Optical Engineering 4512, 127201 December 2006 Depth from motion and defocus blur Huei-Yung
更新时间:2023-06-01 20:53:01 阅读量: 实用文档 文档下载
- optical推荐度:
- 相关推荐
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
OpticalEngineering45 12 ,127201 December2006
Depthfrommotionanddefocusblur
Huei-YungLin,MEMBERSPIEChia-HongChang
NationalChungChengUniversityDepartmentofElectricalEngineering168UniversityRoad
Min-HsiungChia-Yi621,TaiwanE-mail:lin@u.edu.tw
Abstract.Findingthedistanceofanobjectinascenefromintensityimagesisanessentialprobleminmanyapplications.Inthiswork,wepresentanovelmethodfordepthrecoveryfromasinglemotionanddefocusblurredimage.Undertheassumptionofuniformlateralmotionofthecameraduring niteexposuretime,boththepinholemodelandthecamerawitha niteapertureareconsidered.Itisshownthattheimageblurproducedbyuniformlinearmotionofthecameraisinverselyproportionaltothedistanceoftheobject.Furthermore,ifthespeedoftherelativemotionisknown,thedepthoftheobjectcanbeacquiredbyidentifyingtheblurparameters.Animageblurmodelisformulatedbasedongeometricoptics.Theblurextentisestimatedbyintensitypro leanalysisandfocusmeasurementofthedeblurredimages.Theproposedmethodisveri edexperimentallyusingdifferenttypesoftestpatternsinanindoorenvironment.©2006SocietyofPhoto-OpticalInstrumentation
Engineers. DOI:10.1117/1.2403851
Subjectterms:motinblur;defocusblur;depthrecovery.
Paper050643RRreceivedAug.9,2005;revisedmanuscriptreceivedMay27,2006;acceptedforpublicationJun.5,2006;publishedonlineDec.11,2006.
1Introduction
Oneoftheessentialproblemsincomputervisionistore-coverthedistanceinformationofanobjectfromcapturedimages.Itsapplicationareasrangefromindustrialinspec-tionandreverseengineeringtoautonomousrobotnaviga-tionandcomputergraphics.Typically,thevisualcuesob-servedintherecordedimagesareusedfordepthperceptionofthescene.Forexample,the3-Dinformationcanbeen-codedinthetextureorshadinginformationoftheobject,imagedisparityfrommultipleviewpoints,depthof eldoftheoptics,etc.Thisworkaimstoaddresstheproblemofdepthrecoveryusingthevisualcuesprovidedbybothcam-eramotionandopticaldefocus.Speci cally,monlyusedtechniquesfordepthrecoveryincludeshapefromstereoormotion,shapefromshading,shapefromsilhouettes,andphotometricstereo.1Thesemethodsrequireeithermultipleimagescapturedfromdifferentviewpoints,ordifferentilluminationconditionsappliedforthesingleviewpointimageacquisition.Althoughitispos-sibletoachieveexcellent3-Dreconstructionresultsfrommultipleviewpoints,thecomputationalcostisconsiderablyexpensive.Inadditiontogeneraldepthrecoveryalgo-rithms,whichrelyonthechangesoftheenvironmentortheimagingposition,therearealsosomeothertechniquesthatutilizetheactiveadjustmentsoftheinternalcameraparam-eters.Someoftheproposedmethodsincludedepthfromzoominganddepthfromfocus/defocus.Thedepthinforma-tionisextractedbycomparingseveralimagesrecordedbyasinglecamerawithdifferentcameraparametersettings.Amotorizedzoomlensisusuallyrequiredtochangethezoomorfocuspositionsintheseapproaches.
Depthfromdefocusblurisaclassicapproachtorecover
thedistanceofanobjectandsimultaneouslyrestoreafo-cusedimageusingafewout-of-focusimages.2–4Theim-agesareusuallyobtainedfromasingleviewpoint,andthecamerahastoremainstaticduringimageacquisition.Thedepthoftheobjectisthencomputedusingtheamountofdefocusblurassociatedwiththerecordedimage.Recently,defocusimagecuehasalsobeencombinedwithstereotechniquesfordensedepthmaprecovery.Deschênes,Ziou,andFuchs5proposedauni edapproachforacooperativeandsimultaneousestimationofdefocusblurandspatialshiftsfromastereoimagepair.Basedongeneralizedmo-ment,expansion,theyhadformulatedasystemofequationsfordepthcomputation.Rajagopalan,Chadhuri,andMudenagudi6modeledthedepthandthefocusedimageindividuallyasMarkovrandom elds.Theyusedtwode-focusedstereoimagepairstoobtainadensedepthmapaswellasafocusedimageofthescene.
Differentfromopticaldefocus,motionblurisaresultof niteacquisitiontimeofpracticalcamerasandtherelativemotionbetweenthecameraandthescene.Forarapidscenechange,itisnotnegligibleevenwithapinholecam-eramodel.Traditionally,imagedegradationcausedbymo-tionbluristreatedasanundesirableartifactandusuallyhastoberemovedbeforefurtherprocessing.7Recently,motionblurhasbeenusedinvariousapplicationssuchassurveil-lancesystems,8computeranimation,9increasingthespatialresolutionofstillimagesfromvideosequences,10ormea-suringthespeedofamovingvehicle.11Althoughtheresto-rationtechniquesforimagedegradationcausedbymotionblurhavebeeninvestigatedforthepastfewdecades,12–14fairlylittleworkhasbeendonefordepthrecoveryusingmotionblurcues.Someofthepreviousresearchdealingwithcamera orobject motionandopticaldefocuscanbefound,forexample,inRefs.15–17.
