数学故事

更新时间:2024-03-19 12:14:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

小学生数学故事:鲁迅巧对奇联

鲁迅曾在三味书屋拜寿镜吾老先生为师念私塾,寿老先生是一位刚正、质朴、博学的人,不仅教学生读四书五经,还教学生对对子。由于对联讲究对仗,所以在对对中,是很能见出才思之高下的。

一天,寿老先生出了一奇对,上联是:“独角兽”。要求他的学生对出下联.一时引得学生们跃跃欲试,纷纷亮出自己的下联,有:“两头蛇”;“三足蟾”;“九头鸟”;“百足虫”……

寿老先生看了这些下联,都不满意。由于先生上联“独角兽”中的“独”字,是一非数字而又蕴含“单”意的字,所以下联需用一非数字而又蕴含“双”意的字去对,才称得起是对联中的上乘。当寿老先生看到鲁迅对的下联时,不禁大加赞赏。原来鲁迅所对下联是:“比目鱼”。

小学生数学故事:规矩与方圆

我国考古学者曾发掘出公元2世纪汉朝的浮雕像,其中有女娲手执规,伏羲手执矩的图像。在司马迁所写的《史记》中,也提到夏禹治水的时候“左准绳(左手拿着准绳)”,“右规矩(右手拿着规矩)”。在甲骨文里,就发现有规和矩这两个字。其中规字很像一个人手执圆规在画图,矩字像两个直角,可以说极尽象形文字之妙。

“规”,就是圆规,是用来画圆的工具;“矩”很像现在的直角尺,是用来画方形的工具。正如俗话所说:“不以规矩不能成方圆。”

据数学史家考证,人类最早是用树杈来画圆的。这种原始圆规由于半径固定不变,只能画一种大小的圆。因为圆有许多重要的性质,人类很早就认识了圆,使用了圆。

把车轮做成圆形的,是因为圆周上的点到圆心的距离相等,车子行驶起来平稳;还因为圆轮在滚动时摩擦力小,车子走起来省力。

把碗和盆做成圆形的,一方面是圆形物体制作起来比较容易,又没棱没角不易损坏;另一方面是用同样大小的材料作碗,数圆形的碗装东西最多。

把桶盖和下水道盖做成圆形的,是因为圆形的盖子,不管你怎样盖法都不会掉进里面去。而方形和椭圆形的盖子。盖得不合适,就会掉进去。

有的拱形门和屋顶做成半圆形的,是因为圆形拱门抗压能力强。

小学生数学故事:破碎的数

在拉丁文里,分数是来源于“破碎”一词,因此分数也曾被人叫做是“破碎数”。在数的历史上,分数几乎与自然数同样古老,在各个民族最古老的文献里,都能找到有关分数的记载,然而,分数在数学中传播并获得自己的地位,却用了几千年的时间。

在欧洲,这些“破碎数”曾经令人谈虎色变,视为畏途。7世纪时,有个数学家算出了一道8个分数相加的习题,竟被认为是干了一件了不起的大事情。在很长的一段时间里,欧洲数学家在编写算术课本时,不得不把分数的运算法则单独叙述,因为许多学生遇到分数后,就会心灰意懒,不愿意继续学习数学了。直到17世纪,欧洲的许多学校还不得不派最好的教师去讲授分数知识。以致到现在,德国人形容某个人陷入困境时,还常常引用一句古老的谚语,说他“掉进分数里去了”。

一些古希腊数学家干脆不承认分数,把分数叫做“整数的比”。

1

在西方,分数理论的发展出奇地缓慢,直到16世纪,西方的数学家们才对分数有了比较系统的认识。甚至到了17世纪,数学家科克在3/5+7/8+9/10+12/20时,还用分母的乘积8000作为公分母!

而这些知识,我国数学家在2000多年前就都已知道了。我国现在尚能见到最早的一部数学著作,刻在汉朝初期的一批竹简上,名字叫《算数书》。它是1984年初在湖北省江陵县出土的。在这本书里,已经对分数运算作了深入的研究。

稍晚些时候,在我国古代数学名著《九章算术》里,已经在世界上首次系统地研究了分数。书中将分数的加法叫做“合分”,减法叫做“减分”,乘法叫做“乘分”,除法叫做“经分”,并结合大量例题,详细介绍了它们的运算法则,以及分数的通分、约分、化带分数为假分数的方法步骤。尤其令人自豪的是,我国古代数学家发明的这些方法步骤,已与现代的方法步骤大体相同了。

小学生数学故事:读心术的秘密

数学有什么用处呢?枯燥的数字,巧合般的题目设计,似乎和实际生活相距甚远。其实,要让数学发挥用处,限制不在数学本身,而在数学的使用者上。让我们看看,勤于思考,勇于实践的数学使用者们,是如何让数学在生活中处处发挥作用的。

在现在的网络游戏中,有一个“吉普赛人祖传的神奇读心术”。据说它能测算出你的内心感应。游戏是这样的:任意选择一个两位数(或者说,从10~99之间任意选择一个数),把这个数的十位与个位相加,再把任意选择的数减去这个和。

例如:你选的数是23,然后2+3=5,然后23-5=18。在游戏的图表中找出与最后得出的数相应的图形,并把这个图形牢记心中,然后点击网页上的水晶球。你会发现,水晶球所显示出来的图形就是你刚刚心里记下的那个图形。水晶球让你神奇的感应到它是如何来读你的心了!你玩过这个游戏吗?到底是什么原因呢?

原来这实际上是一个数学游戏。当任何一个两位数减去它的各位数字之和的时候,我们注意到个位数字相互消去了。所以实际上是十位数字的10倍减去它的一倍,必然是十位数字的 9倍,也就是说所得的数肯定是9的倍数。

2

证明:设一个两位数十位是X,个位是Y,则此两位数为10X+Y,十位数与个位数之和为X+Y,那么(10X+Y)-(X+Y)=9X。故此数必是9的倍数。所以游戏的图表中,只要将所有9的倍数的对应的图片都放成同一张,那么水晶球只需要显示一个图案就可能了。

类似的数字游戏是很多的,往往使用的数学知识也不复杂。只要遇到之后多分析,多思考,你也会发现这些游戏的小秘密。

小学生数学故事:数学与音乐

音乐是心灵和情感在声音方面的外化,数学是客观事物高度抽象和逻辑思维的产物。那么,“多情”的音乐与“冷酷”的数学也有关系吗?我们的回答是肯定的。甚至可以说音乐与数学是相互渗透,互相促进的。 孔子说的六艺“礼、乐、射、御、书、数”,其中“乐”指音乐,“数”指数学。即孔子就已经把音乐与数学并列在一起。我国的七弦琴(即古琴)取弦长l,7/8,5/6,4/5,3/4,2/3,3/5,1/2,2/5,1/3,1/4.1/5,1/6,1/8得所渭的13个徽位,含纯率的1度至22度,非常自然,足很理想的弦乐器。我国著名古琴家查阜西早就指出,要学好古琴,必须对数学有一定素养。

