4).Additionally,theLCSSkernelsappearedtorelyonspeci cattributes(features),whereastheDTWkernelshowedgoodresultsforalldatasets.ForthechoiceoftheSVMtype,weconductedclassi cationandregressionexperiments:Apartfromtheε-SVR(supportvectorregression)[42]andtheν-SVR[43],wemeasuredtheperformancefortheC-SVC(supportvectorclassi cation[44]andtheν-SVC[43].Insteadoftryingtopredictactualvalues,thesetechniquesweretrainedtoclassifythedataintotwocategories:oneforexpectedincreasing(rising),theanotheroneforexpecteddecreasing(falling)trends.Asaresult,wesawthatthepredictionresultsoftheν-SVRsigni cantlyoutperformedallothervariants,regardingbothMASE(forregressiontypes)andthehitrate,withtheε-SVRformulationrankingsecond.
Finally,weconductedsomeexperimentsinwhichwevariedthetotalamountandthelengthoftheinputtimeseriesoftheSVM.Con rmingtheobservationof[45],anincreaseintheamountofinputinformationdoesnotnecessarilyincreasethepredictionaccuracy.Instead,wecanseeinFig.4thatasmalleramountofcurrentinformationsigni cantlyimprovesthepredictionaccuracycomparedtoalargebacklogofhis-toricalinformation.C.MajorFindings
Fortheinputinformation,westatedthatthesheeramountofhistoricaldatadoesnotnecessarilyproducebetterresults.Instead,themainfocusshouldlieonthoroughpre-processingroutinestocapturetemporalpatternsofdifferentscale.Inthisregard,theappliedtechniqueofcreatingamulti-dimensionalvectorwithratesofchangeofdifferentmagnitudeworkedexceptionallywell.
Apartfromthat,ourresultsclearlyshowthehighabilityofSVMwithdynamickernelfunctionsintheareaof nancialtimeseriesforecasting.TheDTWkernelwasabletoproduceahitrateofupto70%overthewholehistoryofbothexaminedderivatives,comparedtoahitrateofonly47%forthenaiveforecast.Thisisevenmorerelevantasthehitratedirectlycorrelatestotheinputofcommonalgorithmictradingsystemsystems,triggeringactionswitheachtrendshift.
V.CONCLUSIONANDOUTLOOK
Inthisarticle,ashortintroductionintothe eldoftechnicalanalysisof nancialtimeserieshasbeengiven,andtheapplicationofSVMwithdynamickernelfunctionsinthisdomainhasbeenexamined.Aswedescribed,thedevelopedtechniquehasahighabilitytopredictfuturepricemovements
Fig.4.Thesegraphsshowsthedependenceofthepredictiononthesizeofthetimeslotusedeachtimeforpredictionandtraining:Theusedkernelfunctionsarefromlefttoright:DTW,LCSSglobal,andLCSSlocal.Theroundmarksinthediagramdenotetheresultswithatrainingsetof75periods,whereassquareandtriangularmarksshowtheresultsfor150and300periods.
ingdynamickernelfunctions,itispossibletouseawholerangeoftheprecedingseriesandanalyzeitasawholewiththeSVM’skernel.Aswecouldshow,thisapproachsigni cantlyincreasesthepredictionaccuracyandreliablyperformsbetterthanastandardnaiveforecast.
Forreal-worldexperimentsandapplicationsofthedevel-opedsystem,aninterfacetothetechnicalanalysissoftwareInvestox[46]wascreated(seeFig.5).Usingthisapplication,itbecomesnotonlypossibletoverifytheresultsonhistoricaldatausingavirtualbroker,butalsotoapplythesystemdirectlytocurrentdatainputsinaconstantlyevolvingmarketenvironment(seealso[47]).