ThemostrelevantresearchtothisworkisprobablytheworkgivenbyMylesanddaVitoriaLobo.15Theypre-
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
LinandChang:Depthfrommotionanddefocusblur
blursimultaneouslyfromanimagepair.Amodelwaspro-posedandusedtoobtaintherelationshipbetweentheaf netransformationandthelevelofblur.Thederivedequationwasthensolvedusinganiterativeapproach.Althoughtheexperimentalresultswerepresentedwithseveralrealandcomplicatedimages,onlythechangesindefocusduetothemotionalongtheopticalaxiswereconsidered.Motionblurcausedbytherelativemotionbetweenthecameraandthesceneduringnonzerocameraexposuretimewasnotexplic-itlytakenintoaccount.Furthermore,theirformulationbasedonanaf nemodelrequirestwoimagesforbothde-focusblurandaf nemotionrecovery.Inthecurrentre-search,wearemoreinterestedindepthrecoveryfromasingleblurredimage.Theimageblurismodeledasopticaldefocusand/ortheimagedegradationcausedbytheobjectmotionduringnonzeroimageacquisitiontime.Thus,somepracticalissuesrelatedtotheproblem,suchastheimageformationandmotionblur,arenotcompletelyaddressedRef.15.
InFox’searlywork,16theconceptofrangefromablur-acutestereopairwasintroduced.Aspecialhardwarewasdesignedtocaptureboththeblurredandunblurredimagesfordepthmeasurements.Itwasbasicallyaconventionalstereomethodincorporatedwithtranslationmotionblurin-formation.Moreover,theauthormainlydescribedthethe-oreticalaspectoftheproposedideawithoutexperimentalresults.Recentworkrelatedto3-DreconstructionfromblurimagecueswasgivenbyFavaro,Burger,andSoatto.17Theyproposedavariationalapproachtorecoverthedepthmapandradianceofasceneusingadefocusedandmotion-blurredimagesequence.Theblurinformationwasusedtominimizethediscrepancybetweenthemeasureddefocusedimagesandtheoutputsynthesizedbythediffusionprocess.Althoughanoff-the-shelfcameracanbeused,multipleim-agesarestillrequiredforanisotropicdiffusion.Further-more,theirapproachisonlyvalidundertheassumptionofLambertiansurfacewithuniformillumination.
Incontrasttothepreviouswork,weuseonlyasinglemotionanddefocusblurredimagefordepthrecovery.Depthcalculationisaccomplishedbyidentifyingtheblurextentcausedbylateralcameramotionanddistance-varyingdefocus.Inthisresearch,animageblurmodelforuniformlinearmotionandopticaldefocusisformulatedbasedongeometricoptics.Theblurextentoftheimageisthenestimatedandusedfordepthmeasurement.
Theworkorganizedasfollows.Section2introducesthetheoryofimageformationwithdefocusandmotionblur.InSec.3,wepresentthemethodsforblurparameterestima-tionandcamerafocuscalibration.Section4providestheimplementationdetailsandexperimentalresults.Severaltypesofrealimageswithdifferentexperimentalsetupsareusedtovalidatetheproposedtechnique.Finally,Sec.5concludestheworkandpointstopossibledirectionsoffu-tureresearch.
2TheoreticalFormulation
Asimplecameramodelconsistingofathinlensandanimageplaneisusedtoderivesomefundamentalcharacter-isticsoffocusingbasedongeometricoptics.TheexistingalgorithmsfordeterminingobjectdepthfromimagefocusordefocususuallyformulatetheopticalblurduetotheFig.1Cameramodelfordefocusblur.
thiswork,boththeimageblurcausedbythecameramotionandopticaldefocusaretakenintoaccount.We rstmodelthemotionbluronly,i.e.,theobjectisinfocusifthereisnorelativemotionbetweenthecameraandthescene,andthenconsiderthedefocusbluraswell.
2.1GeometricCameraModel
Inthissectionwebrie ydescribethecameramodelforthegeometricimageformationprocess.InterestedreaderscouldrefertoRefs.21and22formoredetailedinforma-tiononthistopic.AsillustratedinFig.1,acamerasystemconsistingofasingleconvexlenswithfocallengthfisconsidered.TherelationshipbetweenthepositionofapointPinthesceneandthecorrespondingfocusedpositionP intheimageisgivenbythewellknownlensformula111+=,pqf
1
wherepisthedistanceoftheobjectfromthelensononeside,andqisthedistanceoftheimageplanefromthelensontheotherside.
IfweconsideranobjectpointQwithadistancezfromthelens withoutlossofgenerality,weassumezisgreaterthanp ,thenEq. 1 canberewrittenas111+=,zz f
2
wherez isthedistanceofthevirtualfocuspositionfromthelens.Furthermore,thecorrespondingimagepointofQismodeledasablurcirclecenteredatCaccordingtogeo-metricoptics.FromEq. 2 andtherelationdq z =,Dz
thediameterdoftheblurcircleisgivenbyd=Dq
3
111
,fzq
4
whereDisthediameterofthelensandqisthedistancefromthelenstotheimageplane.23Sincethedistanceqis
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
d=
Dpf11
.
p fpz
5
Thatis,thesizeoftheblurcircleforanyscenepointlo-catedatadistancezfromthelenscanbecalculatedbyEq. 5 .
SimilarderivationsofEq. 5 canbefound,forexample,inRefs.20and24.Itisclearthattheblurcirclediameterddependsonlyonthedepthzif xedcamerasettingsofD,f,andparegiven.Inthiswork,wemakeseveralfurtherobservationsontheimagingmodel.First,Eq. 5 canberewrittenasd=c wherec=
Df
.p f
7
s =s cos +sin tan .
10
cp,z
6
Fig.2Cameramodelforpuremotionblur.
FromEq. 6 ,thesizeoftheblurcircleislinearlyrelatedtotheinversedistanceoftheobject.Moreover,theblurcirclediameterd→0asthedistancez→p,andconverselyd→casz→ .Inthelattercase,theconstantcgivenbyEq. 7 representsthemaximumdiameteroftheblurcirclewhentheobjectapproachesin nity.
