基于DSP的SPWM程序

更新时间:2024-04-04 16:40:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

#include \ // DSP280x Headerfile Include File #include \ // DSP280x Examples Include File

typedef struct {

volatile struct EPWM_REGS *EPwmRegHandle; Uint16 EPwm_CMPA_Direction; Uint16 EPwm_CMPB_Direction; Uint16 EPwmTimerIntCount; Uint16 EPwmMaxCMPA; Uint16 EPwmMinCMPA; Uint16 EPwmMaxCMPB; Uint16 EPwmMinCMPB; }EPWM_INFO;

// Prototype statements for functions found within this file. void InitEPwm1Example(void); void InitEPwm2Example(void); void InitEPwm3Example(void); interrupt void epwm1_isr(void); interrupt void epwm2_isr(void); interrupt void epwm3_isr(void);

void update_compare(EPWM_INFO*);

// Global variables used in this example EPWM_INFO epwm1_info; EPWM_INFO epwm2_info; EPWM_INFO epwm3_info;

// Configure the period for each timer

#define EPWM1_TIMER_TBPRD 2000 // Period register #define EPWM1_MAX_CMPA 1950 #define EPWM1_MIN_CMPA 50 #define EPWM1_MAX_CMPB 1950 #define EPWM1_MIN_CMPB 50

#define EPWM2_TIMER_TBPRD 2000 // Period register #define EPWM2_MAX_CMPA 1950 #define EPWM2_MIN_CMPA 50 #define EPWM2_MAX_CMPB 1950 #define EPWM2_MIN_CMPB 50

#define EPWM3_TIMER_TBPRD 2000 // Period register

#define EPWM3_MAX_CMPA 950 #define EPWM3_MIN_CMPA 50 #define EPWM3_MAX_CMPB 1950 #define EPWM3_MIN_CMPB 1050

// To keep track of which way the compare value is moving #define EPWM_CMP_UP 1 #define EPWM_CMP_DOWN 0

void main(void) {

// Step 1. Initialize System Control:

// PLL, WatchDog, enable Peripheral Clocks

// This example function is found in the DSP280x_SysCtrl.c file. InitSysCtrl();

// Step 2. Initalize GPIO:

// This example function is found in the DSP280x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example EALLOW;

GpioCtrlRegs.GPAMUX1.all = 0x0; // GPIO pin GpioCtrlRegs.GPADIR.all = 0xFF; // Output pin GpioDataRegs.GPADAT.all =0xFF; // Close LEDs EDIS;

// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3 // These functions are in the DSP280x_EPwm.c file InitEPwm1Gpio(); InitEPwm2Gpio(); InitEPwm3Gpio();

EALLOW;

GpioCtrlRegs.GPAMUX1.bit.GPIO11 = 0; // GPIO pin GpioCtrlRegs.GPADIR.bit.GPIO11 = 1; // Output pin

GpioDataRegs.GPADAT.bit.GPIO11 =0; // GPIO11输出拉低是为了使能3245的/OE引脚 EDIS;

// Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT;

// Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags

// are cleared.

// This function is found in the DSP280x_PieCtrl.c file. InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR).

// This will populate the entire table, even if the interrupt

// is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP280x_DefaultIsr.c. // This function is found in DSP280x_PieVect.c. InitPieVectTable();

// Interrupts that are used in this example are re-mapped to // ISR functions found within this file.

EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.EPWM1_INT = &epwm1_isr; PieVectTable.EPWM2_INT = &epwm2_isr;

PieVectTable.EPWM3_INT = &epwm3_isr;

EDIS; // This is needed to disable write to EALLOW protected registers

// Step 4. Initialize all the Device Peripherals:

// This function is found in DSP280x_InitPeripherals.c // InitPeripherals(); // Not required for this example

// For this example, only initialize the ePWM

EALLOW;

SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; EDIS;

InitEPwm1Example(); InitEPwm2Example(); InitEPwm3Example();

EALLOW;

SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; EDIS;

// Step 5. User specific code, enable interrupts:

// Enable CPU INT3 which is connected to EPWM1-3 INT: IER |= M_INT3;

// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3 PieCtrlRegs.PIEIER3.bit.INTx1 = 1; PieCtrlRegs.PIEIER3.bit.INTx2 = 1; PieCtrlRegs.PIEIER3.bit.INTx3 = 1;

// Enable global Interrupts and higher priority real-time debug events: EINT; // Enable Global interrupt INTM

ERTM; // Enable Global realtime interrupt DBGM

// Step 6. IDLE loop. Just sit and loop forever (optional): for(;;) {

asm(\ NOP\ } }

interrupt void epwm1_isr(void) {

// Update the CMPA and CMPB values update_compare(&epwm1_info);

