A Case-Based Reasoning Approach to Formulating University Timetables Using Genetic Algorith
更新时间:2023-05-21 00:49:01 阅读量: 实用文档 文档下载
- 阿根廷推荐度:
- 相关推荐
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
ACase-BasedReasoningApproach
toFormulatingUniversityTimetables
UsingGeneticAlgorithms
AliciaGrechandJulieMain
LaTrobeUniversity,Bundoora3086,Australia
{a.grech,j.main}@latrobe.edu.au
Abstract.Thispaperpresentsatechniquetoconstructgenericuni-versitytimetablesusingcase-basedreasoning(CBR)withgenetical-gorithms(GAs).Thecase-basedreasoningmethodologyallowsapastmemoryoftimetablestobestoredandaccessedviaretrievalmecha-nisms, ndingapastsolutionmost ttingtothenewtimetableinputproblem.Intheinstancethatapastsolutionisnotwellsuitedtothenewtimetablerequirements,ageneticalgorithmisemployedtoadaptthepasttimetablesinthecasememory.Thehybridtechniqueusedimple-mentsalearningmechanismtoaidintherevisionandadaptationofnewtimetablesolutions.Thefocusofthistechniqueisafeedbackmechanismwhichallowsthesystemtodiagnosetheviolationofhard-constraints ttedtotimetablecreation.
1Introduction
Theproblemofcreatingavalideducationaltimetableinvolvesschedulinglessons,teachersandroomsintoa xednumberofperiods,insuchawaythatnoteacher,classorroomisusedmorethanoncepertimeperiod[1].Whencreatinganewtimetable,previouspartsoftimetablesareoftenre-used,basedonthefactthatconstraintsinanewtimetableproblemdonotusuallychangesigni cantlyfromapasttimetable[2].Case-basedreasoning(CBR)isamethodologythat ndssolutionstonewproblems,usingsolutionsfrompreviousproblemsaswellastheexperiencedgainedfromsolvingthoseproblems.ThisisamotivatingfactorforapplyingCBRtotimetablecreation.InCBR,pastsolutionsrelatedtoanewproblemareretrievedandifrequired,pastsolutionscanthenbeadaptedtomeetthedemandsofanewproblem.Thecentralprocessestobeexecutedinallcase-basedreasoningmethodshavebeenidenti edbyAamodtandPlaza[3]as:identifythecurrentproblem; ndapastcasesimilartothenewcase(retrieve);usethepastcasetosuggestasolutiontothecurrentproblem(reuse,alsoknownasadaptation);evaluatetheproposedsolution(revise);andupdatethesystembylearningfromexperience(retain).
ThoughtheuseofpastexperienceinsolvingproblemsisanadvantageofCBR,afewphasesaredi culttoengineerintheCBRcycle,especiallyintheretrieveandreusephases.Geneticalgorithms(GAs)areadaptivemethodsR.Khoslaetal.(Eds.):KES2005,LNAI3681,pp.76–83,2005.
cSpringer-VerlagBerlinHeidelberg2005
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
ACase-BasedReasoningApproachtoFormulatingUniversityTimetables77appliedtosolvesearchandoptimisationproblems,basedongeneticprocesses.ApplyingGAsintheCBRadaptationstageacrossvarieddomainshasbeenshowntobeasuccessfulinnovationovertraditionalCBRadaptationtechniques(seesection2).ThisislikelytobesoasCBRadaptationtendstobeverydomainspeci c[4].ThehybridCBR-GAapproachiswell ttedtoatimetablingdomain,asusingaGAtoadaptpreviouscasescanmaketheoutputcasemorenovelthanprevioussolutionswhichmaynot tthenewcaserequirementsclosely.WeapplyaGAattheadaptationstageoftheCBRcycle,exploitingthemutationoperationinorderto ndmorenovelsolutions.AfterapplyingGAadaptation,wecollectknowledgeattherevisestageoftheCBRcycle,withtheintenttofeedthisknowledgebackintoadaptationtoaidin ndinghealthiermutationstoapply.Wealsoperformcasetochromosomemappingmaintenance,includingrepairingsolutionsthatareinanincorrectformatduetounequalchromosomelengths.
