2014年中考数学压轴题复习(含答案,共20期)
更新时间:2024-03-18 09:25:01 阅读量: 综合文库 文档下载
2014年中考数学压轴题复习⑾
201.(湖北省随州市)如图①,在平面直角坐标系中,抛物线L1:y=x+c与x轴交于B、C两点,与y轴交于点A,且△ABC是等腰直角三角形. (1)求c的值;
(2)如图②,将△ABC绕点B逆时针方向旋转90°,得△A′BC′,然后将抛物线L1平移,使它的顶点落在点C′ 处,得抛物线L2,它与y轴相交于点D,连接DC′,试判断四边形BA′DC′ 的形状,并说明理由; (3)将抛物线L2沿直线BC′ 向上或向下平移,记此时抛物线的顶点为C″,它与y轴的交点为D′,过点C″ 作C″A″∥C′A′,交直线A′B于点A″ .是否存在这样的点C″,使得△A″C″D′ 是一个含有30°内角的三角形?若存在,求出点C″ 的坐标;若不存在,请说明理由.
2
y y y D
C′ C′
A′ A′
B O C x B O C x B O C x
A A A
图① 图② 备用图
2
202.(湖北省恩施自治州)如图,在平面直角坐标系中,二次函数y=x+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式;
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大?并求出此时P点的坐标和四边形ABPC的最大面积.
y
A x O B
P C
1
203.(湖北省潜江市、天门市、仙桃市、江汉油田)如图,已知直线l:y=-
3x+3交x轴于点A,交3ky轴于点B,将△AOB沿直线l翻折,点O的对应点C恰好落在双曲线y=(k>0)上.
x(1)求k的值;
k(2)将△ABC绕AC的中点旋转180°得到△PCA,请判断点P是否在双曲线y=上,并说明理由.
x y
C
B
O A x
204.(湖北省潜江市、天门市、仙桃市、江汉油田)正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F. (1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论; (2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;
(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.
A D A D A D
(P) O O O F F P
B C B C B C E E 图① 图② 图③
205.(湖北省潜江市、天门市、仙桃市、江汉油田)如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点,P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q. (1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
y N
D
E G M 2 F A B O C x
206.广东省(中山市、汕头市、东莞市等)如图,已知P是线段AB上的任意一点(不含端点A,B),分别以AP、BP为斜边在AB的同侧作等腰直角△APD和△BPE,连接AE交PD于点M,连接BD交PE于点N.
111(1)求证:①MN∥AB;②+; =
MNBPAP(2)若AB=4,当点P在AB上运动时,求MN的取值范围. D
E
M N
A B P
207.广东省(中山市、汕头市、东莞市等)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、MN、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题: (1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PQW为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
F F D D C C P W P W M Q B B A A N N M Q
图(1) 图(2) ⌒208.(广东省广州市)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上的任一点(与端点A、B不重合),DE⊥AB于点E,以D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
C (1)求弦AB的长;
(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;
P D S43(3)记△ABC的面积为S,若=,求△ABC的周长.
DE2A B E
O
3
209.(广东省广州市)如图,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
1x+b交折线OAB于点E. 2(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
y
D B C
A
x O E
210.(广东省深圳市)如图是一圆形纸片,AB是直径,BC是弦,将纸片沿弦BC折叠后,劣弧BC与AB
︵交于点D,得到BDC. C ︵︵︵(1)若BD=CD,求证:BDC必经过圆心O;
︵︵(2)若AB=8,BD=2CD,求BC的长. O A B D
2
211.(广东省深圳市)如图,抛物线y=ax+c(a>0)经过梯形ABCD的y 四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3). (1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点A O D x
P的坐标. B C
212.(广东省深圳市)如图1,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线353x-与⊙M相切于点H,交x轴于点E,交y轴于点F. 33(1)请直接写出OE、⊙M的半径r、CH的长;
(2)如图2,弦HQ交x轴于点P,且DP :PH=3 :2,求cos∠QHC的值;
y=-
(3)如图3,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN2MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
4
y y y Q B B B T P K E C M O D x E C M O D x E C N M O D x A A A H H H F F F 图1 图2 图3
213.(广东省珠海市)如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连结PA、PB、PC、PD.
P (1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;
A 5(2)若cos∠PCB=,求PA的长.
5D O
B C
214.(广东省珠海市)如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6).将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
2
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax+bx+c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<MN、PM=MN、PM>MN成立的x的取值范围.
y
N
C B M F P D H
O G E A x
215.(广东省佛山市)一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题: 如图,在△ABC中,∠ACB>∠ABC.
(1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)?
