题40323389

更新时间:2024-03-04 18:10:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章

1-1. 一个线偏振光在玻璃中传播时,表示为:

E?102cos(??1015?(z?t))i0.65c,试求该光

的频率、波长,玻璃的折射率。

14??10Hz,在z = 0 平面上相位线性增加的情况如1-2. 已知单色平面光波的频率为

图所示。求fx, fy, fz 。

1-3. 试确定下列各组光波表示式所代表的偏振态: (1)

Ex?E0sin(?t?kz),

Ey?E0cos(?t?kz);

(2)

Ex?E0cos(?t?kz),

;

Ey?E0cos(?t?kz??4) (3)

Ex?E0sin(?t?kz),

Ey??E0sin(?t?kz)1-4. 在椭圆偏振光中,设椭圆的长轴与x轴的夹角为?,椭圆的长、短轴各为2a1、2a2,

tan2??2Ex0Ey02E2?Ex0y0Ex、Ey的相位差为?。求证:

cos?。

1-5.已知冕牌玻璃对0.3988?m波长光的折射率为n = 1.52546,

dn/d???1.26?10?1?m?1,求光在该玻璃中的相速和群速。

1-6. 试计算下面两种色散规律的群速度(表示式中的v表示是相速度):

222(1)电离层中的电磁波,v?c?b?,其中c是真空中的光速,?是介质中的电磁

波波长,b是常数。

(2)充满色散介质(???(?),???(?))的直波导管中的电磁波,vp?c?/?2???c2a2,其中c真空中的光速,a是与波导管截面有关的常数。

1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。入射光是自然光,入射角分别为0?,20?,45?,56?40?,90?。

1-8. 若入射光是线偏振的,在全反射的情况下,入射角应为多大方能使在入射面内振动和垂直入射面振动的两反射光间的相位差为极大?这个极大值等于多少?

1-9. 电矢量振动方向与入射面成45°的线偏振光,入射到两种透明介质的分界面上,若入射角?1?50?,n1 = 1,n2 = 1.5,则反射光的光矢量与入射面成多大的角度?若?1?60?时,该角度又为多大?

1-10. 若要使光经红宝石(n = 1.76)表面反射后成为完全偏振光,入射角应等于多少?求在此入射角的情况下,折射光的偏振度Pt 。

1-11. 如图所示,光线穿过平行平板,由n1进入n2的界面振幅反射系数为r,透射系数为t,下表面的振幅反射系数为r',透射系数为t'。试证明:相应于平行和垂直于图面振动的光分量有:①r???r?',②r//??r//',③t??t?'?r??1,④r//?t//?t//'?1,⑤1?r//?r//'?t//?t//'。

221-12. 一束自然光从空气垂直入射到玻璃表面,试计算玻璃表面的反射率R0 = ?此反射率R0与反射光波长是否有关?

为什么?若光束以45°角入射,其反射率R45 = ?由此说明反射率与哪些因素有关(设玻璃折射率为1.52)?

1-13. 如图所示,当光从空气斜入射到平行平面玻璃片上时,从上、下表面反射的光R1

和R2之间相位关系如何?

它们之间是否有附加的“半波程差”?对入射角大于和小于布儒斯特角的两种情况分别进行讨论。

1-14. 如图所示的一根圆柱形光纤,纤芯折射率为n1,包层折射率为n2,且n1 > n2, (1)证明入射光的最大孔径角2u(保证光在纤芯和包层界面发生全反射)满足关系式: sinu?n1?n2

(2)若n1 = 1.62,n2 = 1.52,求最大孔径角2u = ?

22第二章

2-1. 如图所示,两相干平行光夹角为?,在垂直于角平分线的方位上放置一观察屏,

l??2sin?2。

试证明屏上的干涉亮条纹间的宽度为:

2-2. 如图所示,两相干平面光波的传播方向与干涉场法线的

夹角分别为?0和?R,试求干涉场上的干涉条纹间距。

2-3. 在杨氏实验装置中,两小孔的间距为0.5mm,光屏离小孔的距离为50cm。当以折

射率为1.60的透明薄片贴住小孔S2时,发现屏上的条纹移动了1cm,试确定该薄片的厚度。

2-4. 在双缝实验中,缝间距为0.45mm,观察屏离缝115cm,现用读数显微镜测得10个条纹(准确地说是11个亮纹或暗纹)之间的距离为15mm,试求所用波长。用白光实验时,干涉条纹有什么变化?

2-5. 一波长为0.55?m的绿光入射到间距为0.2mm的双缝上,求离双缝2m远处的观察屏上干涉条纹的间距。若双缝距离增加到2mm,条纹间距又是多少?

