数分习题册答案西电

更新时间:2024-05-27 12:52:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

习 题 1-1

1.计算下列极限

(1)limx?aa?xx?axa, a?0;

xa解:原式?lim[x?aa?ax?aa?1?x?ax?aaa]=(a)?|x?a?(x)?|x?a

xa=alna?a?a(2)lima=a(lna?1) ;

asinx?sinasin(x?a)x?ax?ax?a12(3)limn(na??2), a?0;

nn??ax?a解:原式?limsinx?sina?(sinx)'?cosa

解:原式?lim1a1nnn??n(pa?11/n)?[(a)'2xx?0]?lna

22(4)limn[(1?n??)?1],p?0;

解:原式?limpp(1?1n)?1n??1n10?(x)?|x?1?px10pp?1x?1?p

(5)lim(1?tanx)?(1?sinx)10x?0sinx(1?tanx)tanx9; (1?sinx)10解:原式?lim9?1x?0?lim?1x?0?sinx

=10(1?t)|t?0?10(1?t)|t?0?20

m(6) limx?1x?1x?1n,m,n为正整数;

1m(xm)'x?1x?1?x?1n解:原式?limx?1x?1?x?11?nm

(xn)'x?12.设f(x)在x0处二阶可导,计算lim解:原式?lim

f(x0?h)?2f(x0)?f(x0?h)h?limh?02.

h?0f?(x0?h)?f?(x0?h)2hf?(x0?h)?f?(x0)?f?(x0)?f?(x0?h)2h1212h?0

?lim

f?(x0?h)?f?(x0)2hh?0?limf?(x0?h)?f?(x)0?2hh?0?f??(x0)?f??(x0)?f??(x0)

1 / 27

3.设a?0,f(a)?0,f?(a)存在,计算lim[x?af(x)f(a)1]lnx?lna.

f(x)lnx?lna?lime解:lim[]x?ax?af(a)1lnf(x)?lnf(a)lnx?lna

?ex?alimlnf(x)?lnf(a)lnx?lna?elnf(x)?lnf(a)?x?ax?ax?alnx?lnalim

f'(a)?ef(a)?a

习 题 1-2

1.求下列极限 (1)lim(sinx???x?1?sinx?1);

解:原式?limcosx?????12?[(x?1)?(x?1)]?0 ,其中?在x?1与x?1之间

(2)limcos(sinx)?cosxsinx4;

x?0解:原式=lim?sin?(sinx?x)x654x?0=?lim(x?0sin??)?()(x?sinx?xx3)=

16,其中?在x与sinx之间

(3) lim(x???6x?x?1x316x?x);

165解:原式?limx[(1?x???)6?(1?1x1)6]?limx?x???16(1??)?56?[(1?1x)?(1?1x)]

?lim13x???(1??)2?56?1 ,其中?在1?1x与1?1x之间

(4) limn(arctann???n?111112解:原式?limn?,其中其中在与之间 ?1(?)?2n???n?1n1??nn?1n1?arctan1);

?f(a?1n)?2.设f(x)在a处可导,f(a)?0,计算lim?.

1)?n??f(a?n??n解:原式

?limen??[limn??n(lnf(a?1n)?lnf(a?1n))?elimn(lnf(a?n??1n)?lnf(a?1n))

)?lnf(a)1n]lnf(a?1n1)?lnf(a)?limn??lnf(a?1n?

?en?ef?(a)?f(a)?f(a)f(a)?2f(a)f(a)

?e习 题 1-3

1.求下列极限 (1)lim(1?x)?1(1?x)?1??x?0,??0;

2 / 27

解:原式?lim?x?xx?0???