IfwerewriteEq. 6 asafunctionofd,thenthedepthzoftheobjectisgivenbyz=cp
.c d
8
SubstituteEq. 9 withEqs. 10 and 1 ,andthedistancepisgivenby
s
p=1+ cos +sin tan f,
x
11
whichisindependentofthedistanceqbetweenthelensandtheimageplane.
Sincetheangle isusuallysmallifonlythecentralpartoftheimageisconsidered,especiallyforp f,Eq. 11 canbeapproximatedbyp=1+
s
cos f.x
Inthepreviousequation,thefocusingrangepcorrespond-ingtoa xedlenspositionatqfromtheimageplanecanbeobtainedfromcamerafocuscalibration.Thisisalsoanim-portantobservation,sincetheconstantccanbeeithercom-puteddirectlyfromEq. 7 withaperturediameterofthecameraormeasuredfromthesizeoftheblurcircleastheobjectapproachingin nity.Consequently,thedistancezcanbeacquiredfromEq. 8 byobservingtheblurcirclesize.
2.2ModelforMotionBlur
Differentfromopticaldefocus,motionblurisaresultoftherelativemotionbetweenthecameraandthesceneduringtheimagingprocess.AsshowninFig.2,supposeanobjectmovesadistancesfromPtoQ,andtheanglebetweenthemotiondirectionoftheobjectandtheimageplaneofthecamerais .Ifwefurtherassumethatthe3-DpointQisinthesamedepthof eldasthepointP,sothatthereisnodefocusblurassociatedwiththeimagepointQ whentheobjectPisinfocus.ThenthedistancebetweenQ andthelensisgivenbyq,andwehaves x=,pq
9
12
SupposethedistancebetweenQ andtheimagecenteris ,thentan =
11
=
qfpf
ifp f.
Foracharge-coupleddevice CCD sensorsizeof11mm
diagonalandacamerafocallengthof9mm,tan islessthan7 10 2mmifQ appearsinsidethecentral20%oftheimage. Thus,thedepthcanbecomputedbytherelativedisplacementandmovingdirectionoftheobjectmotion.Furthermore,iftheangle isnotsigni cant,i.e.,therela-tivemotionisapproximatelyparalleltotheimageplane,thenEq. 12 canbewrittenasp=1+
sf.x
13
bysimilartriangles.Let betheanglebetweenQQ andtheopticalaxisofthelens,thenthedisplacementscanbeItshouldbenotedthatifasimplepinholecameramodelisconsidered,thedepthpisgivenbysf/x.Thus,thereexistsadifferenceofthefocallengthfwhencomparedtothecameramodelwitha niteaperture.
Now,supposetheobjectundergoesuniformlinearmo-tionduringtheimagingprocesswithcameraexposuretimeofTseconds,i.e.,theobjectmovesfromPtoQatthe
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
s x=,zq
18
wherexisthedifferencebetweenP andQ ,thecentersoftheblurcirclesassociatedwithPandQ,respectively.SimilartothederivationsofEqs. 11 and 12 ,thedis-tancezoftheobjectisgivenbyz=
spf cos +sin tan vTpf cos +sin tan
=,
x p f x p f
19
or
Fig.3Cameramodelforbothmotionanddefocusblur.
z=
vT
cos f,p=1+x
spfcos vTpfcos
=
x p f x p f
if 0deg, 20
14
andp=1+
vT
f,x
15
wherepisthefocusingrangecorrespondingtothedistanceqbetweenthelensandtheimageplane.Thatis,thedis-tancezcanbeobtainedprovidedthatalloftheparametersf,v,p,T,x,and areknown.Forthecasethattheobject’smotiondirectionisparalleltotheimageplane,Eq. 20 canbefurthersimpli edtoz=
spfvTpf
=,
x p f x p f
21
respectively,wherexcorrespondstotheblurextentduetotherelativemotion.Sincethefocallengthandexposuretimearegivenbythecamerasettings,thedistanceoftheobjectcanbeobtainedfromEqs. 14 or 15 ifthemovingspeedvoftheobjectisknownandtheextentofmotionblurxcanbeidenti ed.Moreover,foranytwoobjectswiththesamemotiondirectionandmovingspeedwithrespecttothecamera,theirrelativedepthcanbecomputedbyp2x1vTcos +x2
=,p1x2vTcos +x1
16
providedthattheobjectsarelocatedwithinthesamedepthof eld i.e.,out-of-focusblurcanbeignored .
Inmostpracticalsituations,thedisplacementoftheob-jectss=vTismuchlargerthantheblurextentsx1andx2intheimage.Thus,Eq. 16 canbefurtherreducedtop2x1
=.p1x2
17
bysetting aszero.DifferentfromEqs. 11 – 15 ,whichdealwiththecasewithoutdefocusblur,theparameterpinEqs. 19 – 21 representsthefocusingrangewithrespecttoa xedlenspositionwiththedistanceqfromtheimageplane.Itcanbeobtainedfromfocuscalibrationfor xedparametersettingsofthecamera.25However,theparameterxrepresentingthedisplacementbetweenthecentersofde-focusblurcirclesappearsmoredif culttoidentify.
FromEq. 20 ,itisclearthattherelativedepthoftwoobjectsatdifferentdistancesisgivenbyz2x1
=,z1x2
22
Thatis,exceptfortheextentsofmotionblur,neitherthecameraparametersnorthemovingspeedarerequiredforthecalculationofrelativedepth.Althoughtheimagingmodelassumestheobjectsareinmotion asshowninFig.2 ,therelativemotioncanbeachievedbymovingthecam-eralaterally.
