分数布朗运动环境下的期权定价与测度变换
更新时间:2023-03-29 01:07:02 阅读量: 互联网资料 文档下载
- 分数布朗运动模型推荐度:
- 相关推荐
布朗运动
第38卷第20期
2008年10月数学的实践与认识Vol138 No120 October,2008
分数布朗运动环境下的期权定价与测度变换
肖艳清1,2, 邹捷中2
(1.湖南科技大学数学与计算科学学院,湘潭 411201)
(2.中南大学数学科学与计算技术学院,长沙 410075)
摘要: 研究分数B2S市场中的期权定价问题.通过选取不同的资产作为计价单位及相应的测度变换,将经
典模型中的计价单位变换方法推广到分数布朗运动市场环境,,分数期权定价公式的新的推导方法.
关键词: 分数布朗运动;计价单位;拟鞅方法;期权
1 引 言
,因此,我们可以在经典的B,最简单的修.由于分数布朗运动既不是半鞅也不是马氏过程,.Lin(1995)[1]和Decreusefond,Ustunel(1999)
定义了关于分数布朗运动的依路径的Riemann2Stieltjes积分理论,但在这
种随机积分下,Rogers(1997)[3]证明了该市场模型存在套利.但是,Duncan,Hu,etc.(2000)[4],Hu,Oksendal(2003)[5]证明了基于Wick乘积和白噪声分析的分数Ito积分情形
[2]
下,分数B2S市场不存在套利.Hu,Oksendal(2003)建立了一个欧式期权定价公式,随后,
[6]
Necula(2002)引入所谓的拟鞅定价方法,将[4]的结果推广到一般的情形,更多的情形可参见OksendalB.(2004)[7],Biagini,Oksendal(2007)[8].
众所周知,在经典的期权定价理论中,市场无套利等价于存在一个风险中性概率测度,使得在此概率测度下,市场中任何财富的贴现价格过程为鞅.通常用来贴现的计价单位(Numeraire)是局部无风险的银行帐户,其定义为:M(t)=exp
r(s)ds
0t
,其中r(s)为短
期利率.我们可以通过选取不同于M(t)的资产作为计价单位,也能得到类似的等价鞅测度的方法对期权定价,具体来说,设S(t)为一个无红利支付的资产价格过程,则也可以用S(t)作为计价单位构筑一个概率测度QS,使得在此测度下,市场中的任何财富的价格过程相对于S(t)都为鞅.钱晓松[9]利用这种思想研究了跳扩散模型,并得到了随机利率的期权定价公式以及资产交换期权定价公式.但是,Sottinen,Valkeila(2002)[10]指出,分数B2S市场中不存在等价鞅测度.本文将测度变换的思想推广到分数布朗运动环境中,通过构筑所谓的等价拟鞅测度,给出期权定价的一种新的方法,丰富了已有的分数期权定价理论.
收稿日期:2008201224
基金项目:湖南省教育厅资助科研项目(06C300)
布朗运动
20期肖艳清,等:分数布朗运动环境下的期权定价与测度变换59
2 分数布朗运动与拟鞅定价方法
这一节中,我们回顾分数B2S市场中的拟鞅定价方法,具体可参见文献[428].2.1 拟鞅与测度变换
定义2.1.1 设(8,F,P)为一概率空间,H∈(0,1)为一常数,称高斯过程{BH(t)}t∈R+={BH(t,Ξ);t∈R+,Ξ∈8}为具有Hurst参数H的(1维)分数布朗运动,若{BH(t)}t∈R+满足:BH(0)=0且
+
BH(t)=E[BH(t)]=0,Πt∈R,E[BH(t)BH(s)]
=
2H
{t+s2H- t-s 2H}, s,t∈R+,2
其中,E表示关于概率P的期望.
当H=当
时,BH(t)即为标准布朗运动,B(t).2
<H<1时,<H<1情形.2(),F,,,8=∶S′(R)为R上的速设BH(t)为概率空间(S减函数Schwarz空间).
.G[5]
g
n=0
R
n
n
n
(s)dBH(s)∈.
3
,.
3
为赋予归纳拓扑的随机分布空
间,FHt)=Ρ{BH(s),0ΦsΦt}的拟条件期望定义为:
Et[G]∶=E[G FH(t)]∶=
[G]=G.
其中,In(0,t)(s)=I(0,t)(s1)…I(0,t)(sn).称G∈.3为FH(t)可测,若Et
定义2.1.3 称FH(t)适应过程G(t,Ξ)为拟鞅(quasi2martingale),若G(t)∈.3(Πt),且
E[G(t)]=G(s),(Πt>s).
s
∑∫g
n=0
R
n
∞
n
n
(s)In(0,t)(s)dBH(s),
显然,BH(t)以及G(t)=2.2 拟鞅定价公式
∫
t
1,2
f(s)dBH(s),f∈LH(R)为拟鞅.