世界著名波兰作曲家和钢琴家肖邦很注意乐谱的数学规则、形式和结构,有位研究肖邦的专家称肖邦的乐谱“具有乐谱语言的数学特征”。

数学的抽象美,音乐的艺术美.经受了岁月的考验,相互的渗透。如今,有了数学分析和电脑的显示技术,眼睛也可辨别音律,成就是多么激动人心啊!对音乐美更深的奥秘至今还缺乏更合适的数学工具加以探究,还有待于音乐家和数学家今后的合作和努力。

小学生数学故事:乌鸦喝水的秘密

我们知道,长方体的体积等于长乘以宽再乘以高,正方体的体积等于棱长的立方。可是你想过没有,要想知道一只鸡蛋的体积是多少,应该怎么来求?

面对这个问题,你或许会一筹莫展,因为鸡蛋的外形不规则,没有现成的公式可用。

其实,这个问题也很简单。《乌鸦喝水》这篇文章你一定读过。乌鸦发现瓶子里有水,但是瓶口太小,水面又太低,怎么办呢?聪明的乌鸦发现周围有小石子,于是衔来石子,放入瓶中。每放进一块小石子,水面就会上升一次;投进的石子体积越大,水面上升得就越高。这是因为投入的石子有“体积”,要占据一定的空间,于是,它就把与它体积相等的水“挤”上去。也就是说,被“挤”上去的水的体积恰好等于投进石子的体积。 石头的体积难以求出,那是因为它的形状很不规则。如果我们能计算出被它“挤”上去的水的体积,那么事情就好办多了。只要我们用一个长方体器皿,就很容易算出被“挤”出来的水的体积了。

假设这个长方体器皿底面是边长4厘米的正方形,放入石头后水面上升了2厘米,那么,石头的体积是4×4×2=32(立方厘米)。到这里,你一定会高兴地叫起来:“那我也会求鸡蛋的体积了。”

乌鸦的聪明之处,在于它借助小石子,使瓶中的水面上升,从而喝到了它想喝的水。人类的聪明之处,在于从乌鸦喝水想出了“等量代换”的妙计。

小学生数学故事:倒推转化巧拿硬币

3

听说过拿硬币游戏吗?如果没听过,就先来熟悉一下拿硬币游戏的规则吧!拿硬币游戏是一个两个人玩的游戏,要求每个参加者轮流拿走若干硬币,谁拿到最后一枚硬币谁就算赢。下面我们来实际进行一次拿硬币的游戏。

游戏1:桌上放着15枚硬币,两个游戏者(你和你的一位同学)轮流取走若干枚。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得全部15枚硬币。

游戏开始了,你一定在想:有没有能保证你赢的办法呢?若有,这办法又是什么呢?现在你把自己想象成处于即将赢的状态,该你取硬币了,而且桌面上硬币恰好不超过5枚,这时,你可以一次拿走桌上的所有硬币,成为赢者。现在,你能不能从这样的终点状态往前推,找出一个状态,使得只要你的对手处在这一状态,那么无论他拿走几枚硬币,你都会处于理想的获胜状态?不难发现,如果你的对手处于桌面有6枚硬币的状态,那么无论他拿走几枚(从1枚到5枚)硬币,桌上都会剩下至少1枚至多5枚硬币,这样胜利一定属于你。也就是说,谁拿走第(15-6=)9枚硬币,谁将获胜。于是,游戏1获胜情况就与下面游戏2结果相同。 游戏2:桌上放着9枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得15枚硬币。

由对游戏1的倒推分析,我们不难知道,游戏2的获胜情况与下面游戏3结果相同。

游戏3:桌上放着3枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得15枚硬币。

在游戏3中,你只要第一个从桌上拿走3枚硬币便可赢。可见,你要在游戏1中取胜,只要第一个取走桌面上的3枚硬币便一定能赢。

想一想:利用上面的最佳战略方法和你的小朋友做下面的游戏:桌上放30枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取2枚,至多取6枚,谁拿到最后一枚谁就赢得全部30枚硬币。

相信你,准赢。

小学生数学故事:突破习惯思维的束缚

有些问题用我们习惯思维的方式似乎是难以解决的,如果我们能突破常规去思考,就能使思维“豁然开朗”,而使问题迎刃而解。请看下面的例子。

4

图1-1中有9个点,试—笔画出4条直线,把这9个点连接起来(从何处起头都行,直线可以交叉,但不能重合)。

一笔画出4条直线,难以穿过9个点。这是由于我们不易想到将直线延伸到9个点的范围界限之外。如果能突破这种习惯思维方式的束缚,则如图1-2便可一笔画出4条直线使之通过这9个点。

下面我们看这个问题,在一张纸上,挖击一个直径为2厘米的圆(如图17一12),并要让您将一块直径为3厘米的硬币穿过去。你觉得这可能吗?应该怎么做? 答案

我们只需将这张纸沿着圆的一条直径折起来(如图1-3),再将半圆弧ACB拉直成线段ACB(如图1-4),则线段ACB的长为厘米,而>3,故可将直径为3厘米的硬币穿过去。

小学生数学故事:买西瓜的学问

1个大西瓜 vs. 3个小西瓜

去年夏天某日,一个卖西瓜的人在不停地叫喊着:“1个大西瓜10元钱,买3个小的也是10元钱。”这时过来一位细心的顾客,他拿了两种西瓜,目测大西瓜直径约8寸,小西瓜直径约5寸。

5

可是他也犯了难,到底买哪种更合算呢? 让我们来帮帮他吧!

首先,我们从体积上来比一比,球的体积公式是4/3πr3,或1/6πD3。r是半径,D是直径。 求它们体积比时,可省去1/6和π。因此, 大西瓜体积∶3个小西瓜体积之和 =[8×8×8]∶[(5×5×5)×3] =512∶375

由此可见,买3个小西瓜是很吃亏的。 1个大西瓜 vs. 4个小西瓜

那么,假如再多给你一个小西瓜即一共4个,你会买大西瓜还是小西瓜呢?