(2)lim1?cosxcos2x???cosnx1?x?12;

x?0解:I?lim?lncosxcos2x???cosnx12x2??2limlncosx?lncos2x?????lncosnxx2

x?0x?0??2limcosx?1?cos2x?1?????cosnx?1x1x?1e?1xx2x?0?limx?(2x)?????(nx)x2222nx?0??i?12i

(3)lim(x?0);

解:原式?lime?1?xx(e?1)1x?0x?lim1e?1?xx2xx?0?lime?12xx?limx2xx?0x?0?12

(4)limx[(1?x)x?xx];

x???1ln(1?x)1lnx2解:原式?limx(exx???2?ex121)?limx?(ln(1?x)?lnx)?limxln(1?)

x???x???xx?limxx???1x?1

2. 求下列极限 (1)lim1?cosx?lncosxex2?sinx122x?x22?1 解:原式?lim22x?02x?xxln(x?e)?2sinx(2)lim;

x?0sin(2tan2x)?sin(tan2x)?tanx解:原式?limx?0?e1?x22;

ln(1?x?e?1)?2sinxsin(2tan2x)?sin(tan2x)?tanx?4

习 题 1-4

xx?0?limx?e?1?2sinxsin(2tan2x)?sin(tan2x)?tanxxx?0

?limx?x?2x4x?2x?xx?01.求下列极限

(1)limn(1?nsinn??221n); 1n?113!n3解:原式?limn[1?n(n???o(1n))]?lim(3n??13!?o(1))?16

3 / 27

(2)求limex3?1?x63x?0sinxx3;

解:原式?lime?1?xx63x??limx?03x62?o(x)?xx663x?02?12

(3)lim[x?xln(1?x??1x1x)]; ?12x2解:原式?lim[x?x(x??2?o(1x))]?212

(4)lim(1?x???1x)e2x2?x;

)?x]?12解:原式?limex??[xln(1?1x?e

此题已换3.设f(x)在x?0处可导,f(0)?0,f?(0)?0.若af(h)?bf(2h)?f(0)在h?0时是比h高阶的无穷小,试确定a,b的值.

解:因为 f(h)?f(0)?f?(0)h?o(h),f(2h)?f(0)?2f?(0)h?o(h) 所以0?limaf(h)?bf(2h)?2f(0)hh?0?lim(a?b?1)f(0)?(a?2b)f?(0)?o(h)hh?0

从而 a?b?1?0 a?2b?0 解得:a?2,b??1 3.设f(x)在x0处二阶可导,用泰勒公式求lim解:原式

f(x0?h)?2f(x0)?f(x0?h)h2

h?0f(x0)?f'(x0)h??limh?0f''(x0)2!h?o1(h)?2f(x0)?f(x0)?f'(x0)h?h222f''(x0)2!h?o2(h)22?limf''(x0)h?o1(h)?o2(h)h2222h?0?f''(x0) sinxx24. 设f(x)在x?0处可导,且lim(x?0?f(x)xx2)?2.求f(0),f?(0)和lim

1?f(x)xx?0.

解 因为 2?lim(x?0sinxx2?f(x)x)?limsinx?xf(x)x?0?lim2x?o(x)?x?f(0)?f?(0)x?o(x)?x?0x2

?lim22(1?f(0))x?f?(0)x?o(x)x?0x2

所以 1?f(0)?0,f?(0)?2,即f(0)??1,f?(0)?2

4 / 27

所以 limx?01?f(x)x1?f(0)?f?(0x)?ox()2x?o(x)?lim?lim?x?0x?0xx 2

习 题 1-5

1. 计算下列极限

1?(1) limn??12???n11n; ; 解:原式?limn?1n?1?2?limn?1?n?1nn??nnn???2

(2)lim1?a?2a?????nanan??n?2n??(a?1)

?limnna?(n?1)a2解:原式?limnanan?2nn?1n??2?(n?1)an???1a?a2

2. 设liman?a,求 (1) limn??a1?2a2???nannnan2n?1n??;

解:原式?lim(2) limnann?(n?1)n1an22?lim?a2

n??n??1a1?1a21a1,ai?0,i?1,2,?,n.