2PastApplicationsUsingGAsinCBR
LouisandXuapproachedopenshopschedulingandre-schedulingproblemswithahybridCBR-GAsystem,injectingcasesintoageneticalgorithm’spopulationtospeedupandaugmentgeneticsearch.ThepreliminaryresultsindicatedthatthecombinationofGAswithCBRquickly ndsbettersolutionsthanCBRonitsown[5].DomainscoveredusingtheGAcomponentwithinretrievaloradaptationincase-basedreasoninginclude:tabletformulation[6,7];modellingaCheckersgame[8];OpenShopSchedulingandRescheduling[5];developinglayoutdesignofresidencessotheyconformtotheprinciplesoffengshui[4];andestimatingthe owratesinEstuaries[9].
3ApplicationoftheTimetablingProblem
UsingCBR-GA
Thegoalofthisworkwastoimplementacase-basedreasonertosolvenewproblemsinvolvingUniversitytimetables,thenadaptunsatisfactoryretrievedsolutionsusingaGA,feedingknowledgelearntfromtheGAadaptationbackintofutureadaptations.Ourimplementationdomainfocusesoncreatingtimeta-blesforLaTrobeUniversity’sDepartmentofComputerScienceandComputerEngineering.Duetothesizeandcomplexityofthetimetablingproblem,thescopeandsizeoftheproblemdomainhasbeenreducedusingsomeconstraints.Aprototypecase-basedreasonernamedCBR-GAALTA(CBRGeneticAlgo-rithmAdaptiveTimetablingLearningApplication)wascreatedthathandlestimetableschedulecases.
Therequirementsforanewtimetablearrivesintheformofa‘newcase’totheCBRsystem,specifyingthenumberoflabs,lectures,andproblemclassesrequiredplustheexpectedclasssizes.Thepurposeofthecase-basedreasoneristoretrieveatimetablefromacase-baseofprevioustimetables,thatmatchesthenewcaseascloselyaspossible.Ifthissolutionisinsu cientitshouldbeadapted,creatingatimetablethatisadjustedtosuittheinputrequirements.
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
78AliciaGrechandJulieMain
4CreatingTimetableswithCBRandGAs
ManyissuesarerelatedtoimplementingthecentralprocessesexecutedinthegeneralfourstepCBRcycle.Themajorissuesassociatedwithexecutingthecentralprocessesinclude:appropriatelyrepresentingacase;properlyindexingandstoringcasesinacasememory(casebase);andassigningrelevancefunc-tions.Eachprocessincludesarangeoftasksthatmustbeengineeredtowardsthespeci cationsofatimetablingdomain.
Thereasoningprocessisheavilydependentonthestructureandcontentofthecollectionofcasesstored[3,10].Forourapplicationtothetimetablingdo-main,acaserepresentsanentiresolutiontoatimetable,forallsubjectsonalldaysoftheweek.ThisimpliesthatthecontentofacaseistheSubjectname,Lecturer,RoomandLessonforasmanysubjectLessonsthatexistwithinatimetableforaregularschoolweek.Basedonthis,timetableobjectsarecom-posedofthesefourotherobjectscontainingtheinformationmostrelevanttoatimetable.Eachoftheobjectscontainattributesthatmakethetimetablero-bust,andareparamounttoawell-de nedcaseusingrelevant,traceabledata.Figure1isaUMLrepresentationofatimetablecase,displayingallobjectsandattributesstoredwithinatimetable.
Fig.1.ObjectOrientedCaseFormat.
Toretrievepastcases,apartialproblemdescriptionentersthesystemintheformofanewcase.Retrievalendswhenapastcasehasbeenfoundthatbestmatchesthenewcase.Eachcaseinthecasememoryistestedforarelevancefactorwithrespecttothenewinputproblem,wheretherelevancefactorindicatestheclosenessinsimilaritybetweencasesincasememoryandthenewinputcase.
Apointawardingschemewasdevelopedtoevaluatearelevancefactor.Toawardrelevance,tenrelevancemetricsweredevelopedandarecalculatedacrossthenewcase,y,andforthecomparisonpastcase,x.Thisschemerewardspastcaseswithverysimilarcontenttothenewcase,andpunishespastcaseswithlesssimilarcontent.