这时从体积上看两种情况相差不多了。但如果考虑瓜皮的多少,还是买大西瓜合算。这是由于球的表面积公式为πD2,所以,

大西瓜的表面积∶4个小西瓜的表面积之和 =[π×8×8]∶[(π×5×5)×4] =64∶100

由此可知,4个小西瓜合在一起的瓜皮,几乎比大西瓜的瓜皮多一倍。所以综合起来考虑,还是买一个大西瓜合算。

小学生数学故事:最小公倍数在生活中的应用

以前,小明一直以为学了最小公倍数这种知识枯燥无味,整天和求几和几的最小公倍数这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。然而,有一件事却改变了他的看法。

有一天小明和爸爸一起乘公共汽车去青少年宫。他们俩坐的是3号车,快要出发的时候,1号车正好和他们同时出发,此时爸爸看着这两辆车,突然笑着对他说:“小明,爸爸出个问题考考你,好不好?”

小明胸有成竹地回答道:“行!”“那你听好了,如果1号车每3分钟发车一次,3号车每5分钟发车一次。这两辆车至少再过多少分钟后又能出发呢?”稍停片刻,小明说:“爸爸你出的这道题不能解答。”爸爸疑惑不解的看着他:“哦,是吗?”“这道题还缺一个条件:1号车和3号车起点是同一个地方。”

爸爸听了他的话,恍然大悟地拍了一下脑袋,笑着说:“我也有糊涂的时候,出题不够严密,还是小明想得周全。”小明和爸爸开心地哈哈大笑起来,此时爸爸说:“好,现在假设在同一个起点站,你说有什么方法来解答?”小明想了想脱口而出“15分钟,因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3×5=15)所以15就是它们的最小公倍数。也就是这两辆车至少再过15分钟同时出发。”爸爸听了夸奖道:“答案正确!100分。”“耶!”听了爸爸的话,小明高兴地举起双手。 从这件事中小明就懂得了一个道理:数学知识在生活中无处不在。

6

小学生数学故事:生活中的长方体和正方体

长方体和正方体在我们四周随处可见,而它们的表面积也运用得十分广泛。如,在你家里地上铺地砖、木地板,在墙上刷的白漆,用玻璃做一个长方体的大鱼缸等等,都需要用上长方体、正方体的表面积。可是,在生活中该如何运用长方体和正方体的知识呢?

大家恐怕都知道,长方体表面积是“长×宽×2+宽×高×2+长×高×2”,正方体表面积是“棱长×棱长×6”。但是在生活中可不能就这样生搬硬套,因为书上告诉你的是一般情况,生活中不是这样,有时,可能不用六个面全算。比如,让你给教室刷漆,人们常识性的只会刷上、左右、前后五个面,而你把公式套上去后,就可能连地面也给刷了,这个要注意。下面还有一个实例。

健身中心新建一个游泳池,该游泳池的长50m,宽20m,深2.5m(也就是公式中所说的高),现在让你贴上瓷砖,需要多少瓷砖?

首先,咱们得分析这道题,当然,最好的方法是联系生活实际,展开想象。既然是游泳池,肯定要求底面积,那就用长×宽求得底面积,大家可能会奇怪,为什么不铺上面呢?因为上面是水,铺上的话就不叫游泳池了。四周肯定也要铺,用宽×高×2+长×高×2就得出需要铺多少平方米的地砖了。

所以,其最终结果是1625平方米的地砖。还要注意地砖和游泳池面积的平方米是否一致,不一致还要换算单位。所以说,在解决实际问题时,正方体和长方体的表面积公式只是“半成品”,这其中的很多情况是需要你仔细思考的。

小学生数学故事:涂色的正方体

通过学习,大家知道什么是长方体和正方体的表面积,也知道了怎么求表面积。不过下面的问题不是和求面积相关的,我们换个角度来考考你对正方体的认识。

一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。在这些小正方体中: (1)三个面涂有红色的有多少个? (2)两个面涂有红色的有多少个? (3)一个面涂有红色的有多少个? (4)六个面都没有涂色的有多少个? 下面我们结合图示,分别来看看这几个问题。

(1)三个面都涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

7

(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面都涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法: 1. 1000-8-96-384=512(个); 2. 8×8×8=512(个)。

8

小学生数学故事:失踪的正方形

同学们一定看过刘谦表演的魔术,今天老师也给你们表演一个数学小魔术。请同学们一起参与进来。 在一张正方形纸板上,按图一画上7×7=49个小正方形,然后沿图示直线剪切成5个小块。当你按照图二将这5小块纸板重新拼起的时候,你会发现不可思议的事情发生了:中间居然出现了一个洞!图一的正方形是由49个小正方形组成的。图二中却只有48个小正方形。哪一个小正方形没有了?它到哪儿去了?

魔术揭秘:

原来5个小块图形中最大的两块2和3对换了一下位置以后,被那条对角线切开的每个小正方形都变得高比宽大了一点点。这就意味着这个大正方形已经不再是严格的正方形,它的高增加了,从而使得面积增加了,所增加的面积恰好等于这个方洞的面积。

小学生数学故事:生活中的几何图形

曾经以为生活是一根线段,简捷而单调,两个端点就是家和学校。每天清晨,在紧张的自行车铃声中,背着书包,跨进学校的大门,开始了一天的学习旅程;傍晚,伴随着“回家”的萨克斯乐声,我收拾起零乱的文具,背着越发沉重的书包回家。

随着年龄的增大,我逐渐知道了:生活其实是个多边形,复杂而又丰富。

果园里,灿烂的桃花,娇艳的杏花,雪白的梨花下,不时传来银铃般的欢笑声,我们的身影与花相映,人比花娇,花比人艳。恩,生活是个三角形!

书城里,我努力搜寻着自己的目标,那一部部长方形的“大块头”都是我的挚爱。啊,生活还是个四边形! 田野里,和朋友们一起嬉戏,捉蝴蝶,听虫鸣,赏花开……这时,我忽然感到:生活是五角形、六边形…… 在这么多形状中,我最喜欢圆形。

圆,所有图形中最美的图形,最富有创造性,最富有人情味,最富有诗意的图形。

9

我追求完美。什么事都要求尽善尽美,就像圆一样。所有学科我都要争做第一,语、数、外,理所当然,甚至就连女孩子们最怕的体育我也要一争高下。

我富于想象、创造。每一道数学思考题我都想别出心裁,都想得出与老师不一样的解决方法,就像圆一样,一个圆心,无数的半径。因为只有不停地想象,不断地创新,我们的未来才更宽广!