????1a2???n1an?lim1ann??解:由于limn???1a,

所以limn1a1?1a2???1ann???a

3.设lim(xn?xn?2)?0,求limn??n??xnnn??和limxn?xn?1n.

n??解:因为lim(xn?xn?2)?0,所以lim(x2n?x2n?2)?0

n??且lim(x2n?1?x2n?1)?0

n??从而有stolz定理lim且limx2n2nn???limx2n?x2n?22n???0,

?0

2n?1n??2xnx?xn?1xn?1xn?1?0,limn?limn?lim?0 所以limn??nn??n??n??nnnn?1n??x2n?1?limx2n?1?x2n?14.设0?x1?1q,其中0?q?1,并且xn?1?xn(1?qxn),

5 / 27

取xn(3)?2n???4???(n???),得

22(a?b)?A,解得a?b?A?0

(此题取消)4. 数列?xn?收敛于a的充要条件是:其偶数项子列和奇数项子列皆收敛于a. (此题改为4)5. 已知有界数列?xn?发散,证明:存在两个子列xn于不同的极限.

证明:因为?xn?有界,由致密性定理,必有收敛的子列xn?(1)k?和?x?收敛

(2)nk?(1)k?,设limxnk??(1)k?a.

又因为?xn?不收敛,所以存在?0?0,在(a??0,a??0)以外,有?xn?的无穷多项, 记这无穷多项所成的子列为xn设 limxnkk???(2)?,显然?x?有界.由致密性定理,必有收敛子列?x?,

(2)n(2)nk?2??b ,显然 b?a.

习 题 2-5

1. 用柯西收敛准则判定下列数列的收敛性 (1) xn?1?12?13???(?1)n?11n;

解:xn?p?xn?1n?11?1n?2???(?1)p?11n?p

?1n?1?(1n?2?n?3)???(?1)p?11n?p?1n?1?1n

所以,对???0,?N?[1/?],?n?N,xn?p?xn??,即{xn}为柯西列 (2) xn?a0?a1q?a2q???anq2n(q?1,ak?M,k?0,1,?).

n?1p?1解:xn?p?xn?an?1qn?1???an?pqn?p?Mq(1?q???q)?Mqn?11?q

所以,对???0,?N?max{1,[ln西列

?(1?q)M]/lnq?1},?n?N,xn?p?xn??,即{xn}为柯

2. 满足下列条件的数列?xn?是不是柯西列? (1) 对任意自然数p,都有limxn?p?xn?0;

n??解:不是柯西列,如xn?1?12???1n,对任意的自然数p,limxn?p?xn?0;但数列?xn?不

n?? 11 / 27

收敛。

(2)xn?1?xn?kxn?xn?1,(0?k?1,n?2,3,?); 解:xn?p?xn?xn?p?xn?p?1?xn?p?1???xn?1?xn

?xn?p?xn?p?1?xn?p?1?xn?p?2???xn?1?xn?(kn?p?1?kn?p?2???kn?1)x2?x1

?x2?x11?kkn?1

所以,对???0,?N?[ln(1?k)?x2?x1]/lnk?1,?n?N,xn?p?xn??,即{xn}为柯西列

n (3)

?k?1xk?1?xk?M(n?1,2,?,M?0).

n证明:记Sn??k?1xk?1?xk,则Sn单调递增有上界M,从而必有极限,记limSn?S

n??对???0,?N,?n?N,Sn?S??2

从而xn?p?xn?xn?p?xn?p?1?xn?p?1???xn?1?xn

?xn?p?xn?p?1?xn?p?1?xn?p?2???xn?1?xn?Sn?p?1?Sn?1 ?Sn?p?1?S?Sn?1?S?? 故 ?xn?是柯西列

习 题 3-1

1.设定义在[a,b]上的函数f(x)在(a,b)内连续,且lim?f(x)和lim?f(x)存在(有限). 问f(x)x?ax?b在(a,b)上是否有界? 是否能取得最值? 解:在闭区间[a,b]上构造辅助函数

?f(x), x?(a,b),?? g(x)??f(a), x?a,

??f(b), x?b.?则g(x)在[a,b]上连续,从而g(x)在[a,b]上有界. 由于g(x)?f(x) (a?x?b),故

f(x)在(a,b)上也有界,即存在M1?0,使得 f(x)?M1, x?(a,b).