// Clear INT flag for this timer EPwm1Regs.ETCLR.bit.INT = 1;

// Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; }

interrupt void epwm2_isr(void) {

// Update the CMPA and CMPB values update_compare(&epwm2_info);

// Clear INT flag for this timer EPwm2Regs.ETCLR.bit.INT = 1;

// Acknowledge this interrupt to receive more interrupts from group 3

PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; }

interrupt void epwm3_isr(void) {

// Update the CMPA and CMPB values update_compare(&epwm3_info);

// Clear INT flag for this timer EPwm3Regs.ETCLR.bit.INT = 1;

// Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; }

void InitEPwm1Example() {

// Setup TBCLK

EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD; // Set timer period 801 TBCLKs

EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0 EPwm1Regs.TBCTR = 0x0000; // Clear counter

// Set Compare values

EPwm1Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA; // Set compare A value

EPwm1Regs.CMPB = EPWM1_MAX_CMPB; // Set Compare B value

// Setup counter mode

EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading

EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT

EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;

// Setup shadowing

EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;

EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // Load on Zero

EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

// Set actions

EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM1A on event A, up count

EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; // Clear PWM1A on event A, down count

EPwm1Regs.AQCTLB.bit.CBU = AQ_SET; // Set PWM1B on event B, up count

EPwm1Regs.AQCTLB.bit.CBD = AQ_CLEAR; // Clear PWM1B on event B, down count

// Interrupt where we will change the Compare Values

EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event

EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT

EPwm1Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event

// Information this example uses to keep track // of the direction the CMPA/CMPB values are // moving, the min and max allowed values and // a pointer to the correct ePWM registers

epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA &

epwm1_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN; // decreasing CMPB

epwm1_info.EPwmTimerIntCount = 0; // Zero the interrupt counter

epwm1_info.EPwmRegHandle = &EPwm1Regs; // Set the pointer to the ePWM module

epwm1_info.EPwmMaxCMPA = EPWM1_MAX_CMPA; // Setup min/max CMPA/CMPB values

epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA; epwm1_info.EPwmMaxCMPB = EPWM1_MAX_CMPB; epwm1_info.EPwmMinCMPB = EPWM1_MIN_CMPB; }

void InitEPwm2Example() {

// Setup TBCLK

EPwm2Regs.TBPRD = EPWM2_TIMER_TBPRD; // Set timer period 801 TBCLKs

EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0 EPwm2Regs.TBCTR = 0x0000; // Clear counter

// Set Compare values

EPwm2Regs.CMPA.half.CMPA = EPWM2_MIN_CMPA; // Set compare A value

EPwm2Regs.CMPB = EPWM2_MIN_CMPB; // Set Compare B value

// Setup counter mode

EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading

EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT

EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;

// Setup shadowing

EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;

EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // Load on Zero EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

// Set actions

EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on event A, up count

EPwm2Regs.AQCTLA.bit.CBD = AQ_CLEAR; // Clear PWM2A on event B, down count

EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR; // Clear PWM2B on zero

EPwm2Regs.AQCTLB.bit.PRD = AQ_SET ; // Set PWM2B on period

// Interrupt where we will change the Compare Values

EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event

EPwm2Regs.ETSEL.bit.INTEN = 1; // Enable INT

EPwm2Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event

// Information this example uses to keep track // of the direction the CMPA/CMPB values are // moving, the min and max allowed values and // a pointer to the correct ePWM registers

epwm2_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA &

epwm2_info.EPwm_CMPB_Direction = EPWM_CMP_UP; // increasing CMPB

epwm2_info.EPwmTimerIntCount = 0; // Zero the interrupt counter

epwm2_info.EPwmRegHandle = &EPwm2Regs; // Set the pointer to the ePWM module

epwm2_info.EPwmMaxCMPA = EPWM2_MAX_CMPA; // Setup min/max CMPA/CMPB values

epwm2_info.EPwmMinCMPA = EPWM2_MIN_CMPA; epwm2_info.EPwmMaxCMPB = EPWM2_MAX_CMPB; epwm2_info.EPwmMinCMPB = EPWM2_MIN_CMPB; }

void InitEPwm3Example(void) {

// Setup TBCLK

EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;// Count up/down

EPwm3Regs.TBPRD = EPWM3_TIMER_TBPRD; // Set timer period EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading

EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0 EPwm3Regs.TBCTR = 0x0000; // Clear counter

EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT

EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;