5
(2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的
点D的个数.
A B C
216.(广东省茂名市)如图,在直角坐标系xOy中,正方形OCBA的顶点A、C分别在y轴、x轴上,点
2
B坐标为(6,6),抛物线y=ax+bx+c经过A、B两点,且3a-b=-1. (1)求a,b,c的值;
(2)如果动点E、F同时分别从点A、点B出发,分别沿A→B、B→C运动,速度都是每秒1个单位长度,
当点E到达终点B时,点E、F随之停止运动.设运动时间为t秒,△EBF的面积为S. ①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以点E、B、R、F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
y y A B A B E E
F F
x x O C O C
备用图
217.(广东省茂名市)已知⊙O1的半径为R,周长为C.
(1)在⊙O1内任意作三条弦,其长分别是l1、l2、l3.求证:l1+l2+l3<C; (2)如图,在直角坐标系xOy中,设⊙O1的圆心O1(R,R). ①当直线l:y=x+b(b>0)与⊙O1相切时,求b的值;
②当反比例函数y=
k(k>0)的图象与⊙O1有两个交点时,求k的取值范围. x y y
O1 R O1 O1
x x O O
(备用图) (备用图)
218.(广东省湛江市)如图,在△ABC中,以AB为直径的⊙O交BC于点P,PD⊥AC于点D,且PD与
⊙O相切.
C (1)求证:AB=AC;
P (2)若BC=6,AB=4,求CD的值.
D
6 B A O
219.(广东省湛江市)如图,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋
转后与x轴的正半轴重合,点B的对应点为点A.
(1)直接写出点A的坐标,并求出经过A、O、B三点的抛物线的解析式; (2)在抛物线的对称轴上是否存在点C,使BC+OC的值最小?若存在,求出点C的坐标;若不存在,
请说明理由;
(3)如果点P是抛物线上的一个动点,且在x轴的上方,当点P运动到什么位置时,△PAB的面积最
大?求出此时点P的坐标和△PAB的最大面积.
y
A O
x
B
2
220.(广东省肇庆市)已知二次函数y=x+bx+c+1的图象过点P(2,1). (1)求证:c=-2b-4;
(2)求bc的最大值;
(3)若二次函数的图象与x轴交于点A(x1,0)、B(x2,0),△ABP的面积是
7
3,求b的值. 4
答案
201.解:(1)在y=x+c中,令y=0,得x+c=0,∴x=±?c;令x=0,得y=c
22
∴A(0,c),B(-?c,0),C(?c,0) ∵△ABC是等腰直角三角形,∴OA=OB 即-c=?c,∴c=0(舍去)或c=-1
即c的值为-1 ······························································································ 3分 (2)四边形BA′DC′ 为平行四边形 ······································································· 4分
由(1)知:A(0,-1),B(-1,0),C(1,0)
△ABC绕点B逆时针方向旋转90°后,点C′ 的坐标为(-1,2) ············· 5分 ∵抛物线L2的顶点为C′(-1,2)
∴抛物线L2的解析式为y=(x+1)+2 ······················································ 6分 ∵A(0,-1),∴A′(0,1)
在y=(x+1)+2中,令x=0,得y=3 ∴点D 的坐标为(0,3),∴DA′=3-1=2=BC′ 又∠C′BC=90°,∴BC′∥DA′
∴四边形BA′DC′ 为平行四边形 ··································································· 8分 (3)假设存在这样的点C″,过D′ 作D′E⊥BC′ 于E
设顶点为C″ 的抛物线的解析式为y=(x+1)+k 令x=-1,得y=k;令x=0,得y=1+k
∴C″E=1+k-k=1=D′E,∴△C″D′E是等腰直角三角形,∴∠D′C″E=45° ∵△ABC是等腰直角三角形,∴∠BCA=45°,∴∠BC′A′=45° ∵C″A″∥C′A′,∴∠BC″A″=45°
∴∠A″C″D′=90° ·························································································· 9分
∴若△A″C″D′ 是一个含有30°内角的三角形,则只能是∠C″A″D′=30°或∠C″D′A″=30° ········································································································ 10分
C″D′
当∠C″A″D′=30°时,则A″C″==3C″D′=3×2=6
tan30°
2
2
2
∴BC″=2A″C″=2×6=23
∴C″1(-1,23),C″2(-1,-23) ···················································· 12分
36
当∠C″D′A″=30°时,则A″C″=C″D′2tan30°=2×= 33
623
∴BC″=2A″C″=2×=
33
2323∴C″3(-1,),C″4(-1,-)
33
综上所述,存在这样的点C″,使得△A″C″D′ 是一个含有30°内角的三角形,
2323
点C″ 的坐标为:(-1,23)或(-1,-23)或(-1,)或(-1,-)
33
········································································································ 14分
8
y E C″ C′ D′ B O A y y y C′ A′ C D′ C″ 2
C′ C″ x A″ B O D′ A′ C A x C′ B O D′ C A″ C″ A A′ ″ AA′ B O C A x x A″ 202.解:(1)∵二次函数y=x+bx+c的图象经过B(3,0)、C(0,-3)两点
??9+3b+c=0
∴? ···························································································· 2分 ?c=-3??b=-2?解得:?