令 M?maxM1,f(a), f(b),则有 f(x)?M, x?[a,b].

12 / 27

??条件同上,但f(x)在(a,b)上却不一定能取得极值. 例如:f(x)?x,x?(a,b)

2.设f(x)在(??,??)内连续,且limf(x)???.证明f(x)在(??,??)内可取得最小值.

x???证明:因为limf(x)???,所以?A?0,当x?A时,有f(x)?f(0)

x???因为limf(x)???,所以?B?0,当x?B时,有f(x)?f(0)

x???从而当x?(??,A)?(B,??)时,有f(x)?f(0)

又f(x)在[A,B]连续,从而一定可以取到最小值m,即?y0?[A,B],使当x?[A,B]时,

m?f(y0)?f(x)且m?f(y0)?f(0);

故x?(??,A)?(B,??)时,有f(x)?f(0)?f(y0) 所以f(x)在y0处取到最小值

习 题 3-2

(此题已换)1. 设a1,a2,a3?0,b1?b2?b3. 证明:方程

a1x?b1?a2x?b2?a3x?b3?0在

(b1,b2)和(b2,b3)内恰好各有一个实根.

1. 证明开普勒(Kepler)方程x??sinx?a?0???1?有唯一实根

证明:令f(x)?x??sinx?a,则f(x)在[a?1,a?1]连续且

f(a?1)??1??sin(a?1)?0,f(a?1)?1??sin(a?1)?0,

由零点原理???(a?1,a?1),使f(?)?0,即方程x??sinx?a至少有一实根

又f'(x)?1??cosx?0,所以f(x)在(??,??)单调递增,所以方程x??sinx?a有唯一实根

(此题已换)2. 设函数f(x)在(a, b)内连续且有极值点. 证明: 存在x1,x2?(a, b), x1?x2,使得f(x1)?f(x2).

2.设a?0,讨论方程e?ax实根的个数

x2x)???,limfx(?)f解:step1.令f(x)?e?ax,则limf(x???x?0x2(?0),由1零点原理,

13 / 27

xf(x)?0在(??,0)至少有一实根,又f'(x)?e?2ax?0(x?(??,0)),所以f(x)在

x2(??,0)单调递增,从而方程e?ax在(??,0)内有且仅有一实根。

step2.令g(x)?exx2,则limg(x)???,limg(x)???,且g'(x)??x?0x???e(x?2)x3x,所以

当0?x?2时,函数g(x)单调递减;当2?x???时,函数g(x)单调递增,所以函数g(x)在

点x?2取得极小值g(2)?e24。所以,当0?a?e24时,方程g(x)?a在(0,??)无解;当a?e24时,g(x)?a在(0,??)有一解;当a?e242时,g(x)?a在(0,??)有两解

综上:当0?a?e24时,方程e?ax有一解;当a?xe24时,e?ax有两解;当a?x2e24时,

e?ax有三解

3.设f(x)在[a,b]上连续, xn?[a,b],limf(xn)?A.证明存在??[a,b]使f(?)?A.

n??x2证法1 因为f(x)在[a,b]上连续,所以存在最大值M和最小值m,且使m?f(xn)?M,从而有

m?A?limf(xn)?M.由介值定理知???[a,b],使f(?)?A.

n?? 证法2 因为?xn?有界,所以存在收敛子列xnk???[a,b] (k??).而f(x)在[a,b]上连续,故有f(?)?limf(xn)?limf(xn)?A

k??kn??习 题10-2

1. 设f?x?在?0,1?上连续,

n?2为自然数. 证明:

n?1n],使得f(?)?f(??n?1n],且

1n);

(1)若f(0)?f(1),则存在??[0,证明:令F(x)?f(x)?f(x?1n),则F(x)?C[0,1112n?1n?1F(0)?f(0)?f(),F()?f()?f(),?,F()?f()?f(1)

nnnnnn1n?1)?0 从而F(0)?F()??F(nn若?i?{0,1,2,?,n?1},使F(in)?0,取??in即可

14 / 27

否则?i?j?{0,1,2,?,n?1},使F()?F()?0,由零点原理,???(ijinnnn,j)或(ji,),使nnF(?)?0

综上,???[0,n?1n],使F(?)?0,即f(?)?f(??1n) ?f(??1n).

