传感器实验报告1

更新时间:2023-10-16 15:11:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

传感器实验报告

实验一 Pt100铂电阻测温特性实验

一、实验目的

1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。 2.掌握测量温度的电路设计和误差分析方法。

二、实验内容

1.设计PT100 铂热电阻测温实验电路方案;

2.测量PT100 的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。 3.通过测量值进行误差分析。

三、实验仪器、设备、材料

主机箱、温度源、Pt100热电阻(2支)、温度传感器实验模板、万用表。

四、实验原理

利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。在0-650℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中: Ro系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。A=3.9684×10-3/℃,B=-5.847×10-7/℃2。铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。)。实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。

五、实验步骤

1、用万用表欧姆档测出Pt100三根线中其中短接的二根线(同种颜色的线)设为1、 2,另一根设为3,并测出它在室温时的大致电阻值。

2、在主机箱总电源、调节仪电源都关闭的状态下,再根据图1示意图接线,温

度传感器实验模板中a、b(Rt)两端接传感器,这样传感器(Rt)与R3、R1、Rw1、R4组成直流电桥,是一种单臂电桥工作形式。

3、放大器调零:将图的温度传感器实验模板的放大器的两输入端引线(一根传感器引线、另一根桥路输出即Rw1活动触点输出)暂时不要引入,而用导线直接将放大器的两输入端相连(短接);将主机箱上的电压表量程(显示选择)切换开关打到2V档,合上主机箱电源开关,调节温度传感器实验模板中的RW2(逆时针转到底)增益电位器,使放大器增益最小;再调节RW3(调零电位器)使主机箱的电压表显示为0。

4、关闭主机箱电源开关,将实验模板中放大器的输入端引线按图连接,检查接线无误后,合上主机箱电源开关。

5、将主机箱上的转速调节旋钮(2—24V)顺时针转到底(24V),合上温度源电源开关和调节仪电源开关,将调节仪控制方式(控制对象)开关按到内(温度)位置;在常温基础上,可按Δt=5℃增加温度并且小于160℃范围内设定温度源温度值,待温度源温度动态平衡时读取主机箱电压表的显示值并填入表。

6、根据表数据值画出实验曲线并计算其非线性误差。实验结束,关闭所有电源

六、实验数据

七、实验结论

计算灵敏度:k=Δy/Δx=(3.4-0.0024)/(65-13)=0.065 计算线性度:γL=ΔLmax/yFS=0.05/(65-13)=0.1% ,有实验得到的图形可以看到,实验所得的数据基本上符合实验要求,满足线性关系,而且幅值在0-4v内变化。 通过这次实验我学到了很多,自行设计热电阻测温实验方案,加深了对温度传感器工作原理的理解,还掌握了测量温度的电路设计和误差分析方法,但也发现了自身的不足,我会在今后的学习中逐渐完善自我,及时补充自身知识的缺失。。

实验二 热电偶测温特性实验

一、 实验目的

了解热电偶测量温度的原理和调理电路,熟悉调理电路工作方式。

二、 实验内容

本实验主要学习以下几方面的内容 1. 了解热电偶特性曲线;

2.观察采集到的热信号的实时变化情况。 3. 熟悉热电偶类传感器调理电路。

三、 实验仪器、设备和材料

myDAQ、myboard、nextsense01热电偶实验模块、万用表

四、 实验原理

热电偶是一种半导体感温元件,它是利用半导体的电阻值随温度变化而显著变化的特性实现测温。 热电偶传感器的工作原理

热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝克效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T,另一端温度为T0,则回路中就有电流产生,见图50-1(a),即回路中存在电动势,该电动势被称为热电势。

图50-1(a) 图50-1(b)

两种不同导体或半导体的组合被称为热电偶。

当回路断开时,在断开处a,b之间便有一电动势ET,其极性和量值与回路中的热电势一致,见图50-1(b),并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当ET较小时,热电势ET与温度差(T-T0)成正比

五、实验步骤

1、 关闭平台电源(myboard),插上热电偶实验模块。开启平台电源,此时可

六、实验数据

七、实验结论

图中紫色所对应的直线是单臂电桥的情况,黄色是半臂电桥的情况,褐色是全桥的情况。通过比较可以发现它们的斜率依次是两倍的关系。通过本次实验验证了单臂时,Ku=E/4; 半桥时Ku=E/2;全桥时Ku=E. 1.根据实验所得数据计算单臂系统灵敏度S1=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)。

2.计算单臂电桥的非线性误差δf1=Δm/yF..S ×100%。 式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差;yF·S为满量程(200g)输出平均值。

3.根据所得实验数据,计算半桥的灵敏度S2和非线性误差δf2。 4.根据实验数据,计算全桥的灵敏度S3和非线性误差δf3。

5.比较三种电桥的灵敏度和非线性误差。将得到的结论与理论计算进行比较。 经过此次的实验,让我们了解不同电桥的特性和实现方法,以及了解单臂电桥特性、差动半桥特性和差动全桥特性和他们各自的工作原理和工作情况。得知单臂电桥的灵敏度最低,差动半桥的灵敏度是单臂电桥的2倍和差动全桥的灵敏度为单臂电桥的4倍;以后的应用打下理论和实践基础。

实验八 光纤传感器的位移特性试验

一、实验目的

了解光纤位移传感器的工作原理和性能。

二、实验内容

计算系统的灵敏度和非线性度。

三、实验仪器、设备和材料

主机箱,光纤传感器,光纤传感器实验模板,测微头,铁和铜反射面。

四、实验原理

本实验采用的是传光型光纤,它有两束光纤混合后,组成Y型光纤,半圆分布及双D分布,一束光纤端部和光源相接发射光束,另一束端部与光电转换器相接接收光束。两束光混合后的端部都是工作端亦称探头,他与被测体相距X,有光源发出的光纤传到端部射出后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,二光电转换器转换的电量大小与间距X有关,因此可用于测量位移。

五、实验步骤

1按照书上的图连接线路,将电压表选择开关达到20V档。旋转测微头,使光反射面离开Y型光纤头的同时,每个0.1mm读取一个电压表显示值。将数据读入下表:

3并且找出现行做好的1mm范围内计算系统的灵敏度和非线性度。

六、实验数据

七、实验结论

由matlab可知拟合直线为V=0.9955X -0.0223 灵敏度为0.9955 非线性误差为δ=0.0168/(0.97*100%)=1.73% 通过本次实验,我了解了光纤位移传感器的工作原理和性能,计算出了系统的灵敏度和非线性度,通过这次实验我也发现了自身的不足,明白了自身知识的缺失,在今后的学习生活中我会更加认真学习,改正自身的缺点。

本文来源:https://www.bwwdw.com/article/3hff.html

Top