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
ACase-BasedReasoningApproachtoFormulatingUniversityTimetables79Therelevancemetriccanbemathematicallyexplainedas:
Relevance=10
p=1PMp
WherePMistheamountofpointsawardedfortheperformancemetric,p.
Iftheretrievedsolutionisnotdetailedenoughtobeasolutionforthenewproblem,thenmodi cation(adaptation)maybeneeded.Inthiswork,theuseofaGAtoadaptcaseswillminimisetheburdenonretrievaltechniques,aswellascreatenovelcasesthatareuniqueandnotrepetitive[8].
Revisionofcasesallowslearningfromfailure.Ifanincorrectcasesolutionisgeneratedduringthereusestage,thesolutioncanberevisedand xed[11].Atretaintheuserdecideswhethertoaddasolutiontothecasebase,orwhethertorejectit.Retainalsogivetheuseranopportunitytoaddanyextradomainrulestothesystemthatwentunnoticedbeforeevaluationofthecurrentsolution.Thisallowsnewrulestobeusedforvalidatingsolutionsnexttimethesystemisrun.
4.1UsingaGeneticAlgorithmforCaseAdaptation
Ageneticalgorithmmimicsgeneticprocessesofbiologicalorganisms,usingprin-ciplesofnaturalselectionand‘survivalofthe ttest’toevolvesolutionstorealworldproblems,whensuitablyencoded[12,13].GeneralissuesassociatedwithintegratingaCBRcyclewithaGAforadaptationareencodingacasetoaGAchromosome;determiningaparentselectionscheme;determininga tnessfunctioncorrelatingtorelevanceintheCBRprocess;andsettingGAmainpa-rameters.TheGAimplementedforcaseadaptationfollowsthestepsofasimpleGA.DetailsofthiscyclecanbefoundinMitchell[14].Forourapplication,themainparameterstorunaGAhavebeensetatthevalueslistedinTable1.ThecrossoverprobabilityissettoastandardvalueforaGA[14],thoughthemuta-tionprobabilityissetatahighervaluethanusual(0.001isastandardvalueforPm[14]).Thisprobabilityhasbeensethighertoallowtheapplicationtofullytestthepotentialformutationstothoroughlyexaminethesearchspace.Thisgivesourapplicationtheopportunitytogreatertestlearningthroughmutations,allowinglearningtobefedbackintocasereuse.
Table1.GAMainParameters.
GAParameter
SizeofPopulation
NumberofGenerations
CrossoverProbability(Pc)
MutationProbabilityPm)AssignedValue751000.70.01
InordertotranslateaCBRcasetoaGAchromosome,amappingneededtobeestablishedtoallowgeneticoperations(crossoverandmutation)tobeper-formed.Whenmappingthetimetablecasetoachromosome,thetypicalbit
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
80AliciaGrechandJulieMain
stringorintegerrepresentationwasnotsu cient,asthetimetablecaseusesrichsymbolicnotation.Thechromosomemappingneededgenes(encoding‘traits’withintheproblem)andalleles(‘settings’foreachofthetraits)tobeextractedfromthecaseinformation,thenencodedintoconsecutiveblocksofvectorspaces.Subjectlessonswerethegenesforourchromosomemapping,withtheallelesinthegenesbeingtheattributeswithinasubjectlesson.WithreferencetoFigure1,eachgenecontainsSubject,Lesson,LecturerandRoominformation.Thealle-lesweresettoeachattributeofthisobject,suchasthesubjectCode,lessonType,buildingetc.Thesequenceofgenescontinuesuntilallsubjectlessonswithinatimetablecaseareencodedintothechromosome.Adecisionwasmadetoallowchromosomestobeofunequallengthinsteadofa xedlength,allowingformoreopen-endedevolutionandalsoaccommodatingthetimetablingdomain.Inthetimetablingdomain,di erenttimetablesarelikelytohaveadi erentnumberofsubjectlessons,sohavingchromosomesofunequallengthisgenerallyunavoid-able.TheinitialpopulationofchromosomesfortheGAisasetofcandidatesolutionsfedfromtheCBRcasememoryintotheinitialGApopulation.