2.3ModelforBothMotionandDefocusBlur
AsshowninFig.3,ifweconsideranobjectPwithadistancezfromthecamera assumingzislargerthanp ,thenthecorrespondingimagewillbeablurcirclecenteredatP andthecirclesizeisgivenbyEq. 4 .SupposetheobjectmovesfromPtoQwithadisplacementsandanwithouttheassumptionsx1,x2 srequiredforEq. 17 .FromboththeEqs. 17 and 22 ,therelativedepthoftwoobjectsisinverselyproportionaltothemotionblurextents,providedthattherelativemotiondirectionisthesame.Ifweconsideraspecialcasewheretheobjectisveryfaraway,orthefocusingrangeissetasin nity i.e.,p→ ,thenEq. 19 canbesimpli edasz=
vTf
cos +sin tan ,x
23
whichcorrespondstoapinholecameramodel.Inthiscase,theparameterxisnotonlythedistancebetweenthecentersoftheblurcircles,butalsotheblurextentwithoutthepres-enceofdefocusblur.
Ifboththedefocusandmotionblurareconsidered,theblurextentcausedbymovinganobjectfromPtoQisgivenbythedisplacementofthecentersofblurcirclesplus
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
LinandChang:Depthfrommotionanddefocusblur
diametersoftheblurcirclesassociatedwithP andQ ,respectively.Thentheblurextentcausedbybothmotionandopticaldefocusisx+
d1+d2
,2
24
2.4PointSpreadFunction
Theobservedimageg x,y iscommonlymodeledastheoutputofa2-Dlinearspace-invariantsystem,whichischaracterizedbyitspointspreadfunction PSF ,h x,y .Moreprecisely,thedegradedimageg x,y canbeformu-latedasg x,y =
wherexisthedisplacementoftheblurcircles,andd1andd2aregivenbyEq. 4 .IfthedepthchangebetweenPandQisnotsigni cant,Eq. 24 canbeapproximatedbyx+d,wheredistheaverageofd1andd2.Inpractice,theGaussianblurmodelisextensivelyused4,6,18,23,26andtheblurparameterisgivenby =kd,wherekisacameraconstant.
Supposetheobservedblurextentisx intheimage,i.e.,x =x+kd,thenthedepthzcanbederivedifEq. 20 canbewrittenasafunctionofx .SubstitutingEq. 4 withEqs. 1 and 20 gives
fxDpf11
=D,d=
p fpzp fscos
h x ,y f , d d , 30
whereh x,y isalinearshift-invariantPSF,andf x,y is
theidealimage.Ifweconsideralosslesscamerasystem,then
h x,y dxdy=1, 31
25
andthePSFofimagedegradationcausedbyout-of-focusblurcanbewrittenasapillboxfunction4d222
,ifx+y
4,h x,y = d2
0,otherwise
wheredispositiveifz pandnegativeifz p.Forthe
formercase,Eq. 25 canberewrittenasx=
scos kDf
x ,
scos kDp f
32
26
sincex =x+kd.Finally,thedepthzoftheobjectisgivenbyz=
scos kD pf vTcos kD pf
=,
x p f kDfx p f kDf
27
accordingtogeometricoptics,wheredisthediameterof
theblurcirclegivenbyEq. 5 .
Foranimagewithanidealstepedge,thecorrespondingblurimageisgivenbythe1-Dconvolutiong x =f x *l x ,
wherel x isthelinespreadfunction4d if x d 4x,
2.l x = d2
0,otherwise
33
fromEq. 20 .Similarly,wehavez=
scos +kD pf vTcos +kD pf
=,
x p f +kDfx p f +kDf
34
ifzissmallerthanp.
Therearesomeobservationsfromthepreviousequa-tions.First,ifapinholecameramodelisconsidered i.e.,D→0 ,thenx=x byEq. 26 .Consequently,Eq. 27 isreducedtoEq. 20 .Second,ifthedisplacementoftheobjectismuchlargerthanthesizeofthecameraaperture,i.e.,s D,thenxcanbeapproximatedbykDf
,x x
p f
28
However,duetoaberrations,diffraction,andnonidealitiesofthelenses,aGaussianPSFiscommonlyusedinsteadofEq. 32 ,andthelinespreadfunctionisgivenbyx2
l x =
2 exp 2 2,
1
35
where isthespreadparameter.
Itisshownthat isproportionaltotheblurcircledi-ameterd,i.e.,
whichisindependentoftheangle .Furthermore,itcanbereducedtokDf
,x x p
29
=kdfork 0, 36
andcanbedeterminedbyanappropriatecalibrationprocedure.27Thus,Eq. 8 canberewrittenasz=c p
,c
37
iff p.FromEq. 29 ,itisclearthatdefocusblurisnegligibleiftheaperturesizeandfocallengtharerelativelysmallcomparedtothedisplacementoftheobjectandthe
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
Fig.4Intensitypro lesofdefocusededgesaccordingtopillboxandGaussian
models.
kDf
,c =
p f
38
basedontheGaussianlinespreadfunctionmodel.Thein-tensitypro lesofdefocusededgesaccordingtothepillboxfunctionandGaussianmodelareshowninFig.4.Foredgeimages,ablurcircleisreducedtoahorizontalblurlength.ThelengthcanbeestimatedfrombluranalysisonstepedgesandusedinEq. 37 fordepthrecovery.
3FocusCalibrationandBlurExtentEstimation3.1DefocusBlurandFocusCalibration
TocalculatethedepthofanobjectusingEqs. 8 or 37 foragivensetofcameraparameters,thecorrespondingfocusingrangepandtheblurextentsc and havetobeidenti ed.AssuggestedbyEq. 1 ,thefocuspositionqcan
bederivedforanarbitrarydistancepoftheobject.Thus,adistancepcanbeassignedandusedto ndthecorrespond-inglenspositionatq,whichwillbe xedforblurextentestimationanddepthrecovery.Theproblemofdepthrecov-eryisthendividedintotwosubproblems—focuscalibra-tionforthefocusingrangepandblurestimationfortheparameterscandd.