我广交朋友。“手拉手”的小伙伴,我有一大堆。陕西、昆明,都有我的朋友,每到属于我们的节日,我们都会给对方一份真挚的祝福,即使远在天涯海角。“海内存知己,天涯若比邻”,就像圆心与圆上的点一样,心心相印。

“但愿人长久,千里共婵娟”,人们祈盼团圆,追求团圆;“人有悲欢离合,月有阴晴圆缺,此事古难全。”人不可能事事圆满,就像圆心是固定的,而半径是无穷的,是要我们自己去努力拓展的。

让我们用无限的半径去画出属于我们自己的圆吧!朋友,相信你一定能成功!

小学生数学故事:充满数学的旅途

爸爸和聪聪一块到一个城市旅游,他们来到长途汽车站。车出站没多久,就已经通过9公里指示牌。爸爸指一指那匆匆后移的计程牌对聪聪说:“在你已经看到的1,2,…,9这9个数字中,任取8个随意排列都可组成一个8位数。在这许许多多8位数中,有些能被12整除,有些则不能。你能在所有那些可被12整除的8位数中写出最大的和最小的吗?”

聪聪起初感到无从下手,但冷静一想,只用了一些算术知识就解决了。下面我们一块来看看聪聪的解决思路吧。

聪聪注意到以下4件事:第一,数被12整除的条件是它既被3整除,也被4整除;第二,数被3整除的条件是:它的各位数字之和被3整除;第三,数被4整除的条件是它的十位和个位所成的两位数被4整除;第四,在1,2,…,9这9个数码中取定几个用种种次序排列而组成的多位数,要求这个多位数最大,则大的数字应尽可能放在高位;反之,要求这个多位数最小,则小的数字应尽可能放高位。

由于 1,2,…,9这9个数字之和是45,弃去3,6或9以后所剩8个数字之和都可被3整除。于是,弃去最小的3,再从大到小排列并调整最后两位的位置,使之所成的两位数能被4整除,即得符合爸爸要求的最大的8位数98765412。类似地,弃去9再从小到大排列并使最后两位所成的两位数能被4整除,得到最小的12345768。

小学生数学故事:戏说颠倒

浙江有两个县,一个是观钱塘潮的胜地海宁,另一个则是距离它不远的宁海。它们名称中的两个汉字正好互相颠倒!这种现象在外国地名中恐怕是绝无仅有的。其实中国这种现象还不是个别的,比如西安-安西(甘肃西部),武宁(江西)-宁武(山西),子长(陕西)-长子(山西),丰南(河北)-南丰(江西,有特产南丰蜜桔)。在我国几千个县里,类似这样的例子还不少。

不少书法爱好者知道汉字里有“颠倒十三太保”的说法。原来,有13个常用字,把它们上下颠倒过来看,仍然是一个汉字,有些甚至和原来的字一模一样。这13个字就是:一,十,中,田,王,由,甲,口,日,士,干,非,車。它们的形状是完全对称的。当然如果你把“車”写成简体的“车”,一颠倒,就不是什么字了。 由此联想到现在全世界通用的阿拉伯数字,其中也可以分为三类:

10

第一类是上下颠倒后保持原状的,它们是:0,1,8。 第二类是上下颠倒后互相转换的,例如:6和9。 第三类是颠倒后,面目全非的,例如2,3,4,5,7。

另外,许多画家对颠倒头像也十分感兴趣,常有名作问世。下面是一个愁眉苦脸的男人,大概遇到什么不开心的事。不过你不用替他着急,只要把图形颠倒过来一看,他又变得眉开眼笑了。与颠倒图形相比,转成直角的风景或动物插图更难构思。下面的另一幅图片就是一幅名作,叫“鸭变兔”。你把图片顺时针转90°看看?

小学生数学故事:十五的诀窍

当一个农村集市开张时,除了耕牛,所有的人都很兴奋。

今年,王财主开办了一个叫“十五”的新游戏,他说:“村民们请留步,游戏的规则非常简单。我们只是把硬币放在这些1至9的数字上,谁先放都无所谓。你们放铜币,我放银币。谁先放了三个相加等于15的不同数字,谁就可得到案子上所有的钱。”

让我们看一个典型的玩法。一位妇人先把一枚铜币放在7上。由于7已被放上,其他人就不能再放了。对其它数字也是如此。王财主把一枚银币放在8上。妇人下一次将把铜币放在2上,这样再放一次6,三个数字相加为15,就可以赢了。但王财主把一枚银币放在6上,破坏了她的打算。下一次他放在1上就可以赢了。妇人看出了这一威胁,先把一枚铜币放在1上破坏王财主的赢势。王财主将下一枚银币放在4上时暗自得意。妇人看到他下一次放在5上就会赢,还得再破坏他。于是她把铜币放在5上。但王财主放在3上也赢了。因为8+4+3=15。可怜的妇人输掉了4个硬币。

镇长先生觉得这个游戏很有意思。经过长时间的观察,他断定王财主利用了一种秘密系统,使他不可能输,除非他想输。

解决此游戏的诀窍在于认识到这在数学上等同于划井游戏。为欣赏这一魔方的奇妙.让我们列出三个不同数字(除0外)相加等于l5的表,一共有8组: 1+5+9=15 1+6+8=15 2+4+9=15

11

2+5+8=15 2+6+7=15 3+4+8=15 3+5+7=15 4+5+6=15

现在仔细观察独特的3—3数字魔方: 2 9 4 7 5 3 6 1 8

注意共有8行:3组横行,3组纵行,2组斜行。每一行确定的3组数字之和均为15。因此,每一个赢的组合都是魔方中的一横、一纵或一斜行。现在很容易看出,每次游艺比赛实际上相当于划井游戏,谁先把自己的棋子占满一横、一纵或一斜行,谁就取胜。

在进行15游戏时,如果玩得正确就不会输。如果两个对手都玩得正确,则游戏结果就是平局。然而设盘者的对手由于不知道是在玩划井游戏,因而处于十分不利的地位。这就使设盘者很容易设置对己有利的骗局。 比如:

小学生数学故事:伸手指说数

下课了,同学们经常会玩一种伸手指说数的游戏。这种游戏规则是这样的:两人各伸出一只手,一只手只有5个指头,任意出几个指头。一边出手,一边说数,如果谁说的数正好等于两个人伸出的指头数的和,谁就

12

算赢。有人认为,这完全没有规律,赢都是靠运气,双方赢的机会相同。其实,仔细分析,其中还和学过的数学知识密切相关呢。

下面先分析甲出0时的情况,乙可能出0、1、2、3、4、5,和就是乙出的手指数;