Inourfutureresearch,theperformanceofthedevelopedsystemwillbeexaminedindifferenttradingconstellations.Contrarytotheworkonend-of-daydata,theperformanceofthetechniqueisalsohighenoughtouseitintheareaofintra-dayforecasting.Thisinvolvespredictionsinintervalsofonlyseveralminutes,ifnotjustinseconds’intervals.Inthisenvironmentofhighuncertaintyandconstanttrendshift,verydifferentrequirementsmayapply.Ontheotherhand,itisalsopossibletonotonlyusetheinputofonepre-processedtimeseries,buttocombinedifferentmarketpricesforpredictingacertainvalue.Thiskindofinter-marketanalysismayhavethepotentialtodetect uctuationsinaspeci cpriceandprematurelyratetheresultingin uenceonthetargetvalue.
REFERENCES
[1]S.Nison,Japanesecandlestickchartingtechniques:acontemporary
guidetotheancientinvestmenttechniquesforthefareast.PrenticeHallInternational,1991.
[2]R.PrechterandA.Frost,Elliottwaveprinciple:keytomarketbehavior.
JohnWiley&Sons,1978.
[3]R.Freedman,Introductionto nancialtechnology.Elsevier,2006.[4]L.Stevens,Essentialtechnicalanalysis:toolsandtechniquestospot
markettrends.JohnWiley&Sons,2002.
[5]E.Fama,“Ef cientcapitalmarkets:areviewoftheoryandempirical
work,”JournalofFinance,vol.25,pp.383–417,1970.[6]EurexFrankfurtAG,“Eurex.”[Online].Available:
[7]J.Hull,Options,Futures,andOtherDerivatives.Prentice-Hall,2006.
[8]S.-i.WuandR.-P.Lu,“Combiningarti cialneuralnetworksand
statisticsforstock-marketforecasting,”inProceedingsofthe1993ACMConferenceonComputerScience,1993,pp.257–264.
[9]C.-M.KuanandT.Liu,“Forecastingexchangeratesusingfeedfor-wardandrecurrentneuralnetworks,”JournalofAppliedEconometrics,vol.10,pp.347–64,1995.
[10]J.Elman,“Findingstructureintime,”CognitiveScience,vol.14,pp.
179–211,1990.
[11]F.TayandL.Cao,“Modi edsupportvectormachinesin nancialtime
seriesforecasting,”Neurocomputing,vol.48,pp.847–861,2002.
[12]L.CaoandF.Tay,“Supportvectormachinewithadaptiveparameters
in nancialtimeseriesforecasting,”IEEETransactionsonNeuralNetworks,vol.14,pp.1506–1518,2003.
[13]V.Vapnik,Thenatureofstatisticallearningtheory.Springer,1995.[14]K.-j.Kim,“Financialtimeseriesforecastingusingsupportvector
machines,”Neurocomputing,vol.55,pp.307–319,2003.
[15]C.J.C.Burges,“Atutorialonsupportvectormachinesforpattern
recognition,”DataMiningandKnowledgeDiscovery,vol.2,no.2,pp.121–167,1998.
[16]V.N.Vapnik,“Anoverviewofstatisticallearningtheory,”IEEETrans-actionsonNeuralNetworks,vol.10,no.5,pp.988–999,1999.[17]B.Sch¨olkopf,C.J.C.Burges,andA.J.Smola,AdvancesinKernel
Methods.Cambridge:MITPress,1998,ch.1.[18]P.-H.Chen,C.-J.Lin,andB.Sch¨olkopf,“Atutorialonν-supportvector
machines,”AppliedStochasticModelsinBusinessandIndustry,vol.21,pp.111–136,2005.
[19]V.WanandS.Renals,“Evaluationofkernelmethodsforspeaker
veri cationandidenti cation,”inIEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing,May2002,pp.669–672.[20]S.Rueping,“SVMkernelsfortimeseriesanalysis,”inLLWA01–
TagungsbandderGI-Workshop-WocheLernen–Lehren–Wissen–Adaptivit¨at,Oct.2001,pp.43–50.
[21]V.WanandW.M.Campbell,“Supportvectormachinesforspeaker
veri cationandidenti cation,”inIEEEInternationalWorkshoponNeuralNetworksforSignalProcessing,Dec.2000,pp.775–784.