2-6. 波长为0.40?m~0.76?m的可见光正入射在一块厚度为1.2×10-6 m、折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强?

2-7. 题图绘出了测量铝箔厚度D的干涉装置结构。两块薄玻璃板尺寸为75mm×25mm。在钠黄光(?= 0.5893?m)照明下,从劈尖开始数出60个条纹(准确地说是从劈尖开始数出61个明条纹或暗条纹),相应的距离是30 mm,试求铝箔的厚度D = ?若改用绿光照明,从劈尖开始数出100个条纹,其间距离为46.6 mm,试求这绿光的波长。

2-8. 如图所示的尖劈形薄膜,右端厚度h为0.005cm,折射率n = 1.5,波长为0.707?m的光以30°角入射到上表面,求在这个面上产生的条纹数。若以两块玻璃片形成的空气尖劈代替,产生多少条条纹?

2-9. 利用牛顿环干涉条纹可以测定凹曲面的曲率半径,结构如图所示。试证明第m个暗环的半径rm与凹面半径R2、凸面半径R1、光波长?0之间的关系为:

rm2?m?0R1R2R2?R1。

2-10. 在观察牛顿环时,用?1= 0.5?m的第6个亮环与用?2的第7个亮环重合,求波长

?2= ?

2-11. 如图所示当迈克尔逊干涉仪中的M2反射镜移动距离为0.233mm时,数得移动条纹数为792条,求光波长。

2-12.在迈克尔逊干涉仪的一个臂中引入100.0mm长、充一个大气压空气的玻璃管,用?= 0.5850?m的光照射。如果将玻璃管内逐渐抽成真空,发现有100条干涉条纹移动,求空气的折射率。

2-13. 已知一组F-P标准具的间距为1mm、10mm、60mm和120mm,对于?= 0.55?m的入射光来说,其相应的标准具常数为多少?为测量?= 0.6328?m、波长宽度为0.01×10-4?m的激光,应选用多大间距的F-P标准具?

2-14. 某光源发出波长很接近的二单色光,平均波长为600 nm。通过间隔d = 10 mm的F-P干涉仪观察时,看到波长为用?1的光所产生的干涉条纹正好在波长为?2的光所产生的干涉条纹的中间,问二光波长相差多少?

2-15. 已知F-P标准具反射面的反射系数r = 0.8944,求: (1)条纹半宽度。 (2)条纹精细度。

2-16. 红外波段的光通过锗片(Ge,n = 4)窗口时,其光能至少损失多少?若在锗片两表面镀上硫化锌(n = 2.35)膜层,其光学厚度为1.25 ?m,则波长为5 ?m的红外光垂直入射该窗口时,光能损失多少?

2-17. 在光学玻璃基片(nG = 1.52)镀上硫化锌膜层(n = 2.35),入射光波长?= 0.5?m,求正入射时给出最大反射率和最小反射率的膜厚度及相应的反射率。

2-18. 在某种玻璃基片(nG = 1.6)上镀制单层增透膜,膜材料为氟化镁(n = 1.38),控制膜厚,对波长?0= 0.5?m的光在正入射时给出最小反射率。试求这个单层膜在下列条件下的反射率:

(1)波长?0= 0.5?m,入射角?0?0?;

(2)波长?= 0.6?m,入射角?0?0?; (3)波长?0= 0.5?m,入射角?0?30?; (4)波长?= 0.6?m,入射角?0?30?。

2-19. 计算比较下述两个7层?/4膜系的等效折射率和反 射率:

(1)nG = 1.50,nH = 2.40,nL = 1.38; (2)nG = 1.50,nH = 2.20,nL = 1.38。 由此说明膜层折射率对膜系反射率的影响。

2-20. 对实用波导,n+nG ≈ 2n,试证明厚度为h的对称波导,传输m阶膜的必要条件为:

m2?22 Δn = n-nG ≥8nh

式中,?是光波在真空中的波长。

2-21. 太阳直径对地球表面的张角2?约为0?32?, 如图所示。在暗室中若直接用太阳光作光源进行 双缝干涉实验(不限制光源尺寸的单缝),则双 缝间距不能超过多大?(设太阳光的平均波长为

?= 0.55?m,日盘上各点的亮度差可以忽略。)

2-22. 在杨氏干涉实验中,照明两小孔的光源是一个直径为2 mm的圆形光源。光源发射光的波长为?= 0.5?m,它到小孔的距离为1.5 m。问两小孔能够发生干涉的最大距离是多少?