(2)若f(0)?0, f(1)?1,则存在??(0,1),使得f(?)?解:取F(x)?f(x?1n1n)?f(x)?1n,方法同上

bb222.设f(x)在?a,b?上连续,且

?baf(x)dx?1,?xf(x)dx??,?xf(x)dx??. 证明:存在

aa??[a,b],使f(?)?0.

证:由已知经计算得

?ba(x??)f(x)dx?0

221)若??a或??b,由积分中值定理,???(a,b),使(???)f(?)?0,从而f(?)?0 2)否则,a???b,a)若

?ba(x??)f(x)dx?2??a(x??)f(x)dx?2??b(x??)f(x)dx?0

2??a(x??)f(x)dx?2??b(x??)f(x)dx?0,同1),由积分中值定理

2??1?(a,?),??2?(?,b),使f(?1)?f(?2)?0

b)使

?a?a(x??)f(x)dx与?(x??)f(x)dx异号,由中值定理,??1?(a,?),??2?(?,b)

?22b222b2??(x??)f(x)dx?(?1??)f(?1),且?(x??)f(x)dx?(?2??)f(?2)

?所以f(?1)f(?2)?0,有零点原理,???(?1,?2)?(a,b)使f(?)?0 3. 设fn(x)?cosx?cosnn?1x???cosx?cosx,求证

2(1) 对任意自然数n, 方程fn(x)?1在[0,证明:n?1时,f1(x)?cosx?1在[0,?3)内有唯一实根; )上有唯一实根x?0

?3n?1时,有,fn(0)?1?n?1?0且fn(?xn?(0,?3)?1??12n?1?0,由零点存在原理,

?3),使fn(xn)?1,即fn(x)?1在(0,n?1?3)上有一实根

又fn'(x)?(ncosx?(n?1)cosn?2x???2cosx?1)(?sinx)?0,故fn(x)严格单调

递减,所以方程fn(x)?1在[0,?3)内有唯一实根

15 / 27

(2) 设xn?[0,?3)是fn(x)?1的根,则limxn?n???3.

证:对x?0,fn(x)?fn?1(x),从而fn?1(xn?1)?1?fn(xn)?fn?1(xn),有因为fn?1(x)严格单调递减,故xn?1?xn,即{xn}严格单调递增。又{xn}有界,所以{xn}收敛。 设limxn?A,由于xn?(0,n???3),所以limcos(xn)?0,在

n??n1?fn(xn)?cosxn?cosnn?1xn???cosxn?cosxn

2?cosxn?cosxn1?cosxnn,令n??,有1?cosA1?cosA,所以cosA?12,A??3即limxn?n???3

4. 设f(x)在[a,b]上连续,不恒为常数,且f(a)?minf(x)?f(b).证明存在??(a,b),使

x?[a,b]??af(t)dt??(?a)f?(.)

证:令F(x)??xaf(t)d?t(?xa)f(,因x为f(x)在[a,b]上连续,不恒为常数,且

f(a)?minf(x)?f(b),所以?x0?(a,b),使f(x0)?maxf(x),于是

x?[a,b]x?[a,b]F(x0)?F(b)??bax0af(t)dt?(x0?a)f(x0)??x0a[f(t)?f(x0)]dt?0,

?f(t)dt?(b?a)f(b)??ba[f(t)?f(b)]dt?0,由零点原理:

证明存在??(x0,b)?(a,b),使F(?)?0,即

习 题4-1

1.证明函数f(x)????af(t)dt?(??a)f(?).