甲出1时,乙可能出0、1、2、3、4、5中的任意一个,出不同的手指,和也不同,最后的和是乙每次出的手指数加1。

甲乙两人手指的组合形式,还有以下24种:

甲出2,乙出0、1、2、3、4、5,和是2、3、4、5、6、7; 甲出3,乙出0、1、2、3、4、5,和是3、4、5、6、7、8; 甲出4,乙出0、1、2、3、4、5,和是4、5、6、7、8、9; 甲出5,乙出0、1、2、3、4、5,和是5、6、7、8、9、10。

从上面我们可以看出,在这些组合中,指头和为0、10的情况各一种;和为1、9的各两种;和为2、8的各3种;和为3、7的各4种;和为4、6的各5种,和为5的共6种。可见,和为5的组合最多,也就是说,说5赢的机会相对较多。因为不管对方出几个指头,你都可以和它凑成和为5。除此之外说别的数则不然,比如说2,对方要出2个以上指头,你怎么出也不行;再如说8,对方要出8个以下指头,你怎么也无济于事。 你看,数学到处都有,只要你留心,在你的身边处处都可以用到数学知识。

小学生数学故事:丢番图 vs 齐天大圣

话说唐三藏四人从西天取经回来后,孙悟空就过着山大王的日子。有一天,悟空觉得非常无聊就出去玩,路过一个墓园,忽然听有个人在叫他,就连忙回头,他看见一个长着翅膀的老人便问:“您是谁?为什么叫我?”老人回答道:“我是希腊数学家丢番图,我是上帝的信使,大圣可知我有多少岁吗?你要能答出来,我就带你去见上帝!”孙悟空听了高兴得不得了,便说:“好啊,好啊,俺老孙出世五百多年了还从没见过上帝呢!好吧,出题吧!”话音刚落,他们一下来到了丢番图的墓碑前,上面写道:他生命的六分之一是幸福的童年;再活十二分之一,唇上长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了父亲全部年龄的一半;儿子死后,他在极度悲痛活了四年,也与世长辞了。 同学们,这是一道刻在墓碑上的难题,许多年来吸引了不少数学爱好者,你们也来算一算吧! 答案:

方法一: 丢番图寿84岁。由题意,他的岁数应是6、12、7、2的公倍数,而这些数的最小公倍数是84,因为人的年龄目前没有达到168岁的,所以他的岁数是84岁。

方法二:设丢番图寿X岁。列方程:X/6+X/7+X/12+5+X/2+4=X 解得:X=84 方法三:(5+4)/(1-1/6-1/7-1/12-1/2)=84 巧解分数加法

一道计算题:1/2+1/4+1/8+1/16+1/32+1/64+1/128,你会怎么来做呢?

13

答案:

一般解法:先将算式中的每个加数通分,然后根据同分母分数加法的计算法则进行计算:1/2+1/4+1/8+1/16+1/32+1/64+1/128=64/128+32/128+16/128+8/128+4/128+2/128+1/128=127/128。可这种算法太麻烦了,有没有其它简便点的方法呢?

巧妙的解法:在算式的后面加上1 /128,则1 /128+1 /128=1/64,1/64+1/64=1/32,1/32+1/32=1/16,1/16+1/16=1/8,1/8+1/8=1/4,1/4+1/4=1/2,1/2+1/2=1,即最终的结果为1,所以原式等于1减1/128的差,即127/128。

小学生数学故事:乐乐球里的数学

小舒看电视里做的乐乐球的广告,觉得乐乐球挺有意思,就跟爸爸妈妈说,她想要玩乐乐球。

星期天,爸爸带小舒到玩具店买回了乐乐球。回到家,她急忙打开塑料袋,拿出来玩。可拿出记分卡后,她愣住了。心里想:“这怎么记分呀?”只见记分袋里装的是写着这样一些数的8张卡片:1、2、2、5、10、10、20、50。小舒急得喊:“爸爸,快来呀。”“干什么?”爸爸说着走过来。小舒指着卡片说:“你看这怎么记分呀?一次得1分,可就这么几张卡片也不够啊,是不是这袋子里装错了?我们快去商店换吧。”爸爸不紧不慢地说:“没有错,可以记的,你再仔细看看动动脑筋。”

小舒皱起眉头,把8张卡片放在桌子上,看着,一会儿又动手摆了起来。突然眼睛一亮:“对了,爸爸我知道了。”小舒说:“你看,得1分时用1,得2分时把1拿回换上2,得3分时再加上1,得4分时拿回1,换上2,…… 这样用这8张卡片可以记100以内的所有分数,真有意思。”小舒高兴了。爸爸说:“那我考考你,48分怎么记?”小舒拿起1张写着20的卡片,又拿起2张写着10的卡片,说:“这就是40。”说完又拿起写着数字5、2、1的3张卡片说:“这些放在一起不就是48了吗。”爸爸笑了。

小学生数学故事:巧用抽屉原理

任意5个不相同的自然数,其中最少有两个数的差是4的倍数,这是为什么? 答案:

一个自然数除以4有两种情况:一是整除为0,二是有余数1、2、3.如果有2个自然数除以4的余数相同,那么这两个自然数的差就是4的倍数。

把0、1、2、3这四种情况看作4个抽屉,把5个不同自然数看作5个苹果,必定有一个抽屉里至少有2个数,而这两个数的余数是相同的,它们的差一定是4的倍数。所以任意5个不相同的自然数,其中至少有两个数的差是4的倍数。

小学生数学故事:四则运算猜英语单词

下面这则别开生面的算术游戏在我国几乎从未见过,它是本书作者从英国人所写的教科书中选出来的,但它完全可以移植到我国。语、数、外历来在中小学里被视为主课,但大都是“各家自扫门前雪”,老死不相往

14

来。英国作家亨德逊异想天开,用袖珍计算器来做四则运算,从而认识并记住英文单词。计算器大家都会用,下面我们来看看怎么把四则运算和英语联系起来的吧! 1)3.0079-2.2345(猜一个常用的问候语。)

答案是,把它旋转180°再看,便是hello了。

2)500×11-162(猜一种昆虫。)

做法同上类似,先运算出结果,相应的单词为BEES。

3)309380÷4(猜一样在海滩上能拾到的东西。) 你知道这个是什么单词么? 答案:

ShELL,shell 贝壳。

小学生数学故事:巧用连比解题

我们学习完了比的应用,在解答比的应用题时,应先读懂题目中的前项和后项分别代表什么,这样才能确解题正确。我们还学习了连比,可以将两个不同的比合二为一。如甲:乙=3:4,乙:丙=7:9,那么 甲:乙:丙 3:4 7:9 ────— 21:28:36

连比对应用题也有很大作用。这里来考考大家,看看你是否掌握了连比的应用?