[22]P.ClarksonandP.J.Moreno,“Ontheuseofsupportvectormachines
forphoneticclassi cation,”inInternationalConferenceonAcoustics,SpeechandSignalProcessing,vol.2,1999,pp.585–588.
[23]J.MarquesandP.J.Moreno,“Astudyofmusicalinstrumentclassi ca-tionusinggaussianmixturemodelsandsupportvectormachines,”HPLabsTechnicalReports,Tech.Rep.CRL-99-4,1999.
[24]B.HaasdonkandD.Keysers,“Tangentdistancekernelsforsupportvec-tormachines,”in16thInternationalConferenceonPatternRecognition(ICPR),vol.2,2002,pp.864–868.
[25]S.ChakrabarttyandY.Deng,“Dynamictimealignmentinsupportvector
machinesforrecognitionsystems,”InternalReport,TheJohnsHopkinsUniversity,Baltimore,2001.
[26]H.Shimodaira,K.ichiNoma,M.Nakai,andS.Sagayama,“Dynamic
time-alignmentkernelinsupportvectormachine,”inNeuralInformationProcessing(NIPS2001),2001,pp.921–928.
Fig.5.ThescreenshotshowstheintegrationofthedevelopedsystemintothetechnicalanalysissoftwareInvestox.Whilethewindowintheforegroundshowstheprogressofthecalculationsteps,thepredictedvalues,andthetestresults,wecanalreadyseethepredictedvalueasanoscillatinglineinthelowerwindow.Theconstantlyrisinglineaboveshowsthe nancialperformanceofaforecastingsystembasedonthepredictedvalues.
[27]——,“Supportvectormachinewithdynamictime-alignmentkernelfor
speechrecognition,”inEuropeanConferenceonSpeechCommunicationandTechnology(Eurospeech),vol.3,Sept.2001,pp.1841–1844.
[28]C.Bahlmann,B.Haasdonk,andH.Burkhardt,“On-linehandwriting
recognitionwithsupportvectormachines–akernelapproach,”in8thInternationalWorkshoponFrontiersinHandwritingRecognition(IWFHR),2002,pp.49–54.
[29]N.SmithandM.Niranjan,“Data-dependentkernelsinSVMclassi -cationofspeechpatterns,”in6thInternationalConferenceonSpokenLanguageProcessing,2000,pp.297–300.
[30]N.SmithandM.Gales,“SpeechrecognitionusingSVMs,”inNIPS,
2001,pp.1197–1204.
[31]J.N.ShaiFineandR.A.Gopinath,“AhybridGMM/SVMapproach
tospeakeridenti cation,”inInternationalConferenceonAcoustics,Speech,andSignalProcessing(ICASSP),2001,pp.417–420.
[32]V.WanandS.Renals,“Speakerveri cationusingsequencediscriminant
supportvectormachines,”IEEETransactionsonSpeechandAudioProcessing,vol.13,no.2,pp.203–210,Mar.2005.
[33]——,“Svmsvm:Supportvectormachinespeakerveri cationmethodol-ogy,”inIEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing,vol.2,Apr.2003,pp.221–224.
[34]P.J.MorenoandR.Rifkin,“UsingtheFisherkernelmethodforweb
audioclassi cation,”inIEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing,vol.4,2000,pp.2417–2420.
[35]P.J.MorenoandP.P.Ho,“AnewSVMapproachtospeaker
identi cationandveri cationusingprobabilisticdistancekernels,”HPLaboratoriesCambridge,Tech.Rep.HPL-2004-7,Jan.2004.