?c=-3?
∴二次函数的表达式为:y=x-2x-3 ························································ 3分
2
(2)存在点P,使四边形POP′C为菱形.设P点坐标为(x,x-2x-3),PP′ 交CO于E
2
若四边形POP′C为菱形,则有PC=PO 连结PP′,则PE⊥CO于E,∴OE=EC=∴y=-
3 23 ······································································································ 6分 223令x-2x-3=-
22?102?10解得x1=,x2=(不合题意,舍去)
22∴P点的坐标为(
32?10,-) ····························································· 8分 222
(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x-2x-3)
易得直线BC的解析式为y=x-3,则Q点的坐标为(x,x-3) ∴QP=x-3-(x-2x-3)=-x+3x
22
S四边形ABPC=S△ABC+S△BPQ+S△CPQ=
111AB2OC+QP2FB+QP2OF 222112
×4×3+(-x+3x)×3 2233275 ································································· 10分 =-(x-)+
228=
3时,四边形ABPC的面积最大 232315此时y=()-2×-3=-
224当x=
9
∴P点的坐标为(
P′ C A O E 31575,-),四边形ABPC的最大面积为 ············· 12分 248y y F B P C P x A O Q B x 203.解:(1)在y=-
33x+3中,令y=0,得-x+3=0,∴x=3;令x=0,得y=3 333OB=,∴∠BAO=30°
3OA∴A(3,0),B(0,3) ∴tan∠BAO=
∴∠BAC=30°,∴∠CAO=60°
过C作CD⊥OA于D,则OD=OA-DA=OA-CA2cos60°=3-3×CD=CA2sin60°=3×∴C(
333,)
22333= 2212=3 2y k33k(k>0)上,∴=
32x2C B O A P x ∵点C在双曲线y=
∴k=
93 ·························································· 4分 493 4x(2)由(1)知双曲线的解析式为y=
将△ABC绕AC的中点旋转180°得到△PCA,则AP=BC=OB=3 ∠CAP=∠ACB=90°,∴∠OAP=150° 过P作PE⊥x轴于E,则∠PAE=30° ∴OE=OA+AE=OA+AP2cos30°=3+3×PE=AP2sin30°=3×∵
1239= 22=
3 293393=,∴点P在双曲线y=上 ············································ 8分 924x4?2
10
204.解:(1)AP=EF,AP⊥EF ························································································ 1分
如图①,∵PE⊥BC,PF⊥DC,∴PE∥DC,PF∥BC
又∵O是对角线DB的中点,点P与点O重合,∴E是BC的中点,F是DC的中点 ∴EF∥DB,EF=又∵AP=
1DB 2A (P) O D 1DB,AP⊥DB 2∴AP=EF,AP⊥EF ··········································· 3分 (2)(1)中的结论仍然成立 ······································ 4分
如图②,延长AP交EF于G,延长EP交AD于H ∵PE⊥BC,PF⊥DC,∠C=90°,∴四边形PECF为矩形 ∵DB为对角线,∠PFD=90°,∴DF=PF ∴四边形PFDH为正方形
∴PF=DF=PH=DH,∴AH=FC=PE ∴△APH≌△PEF
∴AP=EF ··························································· 5分 ∠PAH=∠PEF
∵∠PAH+∠APH=90°,∠APH=∠EPG ∴∠PEF+∠EPG=90°,∴∠PGE=90°
B P A B F E 图①
C H D O F G E 图②
C ∴AP⊥EF ····································································································· 6分 (3)如图③ ··········································································································· 8分
(1)中的结论仍然成立,即AP=EF,AP⊥EF ······································ 10分 提示:延长AB交PF于G,证明△APG≌△FEP
205.解:(1)∵DB⊥DC,∴∠BDC=90°,∴∠BDO+∠ODC=90°
∵∠BDO+∠OBD=90°,∴∠OBD=ODC 又∵∠BOD=∠DOC=90°,∴△BOD∽△DOC OBODOB2∴,即==,∴OB=1
4ODOC2∴B(-1,0) ································································································ 1分
11
A H D O E B P G 图③
C F
设经过B、E、C三点的抛物线的解析式为y=a(x+1)(x-4) 将E(0,4)代入,得4=a(0+1)(0-4),∴a=-1 ∴抛物线的解析式为y=-(x+1)(x-4)
即y=-x+3x+4 ·············································· 3分
23225(2)∵y=-x+3x+4=-(x-)+
243∴抛物线的对称轴为直线x=
2
y Q E H D P F A B O N G M 2
设直线AD的解析式为y=kx+b
???-2k+b=0?k=1则? ∴? ?b=2?b=2??