小明与小丽的书籍数量之比为1:2,小华的书籍是小明的1/3还多3本。小华、小明、小丽书籍之和为43本,他们各有多少本书? 答案:

从题目中,可以知道“小华的书籍是小明的1/3还多3本”。如果我们把总本数去掉小华多的3本,那么小华的书籍是小明的1/3,这句话也可以说成小华的书籍与小明书籍的比是1:3。所以 小华:小明:小丽 1:3 1:2

----------------

15

1:3:6

40本图书正好共分成(3+1+6)份,用(43—3)÷(3+1+6)=4本,求的是1份的本数。再根据连比,小明有3份,用4×3=12(本);小华有1份还多3本,用4×1+3=7(本);小丽有6份用4×6=24(本)。 是不是看上去很复杂,但通过将分数与比转化,然后应用连比的知识就能很快解答了呢?有时候把题目中的“拌脚石”拿开之后,再去还原,这样就可以快速正确地解答出题目了。

小学生数学故事:二战中的数学

理智避开德军潜艇

1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击。当时,英美两国实力受限,又无力增派更多的护航舰艇。一时间,德军的“潜艇战”搞得盟军焦头烂额。为此,一位美国海军将领专门去请教了几位数学家。数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律:一定数量的船编队规模越小,编次就越多;编次越多,与敌人相遇的概率就越大。美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口,结果盟军舰队遭袭被击沉的概率由原来的25%下降为1%,大大减少了损失。 算准深水炸弹的爆炸深度

二战期间,英美运输船队在大西洋航行时经常受到德军潜艇的袭击。英国空军经常派出轰炸机利用深水炸弹对德军潜艇实施打击,但轰炸效果总不理想。为此,英军请来一些数学家专门研究这一问题。结果发现,潜艇从发现英军飞机开始下潜到深水炸弹爆炸为止,只下潜了7.6米,而英军飞机的深水炸弹却已下沉到21米处爆炸,从而对潜艇的毁伤效果低下。经过科学论证,英军果断调整了深水炸弹的引信,爆炸深度由21米调整到9.1米,结果轰炸效果提高了4倍,德军还以为英军有了什么新式武器。

小学生数学故事:疯狂的艺术家

有一位疯狂的艺术家为了寻找灵感,把一张厚为0.1毫米的很大很大的纸对半撕开,重叠起来,然后再撕成两半再重叠。假设他如此重复这一过程,撕了25次,这叠纸将会有多厚?下面有四个答案,你觉得哪个更接近?

A. 像山一样高 B. 像一栋高楼一样高 C. 像一个人一样高 D. 像一本书那么厚 答案解析:

答案是:A。因为每撕一次,这叠纸的厚度就增加一倍。撕25次后纸的厚度相当于2×2×2……×2(25个2相乘),厚度约等于3355米,相当于一座大山的高度。当然这只是一个假设的情况,没人能把一张纸撕成这样的。

小学生数学故事:周总理妙用“一”字

生活中出处充满数学的趣味,在这里济南奥数网小编为大家整理了一些小学生数学故事,希望济南的家长和孩子能在快乐中了解数学,爱上数学。 小学生数学故事:周总理妙用“一”字

“一”字虽极为普遍,但其所表达的意境却出神入化。绘景、抒情、警示、评说无所不用。

16

1960年,周总理在观赏京剧《霸王别姬》时,利用“一”字对项羽这个人物作了精辟的评论。

当演到项羽不听劝阻,决意出战刘邦时,他说:“一言堂”;项羽回宫,虞姬继续规劝仍不听,他说:“一家之言”;项羽孤军深入刘邦设下的埋伏圈时,他说:“一意孤行”;项羽终于被困垓下,他说:“一筹莫展”;虞姬备酒宽慰,项羽悲歌“力拔山兮”时,他说:“一曲挽歌”;最后四面楚歌.虞姬自刎,他说:“一败涂地”。

这里六个“一”概括了项羽失败的全过程,批评了项羽的“孤家寡人”策略,显示了周总理的精辟见识和幽默风格。

小学生数学故事:重叠之美与数学

有重叠的地方往往就有美。中国民族风俗很讲究成双结对,文学里也有“双声”、“叠韵”等说法。在号称“人间天堂”的杭州,就有这样两副对联。其中之一是: 翠翠红红处处莺莺燕燕, 风风雨雨年年暮暮朝朝。

另一处则见于孤山中山公园的一座方亭,横匾题着“西湖天下景”五个大字,亭柱上悬挂一副楹联: 山山水水,处处明明秀秀; 晴晴雨雨,时时好好奇奇。

西湖的山山水水,处处明媚秀丽。这两幅对联写出了人们对杭州与西湖山水的共同感受,让人引起共鸣。不过对联的叠字毕竟有限,我们能否把重叠之美推向无限?这就得借助数学的力量了。出发点极其简单:3×4=12。

接下去可以写出第二式:33×34=1122。

重叠之美开始露头了,我们可以接下去看看第三式、第四式:333×334=111222;3333×3334=11112222。

当然重叠之美不限于此,只要你多留意,将来能够欣赏到更多的“数学之美”。

小学生数学故事:两个统计小故事

这两个故事都发生在二战期间,并且都是盟军方面机智的统计学家,数学在二战期间充当了十分重要的角色,今天说的是统计。

第一个故事发生在英国,二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期地对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。

为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是求助于统计学家。统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一

17

张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家很肯定地说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。 第二个故事与德国坦克有关。我们知道德国的坦克战在二战前期占了很多便宜,直到后来,苏联的坦克才能和德国坦克一拼高下,坦克数量作为德军的主要作战力量的数据是盟军非常希望获得的情报,有很多盟军特工的任务就是窃取德军坦克总量情报。然而根据战后所获得的数据,真正可靠的情报不是来源于盟军特工,而是统计学家。

统计学家做了什么事情呢?这和德军制造坦克的惯例有关,德军坦克在出厂之后按生产的先后顺序编号,1,2,…,N,这是一个十分古板的传统,正是因为这个传统,德军送给了盟军统计学家需要的数据。盟军在战争中缴获了德军的一些坦克并且获取了这些坦克的编号,现在统计学家需要在这些编号的基础上估计N,也就是德军的坦克总量,而这通过一定的统计工具就可以实现。