[36]P.J.Moreno,P.P.Ho,andN.Vasconcelos,“AKullback-Leiblerdiver-gencebasedkernelforSVMclassi cationinmultimediaapplications,”HPLaboratoriesCambridge,Tech.Rep.HPL-2004-4,Jan.2004.[37]T.Gruber,C.Gruber,andB.Sick,“Onlinesignatureveri cationwith
newtimeserieskernelsforsupportvectormachines,”inProceedingsofthe2006InternationalConferenceonBiometricAuthentication,2006,pp.500–508.[38]C.-C.ChangandC.-J.Lin,LIBSVM:alibrary
forsupportvectormachines,2001.[Online].Available:http://www.csie.ntu.edu.tw/cjlin/libsvm/
[39]S.ArmstrongandF.Collopy,“Errormeasuresforgeneralizingabout
forecastingmethods–empiricalcomparisons,”InternationalJournalofForecasting,vol.8,pp.69–80,1992.
[40]R.HyndmanandA.Koehler,“Anotherlookatmeasuresofforecast
accuracy,”InternationalJournalofForecasting,vol.22,pp.679–688,2006.
[41]T.Gruber,“MethodenzurZeitreihenverarbeitungmitSupportVector
MachinesundihreAnwendunginderUnterschriftenveri kation,”Mas-ter’sthesis,Universit¨atPassau,2005.
[42]A.Smola,“Regressionestimationwithsupportvectorlearningma-chines,”TechnischeUniversit¨atM¨unchen.,Tech.Rep.,1996.[43]B.Sch¨olkopf,A.Smola,R.Williamson,andP.Bartlett,“Newsupport
vectoralgorithms,”NeuralComputation,vol.12,pp.1083–1121,2000.[44]C.CortesandV.Vapnik,“Support-vectornetworks,”MachineLearning,
vol.20,pp.273–297,1995.
[45]S.Walczak,“Anempiricalanalysisofdatarequirementsfor nancial
forecastingwithneuralnetworks,”JournalofManagementInformationSystems,vol.17,pp.203–222,2001.[46]A.Kn¨opfel,“InvestoxB¨orsensoftware.”[Online].Available:
http://investox.de
[47]U.Paasche,“Investox:SupportVectorMachinesmitdynamischen
Kernelsf¨urZeitreihenprognosen,”2007.[Online].Available:http://www.nrcm.de/php/supportvectormachines.php
正在阅读:
Forecasting Financial Time Series with Support Vector Machines.07-26
颠倒的世界作文500字07-06
小学班主任工作随笔02-15
高考新材料作文论证的层次性03-08
2009年北京市中考物理试题08-24
冲压模具国内外发展现状06-30
绥化管理局2014年基本建设工程取费标准05-16
工匠精神与广东制造04-12
英语这样说才优雅06-04
人教版初中英语单词默写练习表(附单词表)08-27
- 1vector NTI 使用教程
- 2STL vector用法介绍
- 32000-Financial-Statements-EN
- 4pGEX_vector_map-表达载体
- 54-Financial Statement Analysis
- 6Financial_training_DAX2009
- 7Unit 13 Accounting and financial statements
- 8EMC RecoverPoint for Virtual Machines 部署配置文档
- 9Hyperdense Coding Modulo 6 with Filter-Machines
- 10Lenovo 3000 Series用户手册
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Forecasting
- Financial
- Machines
- Support
- Series
- Vector
- Time
- with
- 2014河南中考模拟最新英语试卷(三)
- 信息技术与学科教学整合研究实施方案
- 2021年XX县发展和改革局科级以下工作人员年度综合考核办法
- 消防安全知识学习
- 论建设工程投标报价的策略和技巧
- 计价格10号之工程设计收费标准
- 危险化学品安全管理(1)
- 高二第一学期期末语文试卷
- 麦肯锡最新全业务战略营销与管理咨询报告
- 苏锡常镇2011届高三调研测试(二)
- 用友财务软件辅助核算功能详细解析
- 基础会计——教学活动设计
- 最爱的生日礼物送给最爱的女友
- 北工大信息论第六章 有噪信道编码14
- 酒店前台绩效考核表
- 由活化学习资源谈学生英语口语表达能力的培养
- 室内装修工程施工合同(小型装修公司专用)
- 2014浙江省造价员考试2008-2013年真题汇总考试技巧重点
- 外语学院班主任工作小结
- 成都派瑞酒店消防安全档案