??x, x?0??1, x?0没有原函数.

证:设f(x)存在原函数F(x),即F'(x)?f(x),则F'(0)?f(0)?1且F'()?f()?111222,

由于F'()?1342?F'(0),由达布定理,???(0,12),使

34?F'(?)?f(?)??,矛盾,所以

f(x)无原函数

2.设f(x)在[a,b]上可导, x1,x2?[a,b]. 证明:

(1)若f?(x1)?f?(x2)?0, 则存在??[a,b]使f?(?)?0;

证明:若f?(x1)?f?(x2)?0,则取??x1或??x2均可;否则f?(x1)?f?(x2)?0,又达布定理,

16 / 27

存在?介于x1与x2之间,使f?(?)?0;综上存在??[a,b]使f?(?)?0 (2)若f?(x1)?f?(x2)??, 则存在??[a,b]使f?(?)?证明:若f?(x1)?f?(x2)??2.

?2,则取??x1或??x2均可;否则

[f?(x1)??2]?[f?(x2)??2]?0,由达布定理,存在?介于x1与x2之间,使f?(?)??2;

综上存在??[a,b]使f?(?)??2

习 题4-2

1.求下列函数的导函数,并讨论导函数的连续性. (1)f(x)?(x?1);

3??(x?1), x??1解:f(x)??,则f(x)在x??1连续,且

3???(x?1), x??13x??1时,f'(x)?3(x?1)2,lim?f'(x)?0,从而f?'(?1)?0

x??1x??1时,f'(x)??3(x?1)2,lim?f'(x)?0,从而f?'(?1)?0 所以f'(?1)?0

x??1从而f'(x)在x??1连续。

?3(x?1)2, x??1?所以f'(x)??在(??,??)连续

2???3(x?1), x??12??x, x?0(2)f(x)??;

2???x, x?0解:显然f(x)在x??1连续,且

x?0时,f'(x)?2x,lim?f'(x)?0,从而f?'(0)?0;

x?0x?0时,f'(x)??2x,lim?f'(x)?0,从而f?'(0)?0 所以f'(0)?0

x?0从而f'(x)在x?0连续。

所以f'(x)???2x, x?0??2x, x?0在(??,??)连续

1?kxsin,x?0?2. 设f(x)??x?0, x?0?. 当k分别满足什么条件时,

17 / 27

(1)f(x)在x?0处连续; 解:f(0)?limf(x),即limxsinx?0x?0k1x?0,所以k?0

(2)f(x) 在x?0处可导; 解:limf(x)?f(0)xx?0存在,即limxx?0k?1sin1x存在,所以k?1

(3)f?(x)在x?0处连续?

11?k?1k?2cos, x?0?kxsin?x解:f'(x)??xx?0, x?0?lim(kxx?0k?1,由f'(0)?limf'(x),即

x?0sin1x?xk?2cos1x)?0,所以k?2

3.分别用两种方法证明符号函数不存在原函数. 证明:法一 设sgn(x)存在原函数

F(x),即F'(x?)12?Fsgx,则F'(?1)且s?gn?1?)F'(?1)?sgn(?1)??1,由于F'(12?F'(?)?'(,1由)达布定理,???(?1,1,)使

sg?n,矛盾,所以()sgn(x)无原函数

法二

由单侧导数极限定理,导函数不存在第一类间断点,而sgn(x)有第一类间断点x?0,从而

sgn(x)无原函数

习 题5-1 .

1. 设函数f(x)在[0,??)上可导. (1)若f(0)?1,f(x)?e证明:令F(x)?f(x)?e?x?x.证明存在x0?0使f?(x0)??ex?0?x0;

,limF(x)?0,

x???0,则F(x)?D[0,??),且limF(x)?F(0)??x0由广义洛尔定理,?x0?(0,??)使F'(x0)?0,即f'(x0)?e (2) 若0?f(x)??x?0,所以f?(x0)??e0

xenx,证明存在??0使得f?(?)?n?x?n?1(n??)e?;

证明:令F(x)?f(x)?xe,则F(x)?D[0,?)?im(F)x,且lx?0?(F0)0?,limF(x)?0,

x???由广义洛尔定理,???(0,??)使F'(?)?0,即

f?(?)??n?1ne??ee2??n??0,所以f?(?)?习 题5-2

?n?1(n??)e?