C 图① x ∴线AD的解析式为y=x+2,将x=∴M(
337代入,得y=+2= 22237,) ······························································································ 4分 222
若以P、Q、M为顶点的三角形与△AOD相似,则△PQM为等腰直角三角形 设P(x,x+2),则Q(x,-x+3x+4)
∴PQ=-x+3x+4-(x+2)=-x+2x+2
22
∵PQ∥y轴,∴当点P在对称轴的左侧时,∠MPQ=∠MDE=∠ADO=45° ∴∠PMQ=90°或45°
当点P在对称轴的右侧时,∠MPQ=135°,△PQM与△AOD不相似 ①若以M为直角顶点,PQ为斜边,如图①,过点M作MH⊥PQ于H
23则PQ=2HM,即-x+2x+2=2(-x)
2∴解得x1=2+3(不合题意,舍去),x2=2-3
y N G ∴x+2=2-3+2=4-3
∴P1(2-3,4-3) ·················································· 6分 ②若以Q为直角顶点,PM为斜边,如图②,则PQ=MQ 即-x+2x+2=
E Q M 3?113?113P D -x,解得x1=(舍去),x2= F 222A 3?117?11∴x+2=+2=
B O 222
C 图② x ∴P2(
3?117?11,) 22故存在符合条件的P点,且P点坐标为:
3?117?11(2-3,4-3)或(,) ··························· 8分 22y Q N G M (3)①四边形PMNQ不能成为菱形 ·················································· 10分 E 59②四边形PMNQ能成为等腰梯形,点P的坐标为(,) · 12分 22D P 提示(原题不作要求,本人添加,仅供参考):
F 12
A B O 图③ C x
①若四边形PMNQ为菱形,如图③,则PQ=MN
2225711∴-x+2x+2=-=,即4x-8x+3=0
2441331解得x1=,x2=(舍去),此时PM=2(-)=2≠MN
2222
∴四边形PMNQ不能成为菱形
②显然,当NQ∥PM时,四边形PMNQ是平行四边形,所以若四边形PMNQ是梯形,只有一种情况:PQ∥MN
y R E N Q S G P M 若四边形PMNQ为等腰梯形,如图④
11则有:(yM+yN )=(yP+yQ ) D 22F 22725即+=x+2-x+3x+4,整理得:4x-16x+15=0
A 24B O 35解得x1=(舍去),x2=
2259∴x+2=+2=
2259∴四边形PMNQ能成为等腰梯形,点P的坐标为(,)
22
C 图④ x
206.解:(1)①证明:∵△APD和△BPE都是等腰直角三角形,∴∠DAP=∠EPB=45°
∴AD∥PE,∴∠DAM=∠PEM,∠ADM=∠EPM ∴△DAM∽△PEM,∴AD :PE=AM :ME
D E M A
N P
B
同理可得PD :BE=PN :NE,
∵AD=PD,BE=PE,∴AM :ME=PN :NE
∴MN∥AP,即MN∥AB ·············································································· 3分 ②证明:∵MN∥AB,∴∠PMN=∠ACP=45°,∠PNM=∠BPE=45° ∴∠PMN=∠PNM=45°,∴△PMN是等腰直角三角形 ∴PM=
2MN 2∵∠APM=∠ABE=45°,∠PAM=∠BAE(公共角) ∴△APM∽△ABE,∴PM :BE=AP :AB=AP :(AP+BP)
22MN :BP=AP :(AP+BP)[来源:Z_xx_k.Com] 22111整理得:+ ·········································································· 6分 =
MNAPBP111(2)解:∵+ =
MNAPBPAP · BPAP · BPAP (AB?AP)1 1122
∴MN====[-(AP-AB)+AB ]
AP?BPAB24ABAB∴
∴MN≤
111AB(当AP=AB时,MN取得最大值为AB) 424
∵AB=4,∴MN≤1,又∵P不与A,B重合,∴AP<AB,∴MN>0
13
∴0<MN≤1 ································································································· 9分
207.解:(1)由题意知:PW∥MN,PQ∥FN,∴∠MNF=∠PWF,∠PWF=∠WPQ
∴MNF=∠WPQ
同理可得:∠NFM=∠PQW或∠NMF=∠PWQ
∴△FMN∽△QWP ······················································································· 2分 (2)∵△FMN∽△QWP,∴当△FMN为直角三角形时,△PQW也为直角三角形
当0≤x≤4时,若∠NMF=90°,则有MF +MN =FN 即(x+2)+(4-x)+(6-x)=(4-x)+4,此方程无实数解
222
222222
D P F C W 若∠MNF=90°,则有MN +FN =MF 即(4-x)+(6-x)+(4-x)+4=x+2
222
222222
M A Q N 图(1)
F B 解得x=4或x=10(舍去) ···················································· 3分 若∠NFM=90°,则有MF +FN =MN
即(x+2)+(4-x)+4=(4-x)+(6-x)
4解得x= ·············································································· 4分