AfterencodingaCBRcaseintoaGAchromosome,theGA tnessfunc-tionwasevaluated.TheGA tnessismappedbacktoCBRrelevance,ensuringthatrelevanceismaintainedifasolutionchromosomeisacceptedattheCBRretainphase.TheselectionschemeimplementedfortheadaptationGAinCBR-GAALTAistheTournamentSelectionalgorithm[14].TournamentSelectionistheleastcomputationallyexpensiveselectionmethod,andwaschosentoal-leviatesomeofthecomputationalcostlinessoftheCBRadaptationtask.ThereplacementpolicyemployedinCBR-GAALTAisSteadyStatereplacement[14].5ResearchObjectives
ThisworkintroducesaschemeinwhichinformationisgatheredattheCBRrevisephase,andisfedbackintotheCBRreusephase.Theaimofourre-searchistocollectknowledgeattherevisestageoftheCBRcycle,andthenfeedthisknowledgebackintoGAadaptationtoaidin ndinghealthiermu-tationstoapply.TosuccessfullymeshtheCBRcasemappingtochromosomemappingswithintheGA,weneededtodevelopa‘repair’mechanismtomain-taingeneswithinchromosomesremainedintherequiredcaseformat.Wealsoevaluatedetrimentalmutationvaluesandavoidillegalmutationparametersbyplacingboundsonmutablevaluesduringadaptation.Anyotherillegalmutationproblemsaremonitoredthroughthefeedbackrepairprocedure.
5.1FeedbackfromReviseintoReuse
Theobjectiveofthisresearchistoimplementanewlearningmethodthat ltersinformationlearntinrevisebackintoreuse.Inorderforinitiallearningtoarise,rulesareinputtothesystemexplainingillegalvaluesandcircumstanceswithinatimetable.Examplesofthetypesofrulesare:theclasssizemustbelessthantheroomsize;aclassshouldnotstartbefore8amorafter9pm;alessonduration
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
ACase-BasedReasoningApproachtoFormulatingUniversityTimetables81
Fig.2.RevisionFeedback ow.
cannotbeequaltozerohours,etc.Theserevisionrulesareprovidedandinputbysystemusers.
RevisionrulesaremaintainedattherevisionstageoftheCBRcycle,butarefedbackintotheapplicationattheGAadaptationstage,allowingthesystemtolearnwhichmutationsarenotfavourabletouse.Therulesarealsousedtocheckthatcoresubjectsarenotrunningconcurrently,andthatanyrequirementswithinanincompatiblesubjectlistareconsidered,beforeallowingtheexpertstoassessthetimetable.Whenthechromosomerepairmechanismisapplied,systemusersarealertedtoproblemsremainingwithinthechromosomestructure.Atthispoint,itisuptotheusertoevaluateandtrialthesolutionintherealworld.Dependentontheapplicationofthesolution,theuserwillchoosetoretainthesolutionornot.
6ExperimentswithVariedCaseBases
TheCBRsystemwastestedusingthreedi erentcasebases,eachcontaining8cases.ThethreecasebasesarecalledCaseBase1(containinglowrelevancecases),CaseBase2(containingaveragerelevancecases)andCaseBase3(con-taininghighrelevancecases).
Withinthesecasebasedatasets,fourdi erenttypesoftestswereconductedtoevaluatethee ectofmutationson tness.Alltestswereconductedover10runsoftheGAadaptation,withaveragestakenacrosstherunstoyieldresults.Thetestswererunwiththefeedbackmechanism(fromsection5.1)activated(WL)anddeactivated(WOL).Theusercandecidewhethertorunthesystemwithorwithoutlearning.Table2showsallresultsforallexperiments.TheGAparametersremainthesameasinTable1(exceptwhenmutationvaluesarebeingchangedinTest3).Test1testsgeneraladaptationwiththeGA,whileinTest2wevarytheprobabilityofmutation,testinghowwelltheGAreactstovaryingthePm.InTest3,wetestiftherelevanceisbetterwhenmutationsareactuallypresent,whereTest4concentratesonhowrelevantcasesarewhenweretainanadaptedcase.
6.1DiscussionofResults
TheresultsdisplayedinTable2arethegroundsfordiscussionofthelearn-ingfeedbackbuiltintoCBR-GAALTA.Forgeneralproductionof tnesswhilerunningtheGAadaptation,thefeedbackmechanismhasnodirecte ecton
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
82AliciaGrechandJulieMain
Table2.ResultsofGAadaptationusingthreeseparatecasebases.