小学生数学故事:0和它的数字兄弟

有一天,森林里面来了一群特殊的“客人”。它们长相很特别,动物们都很奇怪,要求他们一一介绍自己。第一个走出来一个瘦子,它说:“我是1,像支铅笔细又长”。接着又走出一个说:“我是2,像只小鸭水上飘。”第三个说“我是3,像只耳朵听声音。”“我是4,像面小旗随风飘。”“我是5,像支衣钩挂衣帽。”“我是6,像棵豆芽咧嘴笑。”“我是7,像把镰刀割青草。”“我是8,像支麻花拧一道。”“我是9,像把勺子能盛饭。”“我是0,像个鸡蛋做蛋糕。”他们刚介绍完了,小鹿又问道”你们中间谁最大?谁最小呢?”9站出来,很骄傲地说“我是9,我最大。” 0耷拉着脑袋说“我最小。”“对,就是这个表示什么都没有的0。”9用冷淡的口气说道。9刚说完,动物们和它的数字兄弟都笑了。0更加不好意思了,动物们看到0这么没有用,都不愿意和它一起玩。它们在一起唱呀!跳呀!非常开心。

突然一只大象不小心掉进一个洞里面,洞很深,又很黑,大象在里面挣扎了很久,用了很大的力气总想爬上来,它爬呀爬累得满头大汗,腿也挂破了,鲜血直流。可是,怎么也爬不上来,它只好在里面大声喊“救命呀!救命呀!”动物们听到了,就纷纷跑到洞口边,想把大象救出来。数字1到9也来帮忙了。他们组成最大的数字987654321,显示了最大的力量,但是他们费了九牛二虎之力,也没有把大象拉上来。这个时候,只听见后面有一个微弱的声音说道“我也来试试。”它们一看是0,就勉强的同意它也来帮忙。它们重新组成数字9876543210,它们的力量一下子就增大10倍。哈哈……,一下子就把大象拉上来了。动物们都很感谢数字兄弟,同时也为冷落了0感到愧疚,它们都来到0的身边,愿意和0做朋友。数字兄弟也开始重视0了,愿意和它一起玩耍。

从此以后,0再也不自卑了,它觉得自己还是很有用的。

小学生数学故事:动物会认识数字吗?

100年前,德国有一匹马,叫汉斯。它就很厉害,它的数学水平让全欧洲的人震惊。它会的数学题可多了,比如说12减3等于几?它还会分数的加法减法,它还会因数分解呢?(因数分解是五年级下册的内容。) 后来,人们发现,如果它的主人不在,它就不会了,原来是聪明的小马汉斯其实并不识数,但是它会看人的眼色和表情。值得一提的是,它的主人也是位数学老师哦。于是,人们很失望,大家觉得,动物并不认识数。但是100年过去了,人们对动物有了新的认识,于是,科学家进行了研究,啊,果然有了新发现。

18

科学家们先试验动物会不会比较两个数的大小,和人比,代表动物王国出场的是猴子,看电脑画面上的两堆物体哪堆多。结果科学家发现,学生和猴子的水平差不多,两个数差得比较多的时候,反应比较快,差得少的时候,就慢多了。比如说,10和5反应快,10和9就慢多了。

不光是猴子这样的高等动物,连小娃娃鱼这样的爬行动物都可以成功地区分开差别较大的两个数。比如说,装有8只和16只果蝇的管子,娃娃鱼不能区分开装有3只和4只、4只和6只、8只和12只的管子。科学家发现,要想让小娃娃鱼辨别两个较大的数,较大的那个应该至少是较小那个的两倍,比如说5和6分不清,但5和10就能分得清楚了。

不过,当数字小于等于3的时候,上面的结论就不适用了。小娃娃鱼可以区分开装有2个和3个果蝇的管子,以及装有1个和2个果蝇的管子。所以,我们的结论是,在辨别两个较小数字的大小方面,人类和动物的水平是类似的,即辨别两个较小数字的大小的能力都比较强,而数字比较大的时候,就要相差得多一些。 人的数学能力,毫无疑问要比动物强得多,这是怎么来的呢?就要归功于学习了,是学习和思考带给了人类强大的数学能力。所以,请热爱学习吧。 那么动物为什么要认识数呢? 参考答案:

动物们之所以在进化过程中需要识数技能,是因为识数能力可以帮助绝大多数的动物更有效地获得食物。觅食的时候,动物们必须持续地判断哪棵树上的果实最丰硕,哪朵花里的蜜汁最充盈。

动物会识数还有其他的隐性的好处。有一个很有说服力的实验是这样的,加州大学的布鲁斯·里昂发现,孵蛋之前,雌性美洲黑鸭看上去会对窝里的蛋进行察数,以区别哪些是自己产的蛋,哪些是其它鸟类偷偷在此产的蛋,从而确定是否应该扩大自己的孵蛋范围。

小学生数学故事:巧查脚印破命案

巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与著名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。下面这则故事就是出自—位导游之口。

古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。

某日黄昏,怪人的四位互不相识的朋友阿列克赛、巴顿、克林、杜邦,几乎在同一时间先后来访。他们发现怪人已经被人杀害了,房间里面看起来很恐怖。当下四人大惊失色,争先恐后地拼命逃走。从脏乱不堪的狭

19

窄楼梯(一次只能通过一人)跑下来,阿列克赛一步下2级台阶,巴顿一步下3级台阶,克林一步下4级台阶,而杜邦的本事最大,竟然一步能下5级台阶。

出事以后,侠盗亚森罗宾乔装成一名体面的上流社会绅士,自告奋勇地前来侦破此案。他发现,同时印下四个人脚印的台阶仅在最高处和最低处。

为了追查凶手,脚印混乱了就不好办,于是亚森罗宾特别重视只留有一个人脚印的台阶。后来的结果充分证明他的看法是正确无误的,最后终于抓获凶手,把他绳之以法。

现在要问你的是,通向钟楼的木楼梯上有多少级台阶只印下了一个人(不管是谁的)的脚印? (答案)

由于4的倍数肯定是2的倍数,所以克林的情况可以不必考虑,这就省掉了一个人,2,3,4,5的最小公倍数是60,而60又小于100,所以钟楼的木楼梯共有60级台阶。

阿列克赛的脚印落在第2,4,6,8,l0,12,…,58,60级台阶上,但应排除2×3及其倍数的各级阶梯;同理,还需要排除4的倍数的各级阶梯和5的倍数的各级阶梯。于是剩下第2,14,22,26,34,38,46,58共八级。其一般形式为2×p(其中p=1,以及除去2、3、5以外的素数)。

巴顿的脚印落在第3,6,9,12,…,60级阶梯上,但应排除混有别人脚印的第6,12,15,18,……级阶梯,剩下第3,9,2l,27,33,39,51,57,共八级。

