湖南大学 物理 习题解答
更新时间:2023-03-15 07:38:01 阅读量: 教育文库 文档下载
- 湖南大学推荐度:
- 相关推荐
第14章 稳恒电流的磁场
14.1 充满εr = 2.1电介质的平行板电容器,由于电介质漏电,在3min内漏失一半电量,求电介质的电阻率.
解:设电容器的面积为S,两板间的距离为l,则电介质的电阻为R??l.设t时刻电容S器带电量为q,则电荷面密度为ζ = q/S,两板间的场强为E = ζ/ε =q/εrε0S,电势差为 U = El =ql/εrε0S,介质中的电流强度为
q -q dqU1???q,负号表示电容器上的电荷减少.
S dtR?0?r?微分方程可变为
tdq1??dt,积分得 lnq???C,
?0?r?q?0?r?εr l 设t = 0时,q = qm,则得C = lnqm,因此电介质的电阻率的公式为
t. ???0?rln(qm/q) 当t = 180s时,q = qm/2,电阻率为??180 =1.4×1013(Ω·m). ?128.842?10?2.1?ln2
14.2 有一导线电阻R = 6Ω,其中通有电流,在下列两种情况下,通过总电量都是30C,求导线所产生的热量.
(1)在24s内有稳恒电流通过导线; (2)在24s内电流均匀地减少到零.
解:(1)稳恒电流为 I = q/t = 1.25(A),导线产生的热量为Q = I2Rt = 225(J). (2)电流变化的方程为 i?2.5(1?1t), 24i/A 2.5 I t/s 24 由于在相等的时间内通过的电量是相等的,在i-t图中,在0~24秒
1.25 内,变化电流和稳恒电流直线下的面积是相等的.
在dt时间内导线产生的热量元为dQ = i2Rdt,在24s内导线产生的o 热量为
111Q??iRdt??[2.5(1?t)]2Rdt??2.52?6?24??(1?t)324324002242424=300(J).
0
14.3 已知铜的相对原子质量A = 63.75,质量密度ρ = 8.9×103kg·m-3. (1)技术上为了安全,铜线内电流密度不能超过6A·mm-2,求此时铜线内电子的漂移速度为多少?
(2)求T = 300K时,铜内电子热运动平均速度,它是漂移速度的多少倍?
解:(1)原子质量单位为u = 1.66×10-27(kg),一个铜原子的质量为m = Au = 1.058×10-25(kg), 铜的原子数密度为 n = ρ/m = 8.41×1028(个·m-3),
如果一个铜原子有一个自由电子,n也是自由电子数密度,因此自由电子的电荷密度为ρe = ne = 1.34×1010(C·m-3).铜线内电流密度为δ = 6×106(A·m-2),根据公式δ = ρev,得电子的漂移速度为v = ρe/δ = 4.46×10-4(m·s-1). (2)将导体中的电子当气体分子,称为“电子气”,电子做热运动的平均速度为v?8kT, ?me其中k为玻尔兹曼常数k = 1.38×10-23J·K-1,me是电子的质量me = 9.11×10-31kg,可得 v= 1.076×105(m·s-1),对漂移速度的倍数为v/v = 2.437×108,
可见:电子的漂移速率远小于热运动的速度,其定向运动可认为是附加在热运动基础上的运动. C A I 14.4 通有电流I的导线形状如图所示,图中ACDO是边长为b的正方
b 形.求圆心O处的磁感应强度B = ?
解:电流在O点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨
0?Idl?r0定律:dB?,圆弧上的电流元与到O点的矢径垂直,在O4?r2O a 图14.4 D ?0Idl,由于dl = adφ,积分得
4?a23?/2?Id?3?0I B1??dB1??0. ?L8a4?a0点产生的磁场大小为dB1?OA和OD方向的直线在O点产生的磁场为零.在AC段,电流元在O点产生的磁场为
dB2?由于l = bcot(π - θ) = -bcotθ,所以 dl = bdθ/sin2θ;
?Isin?d?又由于r = b/sin(π - θ) = b/sinθ,可得dB2?0,积分得
4?b?0Idlsin?,
4?r2A l Idl θ r O a Idl b C ?I3?/4?IB2??dB?0?sin?d??0(?cos?)4?b?/24?bL同理可得CD段在O点产生的磁场B3 = B2. O点总磁感应强度为B?B1?B2?B3?3?/4?/22?0I ?8?bD 3?0I2?0I. ?8a4?bZ R Y X 图14.5
14.5 如图所示的载流导线,图中半圆的的半径为R,直线部分伸向无限远处.求圆心O处的磁感应强度B = ? 解:在直线磁场公式B??0I(cos?1?cos?2)中,令θ1 = 0、θ2 = 4?Ro I π/2,或者θ1 = π/2、θ2 = π,就得半无限长导线在端点半径为R的圆周上产生的磁感应强度B??0I.
4?R两无限长半直线在O点产生的磁场方向都向着-Z方向,大小为Bz = μ0I/2πR. 半圆在O处产生的磁场方向沿着-X方向,大小为Bx = μ0I/4R. O点的磁感应强度为B??Bxi?Bzk??场强大小为B?