34所以,当x=或x=4时,△PQW为直角三角形 ·············· 5分
344当0≤x<,<x<4时,△PQW不为直角三角形 ······· 6分
33
222
222222
D C P W A N M Q B 图(2) (3)在0≤x≤4时间段,当x=4时,点M与点A重合,线段MN最短,此时MN=2
·········································································································· 7分
当4<x≤6时,如图(2)
∵MN =AM +AN =(x-4)+(6-x)
22222
=2x-20x+52
2
=2(x-5)+2 ··················································································· 8分
2
∴当x=5时,MN 有最小值2,即线段MN最短,此时MN=2
综上所述,当x=5时,线段MN最短,此时MN=2 ···························· 9分
208.解:(1)如图,连结OA、OB,设OP与AB的交点为F,则有OA=1
∵弦AB垂直平分线段OP,∴OF=
11OP=,AF=BF 22 2
13在Rt△AOF中,∵AF=OA2-OF2=12- ()2=
22 ∴AB=2AF=3 ·························································································· 4分 (2)∠ACB是定值 ······························································································· 5分
理由:由(1)易知∠AOB=120°
连结AD、BD,∵点D为△ABC的内心,∴∠CAB=2∠DAB,∠CBA=2∠DBA
14
∵∠DAB+∠DBA=
1∠AOB=60°,∴∠CAB+∠CBA=120° 2∴∠ACB=60°(定值) ················································································· 8分 (3)记△ABC的周长为l,设AC、BC与⊙D的切点分别为G,H,连结DG,DC,DH
则有DG=DH=DE,DG⊥AC,DH⊥BC ∴S=S△ABD+S△ACD+S△BCD
C G P A F O
111=AB2DE+AC2DG+BC2DH 222D H E B
=
11(AB+BC+AC)2DE=l2DE 221l·DES2∵=43,∴=43,∴l=83DE 22DEDE∵CG,CH是⊙D的切线,∴∠GCD=∴在Rt△CGD中,CG=
1∠ACB=30° 2DEDG==3DE,∴CH=CG=3DE ?tan3033又由切线长定理可知AG=AE,BH=BE
1∴l=AB+BC+AC=23+23DE=83DE,解得DE= ················ 13分
3∴△ABC的周长为
83 ············································································· 14分 3209.解:(1)由题意得点B的坐标为(3,1)
若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=
3 25 2y D C O B A E 图1 x 若直线经过点C(0,1)时,则b=1
①若直线与折线OAB的交点在OA上,即1<b≤此时E(2b,0) ∴S=
3时,如图1 211OE2CO=×2b×1=b ································································· 4分 2235<b<时,如图2 22②若直线与折线OAB的交点在BA上,即此时E(3,b-
3),D(2b-2,1) 2y D ∴S=S矩形OABC-(S△COD+S△AOE+S△BDE )
35111=3-[(2b-2)×1+×3(b-)+(5-2b)(-b)]
2222215
C O B E A x 图2
=
25b-b 2
3b (1<b≤)??2∴S=? ····································································· 8分
53??2b-b(1<b≤2)
2
(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC
的重叠部分的面积即为四边形DNEM的面积
由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形 根据轴对称知,∠MED=∠NED 又∠MDE=∠NED,∴∠MED=∠MDE
∴MD=ME,∴平行四边形DNEM为菱形 ······················ 10分 过点D作DH⊥OA,垂足为H 由题易知,tan∠DEN=
1,DH=1,∴HE=2 25 ········································································ 12分 455×1= ·························································· 13分 445 4y C1 C O O1 D M B A H N B1 图3
E A1 x 设菱形DNEM的边长为a,则在Rt△DHN中,由勾股定理得: a=(2-a)+1,∴a=
222
∴S四边形DNEM=NE2DH=
故矩形O1A1B1C1与矩形OABC重叠部分的面积不发生变化,面积始终为