前面已经说过克林的情况可以不考虑了,最后再来看一下杜邦的情况。很明显,只留下他一个人脚印的阶梯是第5,25,35,55级,共四级。 所以,问题的答案是8+8+4=20级。

小学生数学故事:孙悟空喝牛奶

唐僧师徒四人走在无边无际的沙漠上,他们又饿又累,猪八戒想:如果有一顿美餐该有多好啊!孙悟空可没有八戒那么贪心,悟空只想喝一杯水就够了。孙悟空想着想着,眼前就出现了一户人家,门口的桌上正好放了一杯牛奶,孙悟空连忙上前,准备把这杯牛奶喝了,可主人家却说:“大圣且慢,如果您想喝这杯奶就必须回答对一道数学题。孙悟空想,不就一道数学题吗,难不倒俺老孙。孙悟空就答应了。那位主人家出题:倒了一杯牛奶,你先喝了1/2加满水,再喝1/3,又加满水,最后把这杯饮料全喝下,问你喝的牛奶和水哪个多些?为什么?

孙悟空一看,挠挠头,不一会儿功夫就算出来了,并且喝到了这杯牛奶。同学们,你知道答案吗?试试看。 答案解析:

20

清代纪晓岚是著名的才子,据说乾隆皇帝南巡时,一天在江上看见一条渔船荡桨而来,就叫纪晓岚以渔为题作诗一首,要求在诗中用上十个“一”字。纪晓岚很快吟出一首: 一篙一橹一渔舟,一个渔翁一钓钩,一俯一仰一场笑,一人独占一江秋。

无独有偶,清代的女诗人何佩玉擅长作数字诗,也连用了十个“一”,生动地勾画了一幅高僧晚归图: 一花一柳一点矶,一抹斜阳一鸟飞。一山一水一中寺,一林黄叶一僧归。 北宋王安石关心民生疾苦,看北宋王朝很多虚设的官员,饱食终日,于是写道: 一窝二窝三四窝,五窝六窝七八窝,食尽皇家千钟粟,凤凰何少尔何多。 把他们比作麻雀,形象了地讽刺了他们贪污腐败、反对变法的丑态。 解放前,法币天天贬值,物价一日数长,一位教师这样描绘饥寒交迫的生活: 一身平价布,两袖粉笔灰。三餐吃不饱,四季常皱眉。 五更就起床,六堂要你吹。九天不发饷,十家皆断炊。 下面还有一些大家耳熟能详的数字入诗的佳句:

城阙辅三秦,风烟望五津。烽火连三月,家书抵万金。 功盖三分国,名成八阵图。 千山鸟飞绝,万径人踪灭。欲穷千里目,更上一层楼。七八个星天外,两三点雨山前。 毕竟西湖六月中,风光不与四时同。三顾频烦天下计,两朝开济老臣心。 飞流直下三千尺,疑是银河落九天。梅须逊雪三分白,雪却输梅一段香。

两岸猿声啼不住,轻舟已过万重山。故国三千里,深宫二十年。一声《何满子》,双泪落君前。 两个黄鹂鸣翠柳,一行白鹭上青天。窗含西岭千秋雪,门泊东吴万里船。

坐地日行八万里,巡天遥看一千河。

小学生数学故事:奇数和偶数

活动课上,黑熊老师笑着对大家说:“我们来做个游戏好不好?”

“好!”小动物们齐声回答。“请你们每位准备两张小纸条。”黑熊老师清了清嗓子说。小动物们不知道黑熊老师要他们做什么游戏,一个个兴奋的眼睛发亮,很快都把小纸条准备好了。

黑熊老师环视一下全班同学,说:“请你们在两张小纸条上分别写一个奇数和一个偶数,写好后,两手各握一张。不要给我也不要给你身边的同学看。”

小动物们不久前刚学过关于奇数和偶数的知识,不一会儿,大家都完成了黑熊老师提出的要求。“听着,”黑熊老师一字一句清晰地说道:“你们各位都请将右手中的数乘2,左手中的数乘3,再把乘积相加。不要算出声音来。”

等小动物们一个个都算好了,黑熊老师又叫算出得数是奇数的小动物们排成一队;得数是偶数的排成一队。小动物们都站好了,一个个感兴趣地看着黑熊老师,猜测着它下以步要它们做什么。

26

“好了!”黑熊老师指着得数是奇数的那排小动物说:“你们左手握的都是奇数。” 它又指着另一排小动物说:“你们左手握的都是偶数。” 两排小动物们摊开手掌一看,可不是,黑熊老师猜得完全正确。 小动物们惊奇极了,忍不住纷纷问道:“老师,您是怎么知道的?” 黑熊老师于是分析道:“

奇数×2=偶数 奇数×3=奇数 偶数×2=偶数 偶数×3=偶数 偶数+偶数=偶数 偶数+奇数=奇数

左手是奇数时,奇数×3是奇数,奇数+偶数(右手中的偶数×2),结果是奇数。而如右手是奇数时,奇数×2成偶数,偶数+偶数(左手中的偶数×3),结果是偶数。

这就是最后结果与左手中数字奇偶相同的原因,也即我这个猜法的根据。”

小动物们恍然大悟……

小学生数学故事:狐狸的诡计

狐狸、小熊、小鹿、小猴正在分它们得到的一千克饼。怎样分好呢?狡猾的狐狸说:“饼不多,我少分一点吧!先把饼的20%给我,小猴从我分剩的饼中分25%,小鹿从小猴分剩的饼中分30%,小熊再从小鹿分剩下的饼中分35%,最后剩下的一点点给我,怎么样?”大家觉得狐狸分得最少,就同意了。可最后发现狐狸分得的饼最多,差不多一半了。同学们,你算出狐狸、小猴、小鹿、小熊各分多少饼,戳穿狐狸的诡计么? 答案解析:

20%就是0.2,狐狸分走0.2千克饼后,剩下0.8千克饼了。我们就从小猴分得的饼算起。 小猴分得的饼为: 0.8 ×0.25=0.2(下克) 剩下0.8—0.2=0.6(千克) 小鹿分得的饼为: 0.6×0.30=0 l 8(千克)

27

剩下0.6—0.18=0.42(千克) 小熊分得的饼为: 0.42×0.35=0.147(千克) 剩下0.42—0.147=0.273(千克) 狐狸分得的饼为: 0.2+0.273=0.473(千克)

结果狐狸分得的饼最多,差不多有一半了。

28

本文来源:https://www.bwwdw.com/article/3dt8.html

Top