Forthefocuscalibration,aplanarobjectwithastepedgeisplacedinfrontofthecameraata xeddistance.Asequenceofimagesiscapturedwithdifferentlensposi-tions.Thebestfocusedimageandthecorrespondinglenspositionareselectedbytheimagewiththelargestaveragegradientchangeintheedgedirection.Forthe xedlensposition,theobjectlocationisthenslightlyadjustedto ndthebestfocusingrangep.Inthisfocuscalibrationstage,theobjectisusuallyplacedclosetothecamerabecause
the
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
correspondingdepthof eldissmallerforgeneralopticalsystems.Thedepthcorrespondingtothemaximumblurextentisalsoshorterinthiscase,whichgivesmoreaccu-rateblurparameterestimationforthein nitedistance.Givena xedfocusposition,theblurparameterscorc correspondingtothein nitedistancecanbeobtainedbyeitherdirectcomputationusingEq. 7 withknownfocallengthandaperturediameter,orblurextentestimationbyplacingacalibrationpatternatin nity.IftheGaussianmodelisconsidered,theparameterc hastobederivedusingthesecondmethod.Forthe rstmethod,assuggestedbyEq. 7 ,theprecisionofccanbeincreasedbysettingalargeraperturediameterDandasmallerdistancep.3.2MotionBlurEstimation
ToestimatetheblurextentduetotherelativemotionandopticaldefocususedinEqs. 19 , 23 ,and 27 fordepthmeasurements,atwo-stepalgorithmisproposed.Withoutlossofgenerality,weassumethedirectionofmotionblurisparalleltotheimagescanlines.Forthegeneralcasethattherelativemotionisnotparalleltotheimagescanlines,themotiondirectioncanbeidenti ed rstandthenusedtorectifytheimage.14
Itiswellknownthattheresponseofasharpedgetoanedgedetectorisathincurve,whereastheresponseofabluredgetothesameedgedetectorspreadsawiderregion.Thissuggeststhattheresultofedgedetectioncanbeusedasinitialestimationofthemotionblurextent.Intheimple-mentation,averticalSobelmaskisusedtoidentifythehorizontalblurextentforeachverticaledgealongtheim-agescanlines.Duetonoiseandtextureoftheobject,thederivedblurextentsareusuallynotallidentical.Thus,themodeoftheblurextentsisusedtoderiveanoverallhori-zontalblurextentoftheimage,andthenusedasaninitialestimateforthenextstep.
Atthesecondstep,theinitialblurextentisusedasaparametertocreateasequenceofdeblurredimagesbyaWiener lter.Amodi edLaplacianfocusmeasure25isthenusedtoselectthebestdeblurredimageandthecorrespond-ingblurextent.Ifopticaldefocusismodeledaswell,thedefocusblurextentdgivenbyEq. 25 isalsoconsideredforimagedeblurring.Fromx =x+dandEq. 25 ,thede-focusblurextentcanbewrittenasd=
Fig.6Theedgeimageusedinthe
experiments.
placedonastagemountedonalinearrailtoobtainedthemotionblurredimages.ThemovementofthestageisdrivenbyaPC-controlledsteppingmotor.
4.1OpticalDefocus
Toobtainthemaximumblurextent correspondingtotheobjectatin nity ,focuscalibrationfortwodifferentfocus-ingrangesisperformedwithtwodifferentaperturesizes.Inthe rstexperiment,thefocusingrangeissetas265mmfromthecamera.Theblurextentsestimatedfromdifferentobjectdistanceswithfocallengthsof36mmareshowninFig.8.Solidanddottedlinesrepresenttheresultswithaperturediametersof7.2and15mm,respectively.Theplotshowsthat,astheobjectdistancegoestoin nity,theblurextentsapproach79and163pixelsforthesetwoaperturesizes.Theresultsalsoverifythatthemaximumblurispro-portionaltotheaperturediameterasderivedinEqs. 7 and 38 .DirectcomputationsoftheblurextentcusingEq. 7 aregivenby166.5and346.8pixelsfortheaperturediam-etersof7.2and15mm,respectively.Thus,theconstantkgivenbyEq. 36 isabout0.47forbothcases.
Inthesecondexperiment,thefocusingrangeissetas1000mmfromthecamera.Thefocallengthissetas36mm.Figure9showstheblurextentsobtainedfrom
dif-
fx sD .p fss kD
39
Sincethefocusmeasurehighlydependsonlocalintensityvariation,thedefocusblurextentdcanbeusedtodeter-minethenumberofdeblurredimagestobecreated.How-ever,motionblurdominatestheblurextentinmostcases,andtypicallynineimagesarecreatedformotiondeblurringintheimplementation.
4ImplementationandExperimentalResults
Theproposeddepthrecoverymethodhasbeentestedinthelaboratoryenvironment.Aschematicdiagramfortheex-perimentalsetupisshowninFig.5Twotypesofplanarpatterns,onewithastepedgeandtheotherwithafewcharacters asshowninFigs.6and7,respectively ,are
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
LinandChang:Depthfrommotionanddefocusblur
Table1Depthrecoveryfromdefocusblur withthefocusingrangep=265mm .
Aperture15mm
Distance
mm 50060070080090010001100
Fig.8Blurextentsfordifferentobjectdistances focusat265mm ;solidanddottedlinescorrespondtoaperturediametersof7.2and15mm,
respectively.