····································································································· 14分
210.解:(1)过C作CE⊥AB于E,连接CA、CD
1︵1︵∵∠CDA=∠BCD+∠CBD=BDC=BmC=∠CAD
22∴AC=CD ︵︵∵BD=CD,∴BD=CD,∴BCD=∠CBD
∴∠CDA=2∠CBD,∴∠CAD=2∠CBD ∵AB是直径,∴∠ACB=90°
∴∠CAD+∠CBD=90°,∴2∠CBD+∠CBD=90° ∴∠CBD=30°,∴∠CDA=60°
∴△CAD是等边三角形,∴AD=CD
︵∴AD=BD,∴BDC必经过圆心O ····························································· 4分
︵︵(2)∵AC=CD,∴AC=CD
︵︵︵1︵1︵1︵1∵BD=2CD,∴AC=BD=BDC=BmC=半圆
24331连接CO,则∠OPC=×180°=45°
4
C O E D m A B 16
∴CE=OE=
22OC=×4=22 22∴BE=OE+OB=22+4
(22?4)2+(22)2=42?2 ·∴BC= ··············································· 7分
211.解:(1)∵抛物线y=ax+c经过A(-2,0),B(-1,-3)
2
y ???4a+c=0?a=1
∴? 解之得:? ??a+c=-3c=-4??
∴抛物线的解析式为y=x-4 ····································· 3分
2
(2)如图1,连接BD,交y轴于点M,则点M就是所求作的点
设BD的解析式为y=kx+b
???2k+b=0?k=1则? ∴? ??-k+b=-3b=-2??
A O M B 图1
C D x ∴BD的解析式为y=x-2,令x=0,则y=-2
∴M(0,-2) ······························································································· 5分 (3)如图2,连接AM,设BC与y轴的交点为N,则N(0,-3)
由(2)知,OM=OA=OD=2,∠AMB=90° ∴BN=MN=1,AM=22,BM=2 ∴S△ABM=
y P2 P1
1AM2BM=22×2=2 22
A
O M N P3 图2
D x 设P(x,x-4),依题意有:即
12
AD2|x-4|=4×2 2
122
×42|x-4|=4×2,整理得:|x-4|=4 2
B C 解之得:x1=22,x2=-22,x3=0
故符合条件的P点有三个:P1(22,4),P2(-22,4),P3(0,-4)
······································································································· 9分
212.解:(1)OE=5,r=2,CH=2 ····················································· 3分 (2)如图2,连接QC、QD,则∠CQD=90°
∠PHC=∠PDQ,∠CPH=∠QPD ∴△CPH∽△QPD,∴
QDDP =
CHPHy Q P E C H F M O D A x B QD3即=,∴QD=3
22∵CD=4,∴cos∠QHC=cos∠QDC=
3 ······················· 6分 4图2 (3)如图3,连接AK、AM,延长AM,与圆交于点G,连接TG,则∠GTA=90°
17
∴∠1+∠2=90°
∵∠3=∠2,∴∠1+∠3=90°
∵∠4+∠3=90°,∠5=∠4,∴∠1=∠5 又∠NMA=∠AMK,∴△NMA∽△AMK ∴
2MNAM2,即MNMK=AM=4 =
AMMKy G K E T 4 5 2 3 B N M 1 C H O D A F x 故存在常数a,始终满足MN2MK=a,常数a=4
············································································· 9分
213.解:(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
︵︵∵P是优弧BAC的中点,∴PB=PC
∴PB=PC
∵BD=AC=4,∠PBD=∠PCA ∴△PBD≌△PCA
∴PA=PD,即△PAD是以AD为底边的等腰三角形
·········································································································· 4分
(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=∵∠PCB=∠PAD ∴cos∠PAD=cos∠PCB=
5AE=
5PA图3 P A E D O B C 1AD=1 2∴PA=5 ······································································································ 9分
214.解:(1)∠ABE=∠CBD=30° ··················································································· 1分
在△ABE中,AB=6
ABBC=BE==43
cos30?CD=BC2tan30°=43×
3=4 3y C F D O H G E A x N M P B ∴OD=OC-CD=6-4=2 ∴B(43,6),D(0,2)
设BD所在直线的函数解析式为y=kx+b
??k=3?43k+b=6
3 则? ∴?