考虑一分数B2S市场中有两种资产,一种是无风险资产(r表示常数无风险利率),其价
格过程满足:
(2.1)dM(t)=rM(t)dt,M(0)=1,0ΦtΦT另一种是股票,其价格满足如下分数随机微分方程:
(2.2)dS(t)=ΛS(t)dt+ΡS(t)dBH(t),S(0)=S,0ΦtΦT
.在风险中其中,Λ,Ρ≠0为常数.Hu,Oksendal(2003)已证明该市场无套利并且是完备的
性测度Q下,我们有
(2.3)dS(t)=rS(t)dt+ΡS(t)dBH(t),S(0)=S,0ΦtΦT, H(t)=BH(t)-t,BH(t),B H(t)分别为Q,P下的分数布朗运动.在风险中性测其中B
Ρ
度Q下方程(2.3)的解为:
S(t)=s(0)exprT-
22H
t+ΡBH(t)2
(2.4)
布朗运动
60数 学 的 实 践 与 认 识38卷
[ ]表示关于风险中性测度Q的拟条件期望.记Et
定理1[5](分数拟鞅定价公式) 任意有界FT可测未定权益F∈L(Q)在任意时刻t∈
() [0,T]的价格为:F(t)=e-rT-tE[F].特别地,F(0)=e-rTE[F].
t
定理1说明,在风险中性测度下,以M(t)为计价单位的贴现资产价格过程为拟鞅.当我
们选择不同于M(t)的资产作为计价单位时,通过构造相应的等价拟鞅测度,也有类似于经典的结果.
记以S(t)为计价单位构造的测度为QS,使得对任意给定的t∈[0,T],QS在FT上的
S
=,于是,我们有:Randon2Nikodym导数可定义为:
S(0)M(t)dQF
t
定理2 设任意有界FT可测未定权益C满足C(t) M(t)为Q2拟鞅,C(t) S(t)为QS2拟鞅.
证明 由Bayes法则,对Πt>s,我们有:
EQSS(
t)
F=EQ==
t)S(t)0)M(s)
QFs
S(s)M(t) =S(s)M(s)S(s)
证毕.
1
推论3 设X为市场中一个T时刻到期的未定权益,满足X M(t)∈L(Q),则其价格 S
过程为:0(t,X)=S(t)EQ
Ft特别的,0(0,X)=S(0)EQS.
S(T)S(T)
3 分数B-S期权定价公式
定理4 执行价格为K到期日为T的欧式买权在在0时刻的价格为:
-rT
C(0,S(t))=S(0)N(d1)-KeN(d2),其中,
ΡT2H
22H
d2=
ΡT2H
N( )表示累积标准正态分布函数.
为证明定理4,我们需要如下引理,详见[6].
[f(B(t)]<∞,则,对每个0ΦtΦT,我们有:
引理5 设函数f使得EH
(()EQ[fBHT]=exp-f(x)dx2H2H2H2HR()2T-t2Π(T-t)
d1=
22H
定理4的证明 由欧式期权定义,
+
C(T,S(T))=(S(T)-K)=(S(T)-K) IS(T)ΕK其中,x+=max(x,0),IA(x)=
1, x∈A0, x|A
,故由定理1,2得:
(3.1)
布朗运动
20期肖艳清,等:分数布朗运动环境下的期权定价与测度变换61
C(0,S(0))=EQ[M
=EQ[M
-1-1
(T)(S(T)-K)+]
[M(T)S(T)IS(T)ΕK]-KEQ
-1
(T)IS(T)ΕK](3.2)
对(3.2)式中第一项做计价单位变换至测度QS,得
-rT (3.3)C(0,S(0))=S(0)EQS[S(T)ΕK]-KeEQ[S(T)ΕK]
S[S(T)ΕK],令y(t)=1 我们先计算ES(t),则由分数Ito公式和(2.3)得,Q
22H-1
(3.4)dy(t)=y(t)[-Ρ dBH(t)+(2HΡt-r)dt],
2
S2H
经过测度变换,Ft==expΡ BH(t)-,于是,由分数Girsanov定t
()()S0MtdQ2
3
(t)=BH(t)-Ρ t2H在QS下为分数布朗运动理[4],BH.因此(3.4)变换为:
dy(t)=y(t)[-Ρ dBH(t)+(2HΡ2t2H-1-r)t]
=y(t)[-rdt-3
]ΡdBH
(3.5)
故
2H3
-tBH(t)()t.
y(t)=0)
3
又在QS中,ΡBH
于是,
22H 3SS(T)ΕKEQ[S(T)ΕK}]=EQS(0)exprT++ΡdBH
2
3=EQSΡBH(T)Εln(K S(0))-rT-=
22H
T2
∫
+∞
ln(K S(0))-rT-
[I()
下面计算E.),我们有:Q{STΕK}],由(2
2H
T2
exp-H
2ΠT
dx=N(d1)2T2H
2
EQ[I{S(T)ΕK}]=EQS(0)exprT-
22H
T+ΡBH(t)ΕK2
2 2H
=EQΡBH(T)Εln(K S(0))-rT+T
2
=
∫
+∞
ln(K S(0))-rT+
2H
T2
exp-H
2ΠT
dx=N(d2)2T2H
2
证毕.