2Bx?Bz2??0I4Ri??0Ik. 2?RB?0I24??2,与X轴的夹角为??arctanz?arctan.
4?RBx?14.6 如图所示的正方形线圈ABCD,每边长为a,通有电流I.求正方形中心O处的磁感应强度B = ?
A I O D 解:正方形每一边到O点的距离都是a/2,在O点产生的磁场大小相等、方向相同.以AD边为例,利用直线电流的磁场公式: B ?IB?0(cos?1?cos?2),
4?R图14.6 C 令θ1 = π/4、θ2 = 3π/4、R = a/2,AD在O产生的场强为BAD?O点的磁感应强度为B?4BAD?2?0I, 2?a22?0I,方向垂直纸面向里. ?a
14.7 两个共轴圆线圈,每个线圈中的电流强度都是I,半径为R,两个圆心间距离O1O2 = R,试证:O1、O2中点O处附近为均匀磁场. 证:方法一:用二阶导数.一个半径为R的环电流在离圆心为x的轴线上产生的磁感应强度大小为:
2a I x O1RO O2R图14.7
I x ?0IR2. B?223/22(R?x)设两线圈相距为2a,以O点为原点建立坐标,两线圈在x点产生的场强分别为
2[R?(a?x)]2[R?(a?x)]方向相同,总场强为B = B1 + B2.
一个线圈产生的磁场的曲线是凸状,两边各有一个拐点.两个线圈的磁场叠加之后,如果它们相距太近,其曲线就是更高的凸状;如果它们相距太远,其曲线的中间部分就会下凹,与两边的峰之间各有一个拐点.当它们由远而近到最适当的位置时,两个拐点就会在中间重合,这时的磁场最均匀,而拐点处的二阶导数为零.
11设k = μ0IR2/2,则 B?k{2?} 23/2223/2[R?(a?x)][R?(a?x)]对x求一阶导数得
dBa?xa?x,??3k{2?}
dx[R?(a?x)2]5/2[R2?(a?x)2]5/2求二阶导数得
d2BR2?4(a?x)2R2?4(a?x)2??3k{2?2}, 227/227/2dx[R?(a?x)][R?(a?x)]2222
在x = 0处dB/dx = 0,得R = 4a,所以2a = R.
8?0I162x = 0处的场强为B?k2. ?k?23/23[R?(R/2)]55R55R方法二:用二项式展开.将B1展开得
?0IR2?0IR2. B1??2223/2223/22223/22[R?a?2ax?x]2(R?a)[1?(2ax?x)/(R?a)]设k?B1??0IR2223/2, B2??0IR2223/2.
?0IR22(R2?a2)3/22ax?x2?3/2?2ax?x2?3/2,则 B1?k(1?2).同理,B2?k(1?). 222R?aR?a1nx?当x很小时,二项式展开公式为 (1?x)??n将B1和B2按二项式展开,保留二次项,令R2 - 4a2 = 0,即a = R/2,得
n(n?1)2x?.... 1?2B?2k??0IR2(R2?a2)3/2?85?0I,可知:O点附近为均强磁场. 25Ro R
14.8 将半径为R的无限长导体圆柱面,沿轴向割去一宽为h(h< i h o` 图14.8` ?I?ih B?0?0. 2?R2?R方法二:积分法.在导体的截面上建立坐标,x坐标轴平分角α,α = h/R. 电流垂直纸面向外,在圆弧上取一线元ds = Rdθ, 无限长直线电流为dI = ids = iRdθ, ?dI?i在轴线产生的磁感应强度大小为dB?0?0d?, 2?R2?两个分量分别为 y R θ dBx α o x dBy dB ds dBx?dBsin??积分得 ?0i?isin?d?,dBy??dBcos???0cos?d?. 2?2?2???/2?0i2???/2?0iBx?sin?d???cos?2???2?/2???/2?0i[cos(2???/2)?cos(?/2)]?0; 2?2???/2?0i?0i2???/2?0i??[sin(2???/2)?sin(?/2)] By??cos?d???sin??2?2??/22??/2?i?ih??i?02sin?0??0. 2?22?2?RBy的方向沿着y方向.By的大小和方向正是无限长直线电流ih产生的磁感应强度. 14.9在半径为R = 1.0cm的无限长半圆柱形导体面中均匀地通有电流 R I=5.0A,如图所示.求圆柱轴线上任一点的磁感应强度B = ? 解:取导体面的横截面,电流方向垂直纸面向外.半圆的周长为C = πR, 电流线密度为i = I/C = IπR.在半圆上取一线元dl = Rdφ代表无限长直导线的截面,电流元为dI = idl = Idφ/π,在轴线上产生的磁感应强度为 ?dI?Id?dB?0?02,方向与径向垂直.dB的两个分量为 2?R2?RdBx = dBcosφ,dBy = dBsinφ.