?b=2??b=2
∴BD所在直线的函数解析式为y=
3x+2 ·············································· 3分 318
(2)∵EF=EA=AB2tan30°=23,∠FEG=180°-∠FEB-∠AEB=60°
又∵FG⊥OA
∴FG=EF2sin60°=3,GE=EF2cos60°=3,OG=OA-AE-GE=3 又H为FG中点 ∴H(3,
3) ···························································································· 4分 22
∵抛物线y=ax+bx+c经过B(43,6)、H(3,
3)、D(0,2)三点 2??∴?3a+??c=2
48a+43+c=6
??33b+c= ∴?b=2??c=2
a=
163 3-
∴抛物线的解析式为y=(3)∵PM=(
MN=6-(
312
x-x+2 ····················································· 5分
36
33121223x+2)-(x-x+2)=-x+x 3336633x+2)=4-x 33
3122312
x+)-(4-x)=-x+3x-4 ················ 6分
3366h 12
由-x+3x-4得x1=23,x2=43
6h=PM-MN=(-
该函数的简图如图所示: ········································7分 当0<x<23时,h<0,即PM<MN 当x=23时,h=0,即PM=MN
当23<x<43时,h>0,即PM>MN ·············9分
215.解:(1)(ⅰ)如图①,若点D在线段AB上
由于∠ACB>∠ABC,可以作一个点D满足∠ACD=∠ABC
使得△ACD∽△ABC ····················································································· 2分 (ⅱ)如图②,若点D在线段AB的延长线上 则∠ACD>∠ACB>∠ABC,与条件矛盾
因此,这样的点D不存在 ············································································ 4分 (ⅲ)如图③,若点D在线段AB的反向延长线上 由于∠BAC是锐角,则∠BAC<90°<∠CAD 不可能有△ACD∽△ABC
因此,这样的点D不存在 ············································································ 6分 综上所述,这样的点D有一个 ···································································· 8分
19
? 4 O 23 43 x
注:(ⅲ)中用“∠CAD是钝角,△ABC中只可能∠ACB是钝角,而∠CAD>∠ACB”说明不存在点D亦可
(2)若∠BAC为锐角,由(1)知,这样的点D有一个 ····································· 9分
若∠BAC为直角,这样的点D有两个 ······················································ 10分 若∠BAC为钝角,这样的点D有一个 ······················································ 11分 注:(2)的第一个解答不写不扣分,第二个解答回答“这样的点D有一个”给1分
216.解:(1)由已知A(0,6)、B(6,6)在抛物线上
?c=6
B 图①
D A D C B D C
图②
A A B 图②
C ?
得方程组:?36a+6b+c=6 ········································································· 1分
??3a-b=-1
?2解得:?b=3?c=6
a=-
19 ·························································································· 3分
y A R2(3,9) E B R1(9,3) x (2)①运动开始t秒时,EB=6-t,BF=t
1112
S=EB2BF=(6-t)t=-t+3t ··············· 4分
22221219∵S=-t+3t=-(t-3)+
2229∴当t=3时,S有最大值 ······························ 5分
2
R1(3,3) F O C ②当S取得最大值时,由①知t=3,所以BF=3,CF=3,EB=6-3=3 若存在某点R,使得以E、B、R、F为顶点的四边形是平行四边形, 则FR1=EB且FR1∥EB,即可得R1为(9,3)、(3,3) ·························· 6分
或者ER2=BF且ER2∥BF,可得R2为(3,9) ·········································· 7分
122再将所求得的三个点代入y=-x+x+6,可知只有点(9,3)在抛物线上,因此抛物
93线上存在点R1(9,3),使得四边形EBRF为平行四边形 ························· 8分
217.(1)证明:∵l1≤2R,l1≤2R,l1≤2R
∴l1+l2+l3≤3×2R<π×2R=C ······························································· 2分 ∴l1+l2+l3<C ·························································································· 3分
20
(2)解:①如图,根据题意可知⊙O1与与x轴、y轴分别相切
设直线l与⊙O1相切于点M,则O1M⊥l,过点O1作直线NH⊥x轴,与l交于点N,与x轴交于点H
∵直线l与x轴、y轴分别交于点E(-b,0)、F(0,b) ∴OE=OF=b,∴∠NEO=45°,∴∠ENO1=45° 在Rt△O1MN中,O1N=O1M÷sin45°=2R
∴点N的坐标为N(R,2R+R) ···························· 4分 把点N坐标代入y=kx+b得:2R+R=R+b,解得:b=2R ··································································································· 5分 ②如图,设经过点O、O1的直线交⊙O1于点A、D
则由已知,直线OO1:y=x圆与反比例函数图象的对称轴
k当反比例函数y=的图象与⊙O1直径AD相交时(点A、D除外) xk则反比例函数y=的图象与⊙O1有两个交点