1. 设f(x)在[0,1]上可导,且f(1)??10?xf(x)dx,其中??1为常数.证明:存在??(0,1),

18 / 27

使?f(?)???f(?).

证明:由积分中值定理,?x0?(0,1),使f(1)??'?10xf(x)dx?x0f(x0)

??令F(x)?xf(x),则F(x)?D[0,1],且F(1)?F(x0),由洛尔定理,???(x0,1)?(0,1), 使F'(?)?0,即????1f(?)???f'(?)?0,从而?f(?)???f(?)

'2. 设f(x)在[0,1]上可导,且f(1)??10xe1?xf(x)dx.证明:存在??(0,1),使

f(?)?(1?'1?)f(?).

1证明:由积分中值定理,?x0?(0,1),使f(1)?令F(x)?xe1?x?0xe1?xf(x)dx?x0e1?x0f(x0)

f(x),则F(x)?D[0,1],且F(1)?F(x0),由洛尔定理,

1?????(x0,1)?(0,1),使F'(?)?0,即ef(?)??e1??f(?)??e1??f'(?)?0,从而

f'(?)?(1?1?)f(?).

3. 设f(x)在[0,?2?]上可导,且

?20'?f(x)sinxdx?0.证明:存在??(0,2) 使

f(?)??f(?)tan?.

证明:由积分中值定理,?x0?(0,?2?),使0??20f(x)sinxdx?f(x0)sinx0

令F(x)?f(x)sinx,则F(x)?D[0,?2],且F(0)?F(x0),由洛尔定理,

???(0,x0)?(0,'?2),使F'(?)?0,即f(?)cos??f'(?)sin??0,从而

f(?)??f(?)tan?.

习 题6-1

1.若f(x)在区间I上是凸函数,证明对任意四点s,t,u,?v,Is?t?u?v有

f(t)?f(s)t?s?f(v)?f(u)v?u. 其逆是否成立?

证明:因为f(x)在区间I上是凸函数,由三弦不等式

f(t)?f(s)t?sv?u?f(u)?f(t)u?t,且

f(u)?f(t)u?t?f(v)?f(u)v?u,所以

f(t)?f(s)t?s?f(v)?f(u)成立。其逆成立

19 / 27

2. 设f(x),g(x)均为区间I上的凸函数,证明:F(x)?max?f(x),g(x)?也是I上凸函数.. 证明:设??(0,1),则对?x1,x2?I,有

f[?x1?(1??)x2]??f(x1)?(1??)f(x2)??F(x1)?(1??)F(x2),且

g[?x1?(1??)x2]??g(x1)?(1??)g(x2)??F(x1)?(1??)F(x2),从而 F(?x1?(1??)x2)?max{f[?x1?(1??)x2],g[?x1?(1??)x2]}

??F(x1)?(1??)F(x2),由凸函数的定义,F(x)?max?f(x),g(x)?也是I上凸函数

习 题6-2

1. 验证下列函数是(严格)凸函数.

(1)f(x)?xlnx, x?(0,??);

20 / 27

解:f'(x)?lnx?1,f''(x)?(2)f(x)?ln1x,所以f(x)是(0,??)上的严格凸函数 ?0(x?(0,??))

sinxx, x?(0,?);

,f''(x)??cscx?2解:f'(x)?cotx?1x1x2?sinx?xxsinx2222,所以f(x)?0(x?(0,?))

是(0,??)上的严格凹函数

习 题6-3

1.证明不等式 (1)(x?y2)??x?y2??, x?0,y?0,x?y,??1;

??2证:设f(t)?t,则f'(t)??(??1)t?,所以f(t)是(0,??)上的严格凸?0(t?(0,??))