12001300
Blur668699107113115126127129130133
Depth44655967877085990311791201127712881438
Error10.76.73.03.74.49.67.10.11.77.94.1
Aperture7.2mmBlur3439454854535659636464
Depth4615266126718528059291027126813761376
Error7.712.212.416.05.219.415.514.32.41.68.2
ferentobjectdistancesfortheaperturediametersof7.2mm solidlines and15mm dottedlines ,respectively.Theplotindicatesthatthemaximumblurextentsapproach24and50pixelsforthesetwocameraparametersettings.Di-rectioncomputationsgiveblurextentsof39.5and82.4pixels,whichyieldthecameraconstantkof0.61forbothcases.
Fordepthfromdefocusblur,thecameraiscalibratedsuchthatthefocusingrangeis265mmfromthecamera,asdescribedinSec.3.1.Atestpatternwithanidealstepedgeisusedtoobtaintheblurextentsfordifferentdistances.Theobjectisplacedatdistancesof500to1500mmfromthecameraforevery100mmapart.Twoexperimentsarecar-riedoutwiththeaperturediametersof7.2and15mm.ThedepthsarecomputedusingEq. 37 withthefocusingrangep=265mm,andthemaximumblurextentsc =79and163
14001500
pixelsfromfocuscalibration.Table1showstheblurex-tents inpixel ,recovereddepths inmillimeters ,andrela-tiveerrors inpercent intheexperiments.TheresultsarealsoillustratedinFig.10,whichindicatesthatthereisalinearrelationbetweentheactualandestimateddepthsinthedistanceof500to1500mm.
4.2MotionBlur
Fordepthfrommotionanddefocusblur,thecameraisinstalledsothatthemotiondirectionisperpendicularto
the
Fig.9Blurextentsfordifferentobjectdistances focusatFig.10Objectdistanceversusthecomputeddepth;solidanddot-
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
LinandChang:Depthfrommotionanddefocusblur
Fig.11Motionblurredimage.
opticalaxis.Boththecameramotiondirectionsparallelandnonparalleltothetestpatternarecarriedoutintheexperiments.
4.2.1Parallelcameramotion
Inthiscase,thecameramotionisparalleltothetestobject.Thelenspositionofthecameraisadjustedsuchthatthefocusingrangeis900mm.Ablackandwhitepatternisplacedat500,750,1000,1250,and1500mmfromthecamerafordepthrecovery.Foursetsofexperimentswithtwodifferentcameramotionspeeds 115and230mm/s andtwodifferentaperturediameters 0.8and1.8mm areperformed.Thecameraexposuretimeis xedas1/5stoobservedifferentscalesofblurextentsfordifferentcameramotionspeeds.Therestofthecameraparametersaregivenasfollows:focallengthf=9mmandCCDpixelsizes=6.8 m.
Figure11showsanexampleofablurimagecapturedwiththecameramotionspeedof115mm/s,exposuretimeof1/5s,andaperturesizeof0.8mm.Thecorrespondingimageintensitypro leisillustratedinFig.12.Theblurextentsoftheimages,recovereddepths,andabsoluteerrorsrelativetothemeasureddistancesareshowninTables2and3.Thecolumnswithx,z1,z2,e1,ande2representtheblurextent inpixel ,recovereddistance inmillimeter ,andabsoluteerrors inpercent ofdifferentdistancescal-culatedusingEqs. 20 and 27 ,respectively.Oneinterest-ingobservationisthattheresultsgivenbyEq. 20 arevery
Fig.13Experimentalsetupfornonparallelcameramotion.
closetothosegivenbyEq. 27 inmostcases.Thissug-geststhatmotionblurmightdominatetheblurextentintheexperiments.
Anotherfoursetsofexperimentsarecarriedoutusingthe“character”image asshowninFig.7 .Onlytheimagescanlineswithverticaledgesareusedforblurextentesti-mation.Thecameraparametersettingsarethesameasthosedescribedinthepreviousexperiments.TheresultsofdifferentobjectdistancesaretabulatedinTables4and5.Fromtheexperimentalresults,nosigni cantdifferencescanbefoundbetweenthesetwotypesoftestimagepat-terns.Withthe xedcameraexposuretime,theblurextentisapproximatelyproportionaltotherelativemotionspeedasexpected.
4.2.2Nonparallelcameramotion
TheexperimentalsetupforthecameramotiondirectionnonparalleltothetestobjectisshowninFig.13.Theanglebetweentheobjectpatternandthelinearrailis15deg.FoursetsofexperimentswiththesameparametersettingsasdescribedinSec.4.2.1areperformedfordifferentimagepatterns.Thecenteroftheobjectis xedat500,750,1000,1250,and1500mmfordepthrecovery.Duetothenonpar-allelrelativemotionbetweentheobjectandthecamera,the
Table2Depthrecoveryfrommotionanddefocusblur withthe“edge”image .Thecameramotionspeedis115mm/s.
Aperture0.8mm
Distance
mm 50075010001250
x583932
z1527788963
z
2530790964
e1
e2
x
Aperture1.8mmz1491769
z2500773
e1
e2
5.36.1635.05.340
1.70.02.53.1
3.73.630103610423.64.2
27113911448.98.526116311767.05.9
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
“edge”image .Thecameramotionspeedis230mm/s.
Aperture0.8mm
Distance mm 500750100012501500
x11777574640
d1527794
d2531796
e1
e2
x
Aperture1.8mmd1520811
d2524813
e1
e2
Distance mm 500750100012501500
x613931
“edge”image .Thecameramotionspeedis115mm/s.
Aperture0.8mmz1490761949
z2494763950
e1
e2
x
Aperture1.8mmz1492761
z2501766
e1
e2
5.46.31185.96.2
76584639
4.04.88.28.4
2.11.3601.51.739
1.50.21.52.1
107910837.98.3134613597.78.7154615683.14.6
106910736.97.3133013436.47.4157716015.16.7
5.15.028104610534.65.3
25118111875.65.025121112293.11.722137413888.47.521143814764.11.6
Table4Depthrecoveryfrommotionanddefocusblur withthe“character”image .Thecameramotionspeedis115mm/s.
