串联电抗器的作用及选择

更新时间:2023-05-20 14:41:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

串联电抗器的作用及选择

随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。

电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。

在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。在并联电容器的回路中串联电抗器是非常有效和可行的方法。串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。

1. 串联电抗器

是高压并联电容器装置的重要组成部分,其主要作用是抑制谐波和限制涌流,因此,在并联电容器的回路中串联电抗器是非常必要的。电抗率是串联电抗器的重要参数,电抗率的大小直接影响着它的作用。文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。

2. 电抗器选择不当的后果

2.1基本情况介绍

某110kV变电所新装两组容量2400kvar的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。电容器组投入运行之后,经过实测发现,该110kV变电所的10kV母线的电压总畸变率达到4.33%,超过公用电网谐波电压(相电压)4%的限值[2],其中3次谐波的畸变率达到3.77%,超过公用电网谐波电压(相电压)3.2%的限值[2]。

经过仔细了解和分析,发现该110kV变电所的10kV系统存在大量的非线性负载。即使在电容器组不投入运行的情况下,10kV母线的电压总畸变率也高达4.01%,其中3次谐波的畸变率高达3.48%。在如此谐波背景下,2400kvar电容器组配置电抗率为6%的串联电抗器是否适合?现计算分析如下。

2.2电抗率的选择分析

(1)电容器装置侧有谐波源时的电路模型及参数

在同一条母线上有非线性负荷形成的谐波电流源时(略去电阻),并联电容器装置的简化模型如图1所示[3]。谐波电流和并联谐波阻抗为

式中n为谐波次数;n为谐波源的第n次谐波电流;XS为系统等值基波短路电抗;XC为电容器组基波容抗;XL为串联电抗器基波电抗。

由于谐波源为电流源,谐波电压放大率与谐波电流放大率相等,故由式⑴整理推导可得谐波电压放大率

当式(2)谐波阻抗的分子的数值等于零时,即从谐波源看入的阻抗为零,表示电容器装置与电网在第n次谐波发生串联谐振,可得电容支路的串联谐振点 当式(2)谐波阻抗的分母的数值等于零时,即从谐波源看入的阻抗为∞,表示电容器装置与电网在第n次谐波发生并联谐振,并可推导出电容器装置的谐振容量QCX[4]为

系统及元件的参数如表1所示。

(2)避免谐振分析

计算电抗率选择6%时,发生3次、5次谐波谐振的电容器容量,将有关参数代入式(5),得3次、5次谐波谐振电容器容量分别为

由此可见, 2400 kvar的电容器组配置电抗率为6%的串联电抗器不会发生3次、5次谐波并联谐振或接近于谐振。

(3)限制涌流分析

计算电抗率选择6%后,同一电抗率的电容器单组或追加投入时,能否有效抑制涌流,文献[4]中所提供的

涌流峰值的标幺值(以投入的电容器组额定电流的峰值为基准值);Q为电容器组的总容量,Mvar;Q0为正在投入的电容器组的总容量,Mvar;Q¢为所有原来已经运行的电容器组的总容量,Mvar;b为电源影响系数。

已知两套电容器装置均为单组投切

由此可见,2400 kvar的电容器组配置电抗率为6%的串联电抗器,另外一组电抗率为6%的电容器单组或追加投入时,涌流能够得到有效限制。

(4)谐波电压放大率分析

计算电抗率选择6%时,将有关参数代入式(3),经过计算,电容器组对1~7次谐波电压放大率FVN结果如表2所示。

由计算结果可以看出,选择6%的串联电抗器对3次谐波电压放大率FVN为

1.21,对5次谐波电压放大率FVN为0.69。经过与现场谐波实测数据比较发现:3次谐波电压放大率FVN与以上理论计算值基本一致,但5次谐波电压放大率FVN的误差较大。文献[5]认为:简化的电路模型对于3次谐波电压放大率FVN的计算有工程价值,但对5次谐波电压放大率FVN的计算无工程价值。2400 kvar的电容器组配置电抗率为6%的串联电抗器,产生了3次谐波放大,且超过公用电

网谐波电压(相电压)3.2%的限值[2]。因此可以判断在如此谐波背景下,2400kvar的电容器组配置电抗率为6%的串联电抗器是不恰当的。

(5)电抗率的合理选择

要做到合理地选择电抗率必须了解该电容器接入母线处的背景谐波,根据实测结果对症下药。并联电容器的串联电抗器,IEC标准按照其作用分为阻尼电抗器和调谐电抗器。阻尼电抗器的作用是限制并联电容器组的合闸涌流,其电抗率可选择得比较小,一般为0.1%~1%;调谐电抗器的作用是抑制谐波。当电网中存在的谐波不可忽视时,则应考虑使用调谐电抗器,其电抗率可选择得比较大,用以调节并联电路的参数,使电容支路对于各次有威胁性谐波的最低次谐波阻抗成为感性,据式(4)可得K值:即对于谐波次数最低为5次的,K>4%;对于谐波次数最低为3次的,K>11.1%,如果该变电所的2400 kvar电容器组的电抗率分别按照0.1%、1%.5%、12%配置,试将有关参数代入式(3),经过计算,1~7次谐波电压放大率FVN的结果如表3所示 由计算结果可以看出,选择12%的串联电抗器对3次谐波电压放大率FVN仅为0.50。因此电抗率按照12%配置是值得进一步验算的。

本文来源:https://www.bwwdw.com/article/3c44.html

Top