2-23. 若光波的波长宽度为??,频率宽度为??,试证明??/????/?。式中?和?分别为该光波的频率和波长。对于波长为632.8 nm的He-Ne激光,波长宽度??= 2×10-8 nm,试计算它的频率宽度和相干长度。

第三章

3-1. 由氩离子激光器发出波长?= 488 nm的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75 mm×0.25 mm。在位于矩形孔附近正透镜(f = 2.5 m)焦平面处的屏上观察衍射图样。试描绘出所形成的中央最大值。

3-2. 由于衍射效应的限制,人眼能分辨某汽车两前灯时,人离汽车的最远距离l = ?(假定两车灯相距1.22 m。)

3-3. 一准直的单色光束(?= 600 nm)垂直入射在直径为1.2 cm、焦距为50 cm的汇聚

透镜上,试计算在该透镜焦平面上的衍射图样中心亮斑的角宽度和线宽度。

3-4. (1)显微镜用紫外光(?= 275 nm)照明比用可见光(?= 550 nm)照明的分辨本领约大多少倍?

(2)它的物镜在空气中的数值孔径为0.9,用用紫外光照明时能分辨的两条线之间的距离是多少?

(3)用油浸系统(n = 1.6)时,这最小距离又是多少?

3-5. 一照相物镜的相对孔径为1:3.5,用?= 546 nm的汞绿光照明。问用分辨本领为500线 / mm的底片来记录物镜的像是否合适?

3-6. 用波长?= 0.63?m的激光粗测一单缝的缝宽。若观察屏上衍射条纹左右两个第五级极小的间距是6.3cm,屏和缝之间的距离是5 m,求缝宽。

3-7. 今测得一细丝的夫琅和费零级衍射条纹的宽度为1 cm,已知入射光波长为0.63?m,透镜焦距为50 cm,求细丝的直径。

3-8. 考察缝宽b = 8.8×10-3 cm,双缝间隔d = 7.0×10-2 cm、波长为0.6328?m时的双缝衍射,在中央极大值两侧的两个衍射极小值间,将出现多少个干涉极小值?若屏离开双缝457.2 cm,计算条纹宽度。

3-9.在双缝夫琅和费衍射实验中,所用波长?= 632.8 nm,透镜焦距f = 50 cm,观察到两相邻亮条纹之间的距离e = 1.5 mm,并且第4级亮纹缺级。试求:(1)双缝的缝距和缝宽;(2)第1、2、3级亮纹的相对强度。

3-10. 用波长为624 nm的单色光照射一光栅,已知该光栅的缝宽a = 0.012 mm,不透明部分的宽度b = 0.029 mm,缝数N = 1 000,试求:(1)中央峰的角宽度;(2)中央峰内干涉主极大的数目;(3)谱线的半角宽度。

3-11. 一平行单色光垂直入射到光栅上,在满足dsin??3?时,经光栅相邻两缝沿?方向衍射的两束光的光程差是多少?经第1缝和第n缝衍射的两束光的光程差又是多少?这时通过任意两缝的光叠加是否都会加强?

3-12. 已知一光栅的光栅常数d = 2.5?m,缝数为N = 20 000条。求此光栅的一、二、三级光谱的分辨本领,并求波长谱对此波长的最大干涉级次。

3-13. 已知F-P标准具的空气间隔h = 4cm,两镜面的反射率均为R = 89.1%。另有一反射光栅的刻线面积为3 cm × 3 cm,光栅常数为1 200条 / mm,取其一级光谱,试比较这两个分光元件对

??0.69?m红光的二、三级光谱的位置(角度)

,以及光

??0.6328?m红光的分光特性。

3-14.在一透射光栅上必须刻多少线,才能使它刚好分辨第一级光谱中的钠双线(589.592 nm和588.995nm)。

3-15. 一光栅宽为5 cm,每毫米内有400条刻线。当波长为500 nm的平行光垂直入射时,第4级衍射光谱处在单缝衍射的第一极小位置。试求:

(1)每缝(透光部分)的宽度。 (2)第二级衍射光谱的半角宽度。 (3)第二级可分辨的最小波长差。

(4)若入射光改为光与栅平面法线成30°角方向斜入射时,光栅能分辨的谱线最小波长差又为多少?

3-16. 一块闪耀波长为第一级0.5?m、每毫米刻痕为

1 200的反射光栅,在里特罗自准直装置中能看 到0.5?m的哪几级光谱?