Aperture0.8mm
Distance mm 500750100012501500
x5738
z1542815
z2545816
e1
e2
x
Aperture1.8mmz1540781
z2548785
e1
e2
Table7Depthrecoveryfromnonparallelcameramotion withthe“edge”image .Thecameramotionspeedis230mm/s.
Aperture0.8mm
Distance mm 500750100012501500
x11675574538
z1510797
z2515799
e1
e2
x
Aperture1.8mmz1519777
z2523779
e1
e2
8.39.1578.68.839
8.09.74.24.7
2.02.91156.36.5
76554538
3.74.63.63.9
30103610393.63.928106010686.06.823131513255.26.023131513405.27.219160216256.88.320157516255.08.3
104010444.04.4130613184.55.5156115854.15.7
108310888.38.8133413486.77.8154715713.24.7
Table5Depthrecoveryfrommotionanddefocusblur withthe“character”image .Thecameramotionspeedis230mm/s.
Aperture0.8mm
Distance mm 50075010001250x118755744z1519818
z2524820
e13.99.1
e2
x
Aperture1.8mmz1512809
z2517811
e1
e2
Table8Depthrecoveryfromnonparallelcameramotion withthe“character”image .Thecameramotionspeedis115mm/s.
Aperture0.8mm
Distance mm 50075010001250x5637
z1533803
z2537804
e1
e2
x
Aperture1.8mmz1573803
z2546806
e1
e2
4.71209.38.8
7556452.53.37.98.1
6.67.4557.07.237
7.59.27.07.5
108310888.3108910948.99.4133713507.08.029101510181.51.829103110373.13.724124412530.50.223129113153.35.2136713819.310.5
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
“character”image .Thecameramotionspeedis230mm/s.
Aperture0.8mm
Distance mm 500750100012501500
x10974564537
z1545805
z2549807
e1
e2
x
Aperture1.8mmz1547803
z2551805
e1
e2
Acknowledgment
ThesupportofthisworkinpartbytheNationalScienceCouncilofTaiwanundergrantNSC-93-2218-E-194-024isgratefullyacknowledged.
8.99.81097.47.6
74564436
9.410.27.15.47.5
7.35.88.7
106610716.67.1131113234.95.9160116276.78.5
1054105813441358
References
1.E.TruccoandA.Verri,IntroductoryTechniquesfor3-DComputerVision,PrenticeHall,EnglewoodCliffs,NJ 1998 .
2.M.SubbaraoandG.Surya,“Depthfromdefocus:Aspatialdomain
approach,”put.Vis.13,271–294 Dec.1994 .
3.A.N.RajagopalanandS.Chaudhuri,“Simultaneousdepthrecoveryandimagerestorationfromdefocusedimages,”IEEEComputerVi-sionPatt.Recog.1,348–353 1999 .
4.P.FavaroandS.Soatto,“Ageometricapproachtoshapefromdefo-cus,”IEEETrans.PatternAnal.Mach.Intell.27 3 ,406–417 2005 .5.F.Deschênes,D.Ziou,andP.Fuchs,“Anuni edapproachfora
simultaneousandcooperativeestimationofdefocusblurandspatialshifts,”put.22 1 ,35–57 2004 .
6.A.N.Rajagopalan,S.Chaudhuri,andU.Mudenagudi,“Depthesti-mationandimagerestorationusingdefocusedstereopairs,”IEEETrans.PatternAnal.Mach.Intell.26 11 ,1521–1525 2004 .
7.M.BanhamandA.Katsaggelos,“Digitalimagerestoration,”IEEE
SignalProcess.Mag.14,24–41 Mar.1997 .
8.S.Kang,J.Min,andJ.Paik,“Segmentation-basedspatiallyadaptive
motionblurremovalanditsapplicationtosurveillancesystems,”Intl.Conf.ImageProcess.,pp.245–248 2001 .
9.G.BrostowandI.Essa,“Image-basedmotionblurforstopmotionanimation,”SIGGRAPH01Conf.Proc.,pp.561–566 Aug.2001 .10.M.Ben-EzraandS.Nayar,“Motion-basedmotiondeblurring,”IEEE
Trans.PatternAnal.Mach.Intell.26,689–698 June2004 .
11.H.Y.Lin,“Vehiclespeeddetectionandidenti cationfromasingle
motionblurredimage,”IEEEWACV/MOTION,pp.461–467 2005 .12.D.Slepian,“Restorationofphotographsblurredbyimagemotion,”
BellSyst.Tech.J.46,2353–2362 Dec.1967 .
13.M.Sondhi,“Imagerestoration:Theremovalofspatiallyinvariant
degradations,”Proc.IEEE60,842–853 July1972 .
14.Y.Yitzhaky,I.Mor,ntzman,andN.Kopeika,“Directmethod
forrestorationofmotionblurredimages,”J.Opt.Soc.Am.A15,1512–1519 June1998 .
15.Z.MylesandN.daVitoriaLobo,“Recoveringaf nemotionand
defocusblursimultaneously,”IEEETrans.PatternAnal.Mach.In-tell.20,652–658 June1998 .
16.J.Fox,“Rangefromtranslationalmotionblurring,”IEEEComputer
VisionPatt.Recog.1,360–365 1988 .
17.P.Favaro,M.Burger,andS.Soatto,“Sceneandmotionreconstruc-tionfromdefocusedandmotion-blurredimagesviaanisotropicdif-fusion,”inLect.NotesComput.Sci.3021,257–269 2004 .
i,C.W.Fu,andS.Chang,“Ageneralizeddepthestimation
algorithmwithasingleimage,”IEEETrans.PatternAnal.Mach.Intell.14 4 ,405–411 1992 .