// Setup shadow register load on ZERO

EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

// Set Compare values

EPwm3Regs.CMPA.half.CMPA = EPWM3_MIN_CMPA; // Set compare A value

EPwm3Regs.CMPB = EPWM3_MAX_CMPB; // Set Compare B value

// Set Actions

EPwm3Regs.AQCTLA.bit.PRD = AQ_SET; // Set PWM3A on period

EPwm3Regs.AQCTLA.bit.CBD = AQ_CLEAR; // Clear PWM3A on event B, down count

EPwm3Regs.AQCTLB.bit.PRD = AQ_CLEAR; // Clear PWM3A on period

EPwm3Regs.AQCTLB.bit.CAU = AQ_SET; // Set PWM3A on event A, up count

// Interrupt where we will change the Compare Values

EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event

EPwm3Regs.ETSEL.bit.INTEN = 1; // Enable INT

EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event

// Information this example uses to keep track // of the direction the CMPA/CMPB values are // moving, the min and max allowed values and // a pointer to the correct ePWM registers

epwm3_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA &

epwm3_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN; // decreasing CMPB

epwm3_info.EPwmTimerIntCount = 0; // Zero the interrupt counter

epwm3_info.EPwmRegHandle = &EPwm3Regs; // Set the pointer to the ePWM module

epwm3_info.EPwmMaxCMPA = EPWM3_MAX_CMPA; // Setup min/max CMPA/CMPB values

epwm3_info.EPwmMinCMPA = EPWM3_MIN_CMPA; epwm3_info.EPwmMaxCMPB = EPWM3_MAX_CMPB; epwm3_info.EPwmMinCMPB = EPWM3_MIN_CMPB; }

void update_compare(EPWM_INFO *epwm_info) {

// Every 10'th interrupt, change the CMPA/CMPB values if(epwm_info->EPwmTimerIntCount == 10) {

epwm_info->EPwmTimerIntCount = 0;

// If we were increasing CMPA, check to see if

// we reached the max value. If not, increase CMPA // else, change directions and decrease CMPA if(epwm_info->EPwm_CMPA_Direction == EPWM_CMP_UP) { if(epwm_info->EPwmRegHandle->CMPA.half.CMPA < epwm_info->EPwmMaxCMPA) { epwm_info->EPwmRegHandle->CMPA.half.CMPA++; } else { epwm_info->EPwm_CMPA_Direction = EPWM_CMP_DOWN; epwm_info->EPwmRegHandle->CMPA.half.CMPA--; } } // If we were decreasing CMPA, check to see if

// we reached the min value. If not, decrease CMPA // else, change directions and increase CMPA else { if(epwm_info->EPwmRegHandle->CMPA.half.CMPA == epwm_info->EPwmMinCMPA) { epwm_info->EPwm_CMPA_Direction = EPWM_CMP_UP; epwm_info->EPwmRegHandle->CMPA.half.CMPA++; } else { epwm_info->EPwmRegHandle->CMPA.half.CMPA--; }

} // If we were increasing CMPB, check to see if

// we reached the max value. If not, increase CMPB // else, change directions and decrease CMPB if(epwm_info->EPwm_CMPB_Direction == EPWM_CMP_UP) { if(epwm_info->EPwmRegHandle->CMPB < epwm_info->EPwmMaxCMPB) { epwm_info->EPwmRegHandle->CMPB++; } else { epwm_info->EPwm_CMPB_Direction = EPWM_CMP_DOWN; epwm_info->EPwmRegHandle->CMPB--; } } // If we were decreasing CMPB, check to see if

// we reached the min value. If not, decrease CMPB // else, change directions and increase CMPB else { if(epwm_info->EPwmRegHandle->CMPB == epwm_info->EPwmMinCMPB) { epwm_info->EPwm_CMPB_Direction = EPWM_CMP_UP; epwm_info->EPwmRegHandle->CMPB++; } else { epwm_info->EPwmRegHandle->CMPB--; } } } else {

epwm_info->EPwmTimerIntCount++; }

return; }

} // If we were increasing CMPB, check to see if

// we reached the max value. If not, increase CMPB // else, change directions and decrease CMPB if(epwm_info->EPwm_CMPB_Direction == EPWM_CMP_UP) { if(epwm_info->EPwmRegHandle->CMPB < epwm_info->EPwmMaxCMPB) { epwm_info->EPwmRegHandle->CMPB++; } else { epwm_info->EPwm_CMPB_Direction = EPWM_CMP_DOWN; epwm_info->EPwmRegHandle->CMPB--; } } // If we were decreasing CMPB, check to see if

// we reached the min value. If not, decrease CMPB // else, change directions and increase CMPB else { if(epwm_info->EPwmRegHandle->CMPB == epwm_info->EPwmMinCMPB) { epwm_info->EPwm_CMPB_Direction = EPWM_CMP_UP; epwm_info->EPwmRegHandle->CMPB++; } else { epwm_info->EPwmRegHandle->CMPB--; } } } else {

epwm_info->EPwmTimerIntCount++; }

return; }

本文来源:https://www.bwwdw.com/article/3wtr.html

Top