3-17. 波长?= 563.3 nm的单色光,从远处的光源发出,穿过一个直径为D = 2.6 mm的小圆孔,照射与孔相距r0 = 1 m的屏幕。问屏幕正对孔中心的点P0处,是亮点还是暗点?要使P0点的情况与上述情况相反,至少要把屏幕移动多少距离?

3-18. 有一波带片,它的各个环的半径为rm?0.1mcm(m = 1,2,…)。当

??0.5?m时,计算其焦点的位置。

3-19. 如图所示,单色点光源(?= 500 nm)安装在离光阑1 m远的地方,光阑上有

一个内外半径分别为0.5 mm和1 mm的通光圆环,考察点P离光阑1 m(SP连 线通过圆环中心并垂直于圆环平面)。问在P点的光强和没有光阑时的光强度之 比是多少?

3-20. 单色平面光入射到小圆孔上,在孔的对称轴线上的P0点进行观察,圆孔正好露出1/2个半波带,试问P0点的光强是光波自由传播时光强的几倍。

3-21. 波长632.8 nm的单色平行光垂直入射到一圆孔屏上,在孔后中心轴上距圆孔r0 = 1 m处的P0点出现一个亮点,假定这时小圆孔对P0点恰好露出第一个半波带。试求:

(1)小孔的半径?。

(2)由P0点沿中心轴从远处向小孔移动时,第一个暗点至圆孔的距离。

22.一块菲涅耳波带片对波长0.50?m的衍射光的焦距是10 m,假定它的中心为开带, (1)求波带片上第4个开带外圆的半径。

(2)将一点光源置于距波带片中心2 m处,求它的+1级像。 3-23. 如图所示是制作全息光栅的装置图,试推导其

全息光栅的条纹间距公式。今要在干版处获得 1200条 / mm的光栅,问两反射镜间的夹角 是多少。

3-24. 求出如图所示衍射屏的夫琅和费衍射图样的光

强分布。设衍射屏由单位振幅的单色平面波 垂直照明。

3-25. 一块透明片的振幅透过系数t(x)?e??x2,将其置于透镜的前焦平面上,并用单位

振幅的单色光垂直照明,求透镜后焦平面上的振幅分布。

第四章

4-1. 在各向异性介质中,沿同一光线方向传播的光波有几种偏振态?它们的D、E、k、s矢量间有什么关系?

4-2. 设e为E矢量方向的单位矢量,试求e的分量表示式,即求出与给定波法线方向k相应的E的方向。

4-3. 一束钠黄光以50°角方向入射到方解石晶体上,设光轴与晶体表面平行,并垂直与入射面。问在晶体中o光和e光夹角为多少(对于钠黄光,方解石的主折射率no=1.6584, ne=1.4864)。

4-4. 设有主折射率no=1.5246,ne=1.4864的晶体,光轴方向与通光面法线成45°, 如图所示。现有一自然光垂直入射晶体,求在晶体中传播的o、e光光线方向,二光夹 角?以及它们从晶体后表面出射时的相位差(?=0.5?m,晶体厚度d=2cm。)

4-5. 一单轴晶体的光轴与界面垂直,试说明折射光线在入射面内,并证明:

tan?'?ie?nosinn2'ene?sin2?i其中,?i是入射角;?e是e折射光线与界面法线的夹角。

4-6. 两块方解石晶体平行薄板,按相同方式切割(图中斜线代表光轴),并平行放置, 细单色自然光束垂直入射,通过两块晶体后射至一屏幕上,设晶体的厚度足以使双折射的 两束光分开,试分别说明当晶体板2在:① 如图4-64所示;② 绕入射光方向转过?角; ③ 转过?/2角;④ 转过?/4角的几种情况下,屏幕上光点的数目和位置。

4-7. 如图所示,方解石渥拉斯顿棱角的顶点?=45°时,两出射光的夹角?为多少?

4-8. 设正入射的线偏振光振动方向与半波片的快、慢轴成45°,分别画出在半波片中距离入射表面为:① 0;② d/4;③ d/2;④ 3d/4;⑤ d的各点处两偏振光叠加后的振动形式。按迎着光射来的方向观察画出。

4-9. 用一石英薄片产生一束椭圆偏振光,要使椭圆的长轴或短轴在光轴方向,长短轴之比为2:1,而且是左旋的。问石英片应多厚?如何放置?(?=0.5893?m,no=1.5442,ne =1.5533。)

4-10. 两块偏振片透射方向夹角为60°,中央插入一块1/4波片,波片主截面平分上述夹角。今有一光强为Ie的自然光入射,求通过第二个偏振片后的光强。

4-11. 一块厚度为0.04mm的方解石晶片,其光轴平行于表面,将它插入正交偏振片之间,且使主截面与第一个偏振片的透振方向成?(?≠0°、90°)角。试问哪些光不能透过该装置。