19.N.Asada,H.Fujiwara,andT.Matsuyama,“Edgeanddepthfrom
focus,”put.Vis.26,153–163 Feb.1998 .
wrence,“Aninvestigationofmethodsfordetermin-ingdepthfromfocus,”IEEETrans.PatternAnal.Mach.Intell.15 2 ,97–108 1993 .
21.M.BornandE.Wolf,PrinciplesofOptics,6thed.,PergamonPress,
Oxford,England 1980 .
22.E.Hecht,Optics,4thed.,PearsonEducation,ISBN0805385665
2001 .
23.M.SubbaraoandN.Gurumoorthy,“Depthrecoveryfromblurred
edges,”IEEEComputerVisionPatt.Recog.1,498–503 1988 .24.M.Subbarao,T.Choi,andA.Nikzad,“Focusingtechniques,”Opt.
Eng.32 11 ,2824–2836 Nov.1993 .
25.S.NayarandY.Nakagawa,“Shapefromfocus,”IEEETrans.Pattern
Anal.Mach.Intell.16,824–831 Aug.1994 .
26.A.Pentland,“Anewsensefordepthof eld,”IEEETrans.Pattern
1651168010.112.0
scenedistanceperpendiculartotheimageplaneisnotaconstantfordifferentimageacquisitionpositions.Thus,themotionblurredimageiscapturedwhenthecamerareachesthedepthmeasurementposition i.e.,theplacerightinfrontoftheobject’scenter .
Tables6and7showtheexperimentalresultsusingthe“edge”image,withcameramotionspeedsof115and230mm/s,respectively.Theresultsofthe“character”im-agearetabulatedinTables8and9withtwodifferentcam-eramotionspeeds.Equations 20 and 27 areusedfordepthcomputationwiththeangle =15deg.
FromtheexperimentalresultsshowninTables2–9,mostoftherelativeerrorsarelessthan10%.Theresultssuggestthatthereisalinearrelationbetweenthetruedis-tanceandtherecovereddepth.Basedontheproposedcam-eramodel,theparametersgivenbythedepthrecoveryfor-mulasaretheerrorsources.Inadditiontothepossibleerrorcausedbytheincorrectnessofthecameraparameters,theaccuracyofthemotionspeed controlledbythesteppingmotor andblurextentestimationwillalsoaffectthecor-rectnessofthedepthmeasurement.
5ConclusionandFutureWork
Findingthedistanceofanobjectinasceneisanessentialprobleminmanyapplications.Severalapproachesbasedondifferentvisualcuesobservedfromimageshavebeenpro-posedinthepastfewdecades.Inthiswork,wepresentanovelapproachfordepthrecoveryfromasinglemotionanddefocusblurredimage.Differentfrompreviousdepthfromdefocusapproaches,whichusedatleasttwoblurredimages,ourmethodrequiresonlyasingledefocusedimagetorecoverthedepthofascene.Furthermore,thecalibrationstageforourdepthrecoveryalgorithmismuchsimplercomparedtothegeneraldepthfromfocusapproaches.Itisshownthat,inmostcases,defocusblurcanbeignoredinthepresenceofmotionblur.Infuturework,robustblurparameterestimationformorecomplexsceneswillbede-veloped.Depthmeasurementofoutdoorsceneswillbecar-riedoutbycapturingtheblurredimagesfrommovingob-
One of the essential problems in computer vision is to recover the distance information of an object from captured images. Its application areas range from industrial inspection and reverse engineering to autonomous robot navigation
LinandChang:Depthfrommotionanddefocusblur
Huei-YungLinreceivedhisBSdegreeinappliedmathematicsfromNationalChiaoTungUniversity,Taiwan,andMSandPhDdegreesinelectricalengineeringfromStateUniversityofNewYorkatStonyBrook.In2002hejoinedtheDepartmentofElectricalEngineering,NationalChungChengUniver-sity,Taiwan,asanassistantprofessor.Hiscurrentresearchinterestsincludecomputervision,digitalimageprocessing,andpatternrecognition.HeisamemberoftheIEEE
Chia-HongChangreceivedhisBSdegreeinindustrialeducationfromNationalTaiwanNormalUniversity,Taiwan,andMSdegreeinelectricalengineeringfromNationalChungChengUniversity,Taiwan.Hehasbeenengagingintheresearchareasofcomputervisionandimageprocessing.
and
SPIE.
- 1EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.
- 2EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.
- 3Optical Resonators With Whispering-Gallery applications
- 4Engineering Radial Deformations in Single-Walled
- 5Computer Methods in Applied Mechanics and Engineering
- 6Thermal performance and optical properties of wood–polymer composites
- 7Fast half-pixel motion estimation based on directional search and
- 8DH4512系列霍尔效应实验仪
- 9DH4512系列霍尔效应实验仪
- 10Newton&39;s laws of motion PhO
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Engineering
- December
- Optical
- defocus
- 127201
- motion
- Depth
- 4512
- 2006
- blur
- Huei
- Yung
- 2015-2016第1学期作业3
- 第六单元第二节 昆虫的生殖和发育
- 第四章硅酸盐水泥的原料及配料计算
- 2017中国传媒大学艺术与科学考研辅导班有哪些
- 西南交通大学篮球体育理论考试试题及答案
- 2011年乡镇人大工作报告
- 2.2城市化过程与特点
- 中考复习之三角函数的综合运用
- 成就教育理想 享受职业幸福
- 切削运动、加工表面和切削用量三要素
- 经济社会用水情况调查及工作要求
- 帮助学生戒除网瘾心理的案例
- 怎么快速去除新装修房间的有毒气味
- Answer_Key_to_Unit_1_Never_Say_Goodbye
- 13年春 北航《航空航天概论》在线作业一、二、三
- 第一视频 2013年报
- 《认识人民币》五优教学设计2008(6)
- 人教版五年级语文上册第三单元测试题附答案
- 完美游戏运营培训教材
- 贷后管理办法模板