积分得 ??0I?0IBx??2cos?d??2sin??0, 2?R2?R00?I 图14.9 y φ R dBy dB odBx x ?I?IBy??02sin?d??02(?cos?)2?R2?R0???0?0I. ?2R由对称性也可知Bx = 0,所以磁感应强度B = By = 6.4×10-5(T),方向沿着y正向. 14.10 宽度为a的薄长金属板中通有电流I,电流沿薄板宽度方向均匀分布.求在薄板所在平面内距板的边缘为x的P点处的磁感应强度(如图所示). x P a I 图14.10 解:电流分布在薄板的表面上,单位长度上电流密度,即面电流的线 密度为δ = I/a,以板的下边缘为原点,在薄板上取一宽度为dl的通电导线,电流强度为 dI = δdl,在P点产生磁感应强度为 Px ?0dI?0?dl, dB??2?r2?(x?a?l)dl dI a I 磁场方向垂直纸面向外.由于每根电流产生的磁场方向相同,总磁场l o 为 ????0ln(x?a?l)B??2?2?(x?a?l)0a?0?dla?l?0?0Ialn(1?). 2?ax[讨论]当a趋于零时,薄板就变成直线,因此 ?Iln(1?a/x)?IB?0?0,这就是直线电流产生的磁场强度的公式. 2?xa/x2?x I 14.11 在半径为R的木球上紧密地绕有细导线,相邻线圈可视为相互平行, R O 盖住半个球面,如图所示.设导线中电流为I,总匝数为N,求球心O处的磁感应强度B = ? 图14.11 解:四分之一圆的弧长为C = πR/2,单位弧长上线圈匝数为n = N/C = 2N/πR. 在四分之一圆上取一弧元dl = Rdθ,线圈匝数为dN = ndl = nRdθ,环电流大小为 dI = IdN = nIRdθ.环电流的半径为 y = Rsinθ,离O点的距离为 x = Rcosθ, y 在O点产生的磁感应强度为 2R32方向沿着x的反方向,积分得O点的磁感应强度为 dB??0y2dI??0nIsin2?d???0NIsin2?d?, ?RdB oR θ x ?0NI?/22?0NI?/2?0NI. B?sin?d??(1?cos2?)d????R?2?R4R00 14.12 两个共面的平面带电圆环,其内外半径分别为R1、R2和R3、R4(R1 < R2 < R3 < R4),外面圆环以每秒钟n2转的转速顺时针转动,里面圆环以每称n1转逆时针转动,若两圆环电荷面密度均为ζ,求n1和n2的比值多大时,圆心处的磁感应强度为零. R3 R1 R4 R2 解:半径为r的圆电流在圆心处产生的磁感应强度为B = μ0I/2r. 在半径为R1和R2的环上取一半径为r、宽度为dr的薄环,其面 图14.12 积为dS = 2πrdr,所带的电量为dq = ζdS = 2πζrdr,圆环转动的周期为T1 = 1/n1,形成的电流元为dI = dq/T1 = 2πn1ζrdr. 薄环电流可以当作圆电流,在圆心产生的磁感应强度为dB1 = μ0dI/2r = πμ0n1ζdr, 圆环在圆心产生磁感应强度为B1 = πμ0n1ζ(R2-R1). 同理,半径为R3和R4的圆环在圆心处产生的磁感应强度为B2 = πμ0n2ζ(R4-R3). 由于两环的转动方向相反,在圆心产生的磁感应强度也相反,当它们大小相同时,圆心处的磁感应强度为零,即:πμ0n1ζ(R2-R1) = πμ0n2ζ(R4-R3),
正在阅读:
湖南大学 物理 习题解答03-15
公共管理考试题目12-21
乡村晨曲作文800字06-25
译林版五年级下册5BUnit4seeing - the - doctor第一课时教案01-06
第八册施工质量验收表格04-09
管理信息系统课程设计报告 - 图文03-10
2015年山东省卫生计生系统“针对性普法“题库及答案(卫生计生监督执法人员)05-18
陈娟《绿娃娃》教案07-09
剧本范文02-16
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 湖南大学
- 习题
- 解答
- 物理
- MA均线系统使用方法
- 幼儿园社区活动方案
- 戴维南定理及最大传输定理验证
- 《电机与应用》习题答案思考题与习题及解答1
- 高考生物 基因的自由组合定律复习练习
- 江苏省农委农业项目验收表
- 智能温控风扇毕业设计论文正文终稿 - 图文
- 公路局分局道德讲堂实施方案
- 2015高中语文4.7《儒林外史》课后习题(含解析)新人教版选修《中国小说欣赏》
- 厂房设施验证方案及报告带风险评估
- 晶体光学答案
- 探索直角三角形全等的条件
- 2018江苏奥数夏令营 - 平面几何(教师版)2018年6月25日
- 五年级下册备课笔记 - 图文
- 计算机应用基础试题及答案(填空题100道)
- 1511213单选答案
- 数据结构习题集
- 数据库实验指导书
- 加强特殊群体学生教育的工作总结
- 税务师考题必备(后附答案)(6)