x过点A作AB⊥x轴交x轴于点B,过O1作O1C⊥x轴于点C 则OO1=O1C÷sin45=2R,OA=2R+R ∴OB=AB=OA2sin45o=(2R+R)2∴A(R+
22=R+R 22o
y N M F O1 E O H l x y A O1 O D E C B x 22kR,R+R),将点A的坐标代入y= 22x23解得:k=(+2)R ············································································ 6分
222R,R-R) 22k32
将点D的坐标代入y=,解得:k=(-2)R ······························· 7分
x2k∴当反比例函数y=(k>0)的图象与⊙O1有两个交点时,k的取值范围是:
x2233(-2)R <k<(+2)R ····························································· 8分 22同理可求得点D的坐标为D(R-
218.(1)证明:连接OP
∵PD与⊙O相切,∴OP⊥PD ∵AC⊥PD,∴OP∥AC
11∵OP=OA=OB=AB,∴OP=AC
22∴AB=AC ···························································6分
(2)解:连接AP
∵AB=AC,P为BC的中点,∴AP⊥BC 在Rt△CDP与Rt△CPA中,∠C=∠C
21
C P D A O B
∴Rt△CDP∽Rt△CPA,∴
CDPC =
PCACCD3∵BC=6,AB=4,∴PC=3,AC=4,∴=
439∴CD= ································································································ 12分
4
219.解:(1)A(5,0) ····································································································· 1分
由抛物线经过点O,可设抛物线的解析式为y=ax+bx ··························· 2分
2
把A(5,0)、B(-3,-4)代入y=ax+bx,得:
1a=-
?25a+5b=06?? 解得 ·································································· 4分 ?59a-3b=-4?
b=
6125∴抛物线的解析式为y=-x+x ·························································· 5分
6612515225(2)如图①,∵y=-x+x=-( x-)+
66622455∴抛物线的对称轴是直线x=,点O、A关于直线x=对称
225连接AB交直线x=于点C,则点C使BC+OC的值最小 ···················· 6分
2
2
?????
设直线AB的解析式为y=kx+b
1k=
?5k+b=02?则? 解得 ?5-3k+b=-4?
b=-
215∴直线AB的解析式为y=x- ························8分
225155把x=代入y=x-,得y=-
222455∴点C的坐标为(,-) ································9分
24y O C B 图① ??
???
A x (3)如图②,过点P作y轴的平行线交AB于点D,设点P的横坐标为x,
12515则P(x,-x+x),D(x,x-) ··············································· 10分
66221∴S△PAB=S△PAD+S△PBD=PD2(xA-xB) y 21=(yP-yD)(xA-xB)
O P 2112515=[(-x+x)-(x-)]×[5-(-3)] 26622D 2242322
=-x+x+10=-(x-1)+
3333B 32∴当x=1时,S△PAB的最大值为 ···················· 12分
3图② 1252把x=1代入y=-x+x,得y=
663
A x 22
∴此时点P的坐标为(1,
2) ·································································· 13分 32
2
220.(1)证明:将点P(2,1)代入y=x+bx+c+1得:1=2+2b+c+1 ················ 1分
整理得:c=-2b-4 ·················································································· 2分
(2)解:∵c=-2b-4,∴bc=b(-2b-4)=-2(b+1)+2 ································· 4分 ∵-2<0,∴当b=-1时,bc有最大值2 ·············································· 5分
13(3)解:由题意得:AB×1=
24239∴AB=|x2-x1|=,即|x2-x1|= ··················································· 6分
249亦即(x1+x2)-4x1x2= ·········································································· 7分
4
2
由根与系数的关系得:x1+x2=-b,x1x2=c+1=-2b-4+1=-2b-3
··································································································· 8分
299代入(x1+x2)-4x1x2=得:(-b)-4(-2b-3)=
44239整理得:b+8b+=0 ········································································· 9分
4313解得:b1=-,b2=-,经检验均合题意 ···································· 10分
22
23
正在阅读:
三组分氨纶混纺面料定量化学分析方法的制订08-16
尿素购销合同05-12
机电一体化专业调研报告07-03
联合检查情况表08-16
机电一体化专业毕业论文15篇(胶东半岛蓝色经济圈培养高素质高职机电一体化专业技术人才探究)08-16
机电一体化专业技术人才应具有的综合素质08-16
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 压轴
- 中考
- 复习
- 答案
- 数学
- 2014