4 结 论
本文通过选取不同于无风险资产的资产作为计价单位,得到了分数B2S市场的期权定价公式.该方法既将经典的计价单位测度变换结果推广到了分数布朗运动市场环境,也推广了[5],[6]的拟2鞅定价方法,同时,我们的方法在一些复杂的期权(如随机利率模型以及资产交换期权)的定价中能有效的简化计算.我们将另文给出分数布朗运动情形下的其它期权定价公式.
参考文献:
[1] LinSJ.StochasticanalysisoffractionalBrownianmotion[J].StochasticsStochasticsReports,1995,55:4222437.
布朗运动
62数 学 的 实 践 与 认 识38卷
[2] DecreusefondL,UstunelAS.StochasticanalysisofthefractionalBrownianmotion[J].PotentialAnalysis,1999,
10:1772214.
[3] RogersLCG.ArbitragewithfractionalBrownianmotion[J].MathematicalFinance,1997,7:952105.
[4] DuncanTE,HuY,Pasik2DuncanB.StochasticcalculusforfractionalBrownianmotion[J].SIAMJournalof
ControlandOptimization,2000,38(2):5822612.
[5] HuY,OksendalB.FractionalwhitenoisecalculusandapplicationstoFinance[J].InfDimAnalQuantumProbab
RelTop,2003,6:1232.
[6] NeculaC.Optionpricinginafractionalbrownianmotionenvironment[J].Preprint,2002,18.
[7] OksendalB.Fractionalbrownianmotioninfinance[J].DeptofMathUniversityofOSLO,Preprint,2004,37.[8] BiaginiF,OksendalB.Forwardintegralsandanitoformulaforfractionalbrownianmotion[J].DeptofMath
UniversityofOSLO,Preprint,2007,25.
[9] 钱晓松.跳扩散模型中的测度变换与期权定价[J].应用概率统计,2004,2:91298.
[10] SottinenT,ValkeilaE.Fractionalbrownianmotionasamodelin[J].Miirint,2001,
302:16.
MeasurePricinginFractional
ianotionEnvironment
XIAOYan2qing
1,2
, ZOUJie2zhong2
(1.SchoolofMathematicalandComputingScience,HunanUniversity
ofScienceandTechnogy,Xiangtan411201,China)
(2.SchoolofMathematicalScienceandComputingTechnology,Central
SouthUniversity,Changsha410075,China)
.ByselectingAbstract: WeshowtheoptionpricingprobleminfractionalB2Smarkets
differentassetasnumeraireandthecorrespondantmeasuretransformations,wegeneralizetheclassicmeasuretransformmethodstofractionalBrownianmotionmarketenivorment,whichnotonlyenrichestheoptionpricingmethodofquasi2martingale,butalsogivesanewlooktothederivationoffractionaloptionpricingformula.
Keywords: fractionalbrownianmotion;Numeraire;Quasi2martingalemethod;option
正在阅读:
分数布朗运动环境下的期权定价与测度变换03-29
上海市企业投资项目核准、备案及建设审批流程指南(2009)06-08
金属钯催化简单烯烃的官能团化反应研究03-26
总结红外光谱频率与官能团特征吸收峰解读11-25
《漫画欣赏》教学设计 - 图文03-23
中国工商团契的现况与未来09-11
排球竞赛规则200506-16
- 2009年【中考数学压轴题汇编(含解题过程)】(十)
- PEST、波特五力分析
- 教你们怎么从菜鸟级别到电脑高手
- 飞思卡尔智能车竞赛新手入门建议
- 水利工程对环境的影响及对策分析
- 自我评价中的最经典的十个“自我”
- 一种体现科学发展观的新领导力_李锡炎
- 影响中国物业管理未来命运的因素
- 红领巾心向党教案
- 关于做手抄报的作文欣赏 三年级
- 插入式涡街流量计使用说明书
- 17章 反比例函数教案全章
- 山西省忻州市河曲县事业编考试职业能力测试每日一练带答案解析(2
- 青岛李村河污水处理厂二期工程的设计与运行
- 中级维修电工计算题
- 化学工业出版社重点书推荐
- VMware5.0版本区别及功能介绍
- 国内人员个人所得税申报表(空白)
- 行政助理工作手册
- 雅思口语第三阶段问题与答案(1)
- 布朗运动
- 测度
- 期权
- 变换
- 分数
- 定价
- 环境
- 浅谈历史教学中的审美教育与学生创新精神的培养
- 把ubuntu安装到U盘上
- 广告文案写作复习资料
- 王子与贫儿的好词好句摘抄
- 电大《证券投资分析》单元作业1-2-3-4集合
- 电弧炉工作原理及其对电能质量的影响
- 300系硬度转换表
- 新农村音乐教师培训小结(16448)
- 中英-高级英语1 何兆熊 Unit 1 Chinese Humanism
- 学生宿舍楼网络设计
- 西安科技大学能源学院第十届百人万米接力赛主持人稿
- 河北省会考美术
- 2013新修订人教版八年级物理下册复习提纲
- 新编日语教程第一册第五课
- 宁波电大是什么学校
- 通讯行业专业英语词汇
- 新视野大学英语(第三版) 视听说教程1 听力原文
- 九年级上册文言文阅读---最新
- Genderequality性别平等
- 中国共产党入党志愿书填写范文