TestNumberCase-Base1Case-Base2Case-Base3
WOLWLWOLWLWOLWL
Test1-GeneralCBRadaptation27.3526.0030.9031.1533.7033.10Test2-E ectofchangingGAMutationProbability
MutationProbability=0.125.5528.0526.4529.6030.7536.50MutationProbability=0.0127.7526.9031.0030.8029.5532.15MutationProbability=0.00127.1526.5030.5532.1532.7532.15Test3-Relevancebasedonpresenceofmutations
AverageRelevanceWithMutations24.8529.3529.6229.0033.0035.13AverageRelevanceWithoutMutations30.0026.9029.6729.5833.4034.91Test4-Relevancewithretainingadaptedsolutions
AverageRelevanceWithMutations28.2529.3533.8733.0036.5036.00AverageRelevanceWithoutMutations23.0027.8334.0035.0037.2037.20producingchromosomesthatexhibitimproved tness.Howeverwhentestingtheviabilityofchromosomeswithvariedmutationsduringtesttwo,resultsbe-came tterasPmincreased.Wefoundthatwhenthereisahigherchanceofmutationsoccurring,amechanismthatlearnswhichmutationsadverselya ectchromosome tnessisdesirable.Theseresultsareconsistentacrossallcasebaseimplementations.
Testthreeindicateshowwellthelearningmechanismoperateswhenmuta-tionsarepresentintheadaptation.Interestingresultsoccurwhencomparingthethreecasebases.Whenthelearningmechanismisactivated,mutationsgen-erallyproducedhigher tnesssolutions,withtheexceptionofCaseBase2.Thisdemonstratedtousthatalearningmechanismbene tsaverage tness,maintain-ingthatmutationdoesnotadverselya ecttherelevanceofadaptedsolutions.
Testfourrecords tnessbasedonfeedinglearntinformationfromanadaptedsolutionbackintothereuse.Feedingpreviouslyrepairedsolutionsbackintoalearningmechanismallowedthesolutionstocontinuerepairing,improvingoversolutionswherenomutationsoccurred.
7Conclusions
ThispaperhasshownthatifusingaGAforadaptationinaCBRcycle,feed-ingknowledgefromtherevisiontoadaptationstagescanbene tthehealthofsolutions.Tocreatemorenovelsolutionsduringadaptation,wefocusedontheimportanceofmutationsandlearningwhichmutationsarebesttouse.Alearn-ingfeedbackmechanismwasdevelopedtofeedknowledgelearntintherevisestageoftheCBRcycle,intoaCBR-GAadaptationstage.Wefoundthatwhenthereisahigherchanceofmutationsoccurring,usingamechanismthatlearnswhichmutationsadverselya ectchromosome tnessisdesirable.
Abstract. This paper presents a technique to construct generic university timetables using case-based reasoning (CBR) with genetic algorithms (GAs). The case-based reasoning methodology allows a past memory of timetables to be stored and accessed via retri
ACase-BasedReasoningApproachtoFormulatingUniversityTimetables83References
1.Abramson,D.,Abela,J.:Aparallelgeneticalgorithmforsolvingtheschooltimetablingproblem.In:DivisionofInformationTechnology,Melbourne(1992)
2.Burke,E.K.,MacCarthy,B.,S.Petrovic,R.Qu:Case-basedreasoningincoursetimetabling:Anattributegraphapproach.InAha,D.,I.Watson,eds.:ICCBR.Volume2080ofLNAI.,BerlinHeidelberg,Springer-Verlag(2001)90–104
3.Aamodt,A.:Case-basedreasoning:Foundationalissues,methodologicalvariations,andsystemapproaches.In:AICOM.(1994)39–58
4.deSilvaGarza,A.G.,Maher,M.L.:Anevolutionaryapproachtocaseadapta-tion.In:ProceedingsofThirdInternationalConferenceonCase-BasedReasoning.(1999)162–172