4-12. 在两个偏振面正交放置的偏振器之间,平行放一厚0.913mm的石膏片。当

?1=0.583?m时,视场全暗,然后改变光的波长,当 ?2=0.554?m时,视场又一次全暗。

假设沿快、慢轴方向的折射率在这个波段范围内与波长无关,试求这个折射率差。

第五章

5-1. 一KDP晶体,l=3cm,d=1cm。在波长?=0.5?m时,no=1.51,ne =1.47,?63=10.5×10-12m·V-1。试比较该晶体分别纵向和横向运用、相位延迟为?=?/2时,外加电压的大小。

5-2. 一CdTe电光晶体,外加电场垂直于(110)面,尺寸为33×4.5×4.5mm3,对于光波长?=10.6?m,它的折射率no=2.67,电光系数?41=6.8×10-12 m·V-1。为保证相位延迟

?=0.056rad,外加电场为多大?

5-3. 在声光介质中,激励超声波的频率为500MHz,声速为3×105cm,求波长为0.5?m的光波由该声光介质产生布拉格衍射角时的入射角?B=?

5-4. 一钼酸铅声光调制器,对He-Ne激光进行声光调制。已知声功率Ps=1W。声光作用长度L=1.8mm,压电换能器宽度H=0.8mm,品质因素M2=36.3×10-15s3kg-1,求这种声光调制器的布拉格衍射效率。

5-5. 对波长为?=0.5893?m的钠黄光,石英旋光率为21.7o/mm。若将一石英晶体片垂直其光轴切割,置于两平行偏振片之间,问石英片多厚时,无光透过偏振片P2。

5-6. 一个长10cm的磷冕玻璃放在磁感应强度为0.1特斯拉的磁场内,一束线偏振光通过时,偏振面转过多少度?若要使偏振面转过45°,外加磁场需要多大?为了减小法拉第

工作物质的尺寸或者磁场强度,可以采取什么措施? 第六章

6-1. 有一均匀介质,其吸收系数K = 0.32 cm-1,求出射光强为入射光强的0.1、0.2、0.5时的介质厚度。

6-2. 一长为3.50 m的玻璃管,内盛标准状态下的某种气体。若吸收系数为0.165 m-1,求激光透过此玻璃管后的相对强度。

6-3. 一个60?的棱镜由某种玻璃制成,其色散特性可用科希公式中的常数A = 1.416,B = 1.72×10-10 cm2表示,棱镜的放置使它对0.6?m波长的光产生最小偏向角,这个棱镜的角色散率(rad /?m)为多大?

6-4. 光学玻璃对水银蓝光0.4358?m和水银绿光0.5461?m的折射率分别为n = 1.65250和1.62450。用科希公式计算:

(1)此玻璃的A和B;

(2)它对钠黄光0.5890?m的折射率; (3)在此黄光处的色散。

?(K?h)l6-5. 同时考虑吸收和散射损耗时,透射光强表示式为I?I0e,若某介质的散射系

数等于吸收系数的1 / 2,光通过一定厚度的这种介质,只透过20%的光强。现若不考虑散射,其透过光强可增加多少?

6-6. 一长为35 cm的玻璃管,由于管内细微烟粒的散射作用,使透过光强只为入射光强的65%。待烟粒沉淀后,透过光强增为入射光强的88%。试求该管对光的散射系数和吸收系数(假设烟粒对光只有散射而无吸收)。

6-7. 太阳光束由小孔射入暗室,室内的人沿着与光束垂直及成45?的方向观察此光束时,见到由于瑞利散射所形成的光强之比等于多少?

6-8. 苯(C6H6)的喇曼散射中较强的谱线与入射光的波数差为607,992,1178,1568,3047,3062 cm-1。今以氩离子激光线的波长。

??0.4880?m为入射光,计算各斯托克斯及反斯托克斯

第七章

7-1. 有一玻璃球,折射率为3,今有一光线射到球面上,入射角为60°,求反射光线和折射光线的夹角。

7-2. 水槽有水20cm深,槽底有一个点光源,水的折射率为1.33,水面上浮一不透明的纸片,使人从水面上任意角度观察不到光,则这一纸片的最小面积是多少?

7-3. 空气中的玻璃棒,n’=1.5163,左端为一半球形,r=-20mm。轴上有一点光源,L=-60mm。求U=-2°的像点的位置。

本文来源:https://www.bwwdw.com/article/3kxa.html

Top