5.Louis,S.,Xu,Z.:Geneticalgorithmsforopenshopschedulingandre-scheduling.InCohen,M.,Hudson,D.,eds.:11thInternationalConferenceonComputersandtheirApplications.(1996)
6.Jarmulak,J.,Craw,S.,Rowe,R.:Self-optimisingCBRretrieval.In:Proceedings12thIEEEInternationalConferenceonToolswithArti cialIntelligence.(2000)376–383
7.Jarmulak,J.,Craw,S.,Rowe,R.:GeneticalgorithmstooptimiseCBRretrieval.InBlanzieri,E.,Portinale,L.,eds.:EWCBR.Volume1898ofLNAI.,Springer-VerlagBerlinHeidelberg(2000)136–147
8.Oppacher,F.,Deugo,D.:Integratingcase-basedreasoningwithgeneticalgorithms.InCercone,N.,Gardin,F.,eds.:ComputationalIntelligenceIII,ElsevierSciencePublishers(1991)103–114
9.Pasone,S.,Chung,P.W.,Nassehi,V.:Case-basedreasoningforestuarinemodeldesign.InCraw,S.,Preece,A.,eds.:ECCBR.Volume2416ofLNAI.(2002)590–603
10.Main,J.,Dillon,T.S.,Shiu,S.C.:Atutorialoncasebasedreasoning.SoftCom-
putinginCaseBasedReasoning(1999)1–28
11.Leake,D.B.,ed.:CBRinContext:ThePresentandFuture.In:Case-basedRea-
soning:Experiences,LessonsandFutureDirections.MenloPark:AAAIPressMITPress(1996)1–25
12.Beasley,D.,Bull,D.,Martin,R.:Anoverviewofgeneticalgorithms:Part1,
fundamentals.UniversityComputing(1993)58–69
13.Wah,B.W.,Ieumwananonthachai,A.:Teacher:Ageneticsbasedsystemforlearn-
ingandgeneralizingheuristics.InPal,S.,Dillon,T.,Yeung,D.,eds.:SoftCom-putinginCase-BasedReasoning,Springer-VerlagLondon,UK(2001)179–211
14.Michell,M.:AnIntroductiontoGeneticAlgorithms.MITPress(1996)
正在阅读:
A Case-Based Reasoning Approach to Formulating University Timetables Using Genetic Algorith05-21
火灾报警系统系统安装及检测要求05-28
秋天到了作文600字06-28
EICAD路线设计流程03-25
气动高压泵项目可行性研究报告评审方案设计(2013年发改委标准案06-07
2017届毕业设计开题报告模板06-17
年产10万吨石灰生产线项目建设可行性研究报告 - 图文05-23
财务管理制度的范文关于12-28
- 1Likelihood-based data squashing a modeling approach to instance construction
- 2Applying computer-based simulation to energy auditing-A case study
- 3USING TOBOGGAN-BASED INTELLIGENT SCISSORS FOR IMAGE AND MOVIE EDITING
- 4An UML Statechart Diagram-Based MM-Path Generation Approach
- 5Visualization of Navigation Patterns on a Web Site Using Model Based Clustering
- 6Agent Based Maintenance for Modularised Case Bases in Collaborative Multi-Expert Systems
- 7Internet-based Simulation using off-the-shelf Simulation Tools and HLA
- 807 - Intro - ERP - Using - GBI - Case - Study - FILetter - en - v2.11
- 9Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms
- 10Case Study
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Formulating
- University
- Timetables
- Reasoning
- Approach
- Algorith
- Genetic
- Based
- Using
- Case
- 人力资源信息管理系统
- 实验五 FIR数字滤波器的设计
- 初中常用数学公式
- 2015山东公务员考试申论备考:公文写作格式注意事项
- 佛山公务员面试:2013年广东省考面试汕头公务员面试真题汇总
- 绕口令,谜语,幽默与英语自学
- 九年级数学上册 第二十二章一元二次方程精品讲义教案 人教新课标版
- 多元方差分析spss实例
- 2015人教版四年级语文下册第十三周周练习题
- 行业App竞品分析(1)
- 北京成人按摩职业技能培训学校招生
- 建筑设计实习自我鉴定.doc
- 校本文化资源概念辨析及其开发利用
- 铅笔书法课程纲要
- 低位直肠癌患者知情同意中存在的问题及对策
- M7U2 reading Two life-saving medicines课文
- 鸡养殖过程中适宜的补钙数量、时间与方法
- 第11章 建设中国特色社会主义的根本目的和依靠力量
- 材料科学与人类文明课程复习资料
- 一年级上册卫生与保健教案