函数;从而?x?y?(0,??),有f(a?b?cx?y2)?f(x)?f(y)2,即(x?y2)??x?y2??

(2) (abc)3?abc, a?0,b?0,c?0;

1abc?0(t?(0,??)),所以f(t)是(0,??)上的严格凸函数;从

ta?b?cf(a)?f(b)?f(c))?而?a,b,c?(0,??),有f(,可得 33a?b?c3又因为(证:设f(t)?tlnt,则f''(t)?ln(a?b?c3)?133(alna?blnb?clnc),即(a?b?ca?b?c3)a?b?c?abc,

abca?b?c3a?b?c)a?b?c?(abc)a?b?c?(abc)3,所以 (abc)3abc?abc

习 题 9-1

1. 求下列函数项级数的收敛域

?(1)

?1?xn?1xn2n;

解:un?1(x)un(x)?1?x1?x2n2n?2x,从而当x?1时,limun?1(x)un(x)?n???x?1,级数绝对收敛;当x?1时,limun?1(x)un(x)n???1x?1,级数绝对收敛;当x?1时,?n?112?发散;当x??1时,

?n?1(?1)2n发散,

所以,级数的收敛域为x?1

?(2)

?1?(3x)n?12?xnnn(x??13).

21 / 27

解:

un?1(x)un(x)13?1?(3x)1?(3x)n2n?1n?xn?1nn?12?x,所以

当x?时,limun?1(x)un(x)n???2?1,级数发散;当

13?x?23时,limun?1(x)un(x)n???23x?1,

级数发散;当

23?x?2时,limun?1(x)un(x)n???23x?1,级数绝对收敛;当x?2时,

limun?1(x)un(x)nn???13?1,级数绝对收敛;当x?13?时,级数

?n?11nn2?()3发散;当x??2时,级数

32?2?(?2?n?13n1?(?2))n?发散;当x??2时,级数

?n?12?(?2)1?(?6)nnn收敛;

所以原级数的收敛域为x?23

习 题 9-2

?1. 证明函数项级数

?[1?(n?1)x](1?nx)在[1,??)上一致收敛.

n?1x证明:un(x)?x[1?(n?1)x][1?nx]11?x11?2x?11?(n?1)x1?11?nx1,从而

Sn(x)?1?11?x?????1?(n?1)x?1?nx?1?11?nx?nx1?nx

所以对任意的x?[1,??),S(x)?limSn(x)?1

n??由Sn(x)?S(x)?11?nx?11?n?1n,得对???0,取N??1?,当n?N时, ?????xSn(x)?S(x)?1n???对任意的x?[1,??)成立,因此,?n?1[1?(n?1)x](1?nx)在

[1,??)上一致收敛到S(x)?1.

2. 设?fn(x)?在区间I上一致收敛于f(x),且对任意x?I有f(x)?A.试问是否存在N,使当

n?N时,对任意x?I有fn(x)?A?

22 / 27

解:答案不正确;例 fn(x)?nn?1arctanx在(1,??)内一致收敛到f(x)?arctanx,且

?x?(1,??),有f(x)?arctanx?(2N?3)?8N?8?4;但?N,?n0?N?1?N和

x0?tan?1,使fn(x0)?0n0n0?1arctanx0?N?1(2N?3)?? ??N?28N?84习 题 9-3

1. 利用定理9.3.1'证明下列函数项级数不一致收敛.

?(1)

?(1?x)xn?0nn,x?[0,1],

证:un(x)?x?xn?1?C[0,1],级数的部分和Sn(x)?1?x,从而

n?1 x?[0,1)S(x)?limSn(x)??,S(x)在[0,1]不连续,故级数不一致收敛。

n???0 x?1?(2)

?(1?xn?0x22)n,x?[0,1].

?0 x?0x?证:un(x)?,级数的部分和, ?C[0,1]S(x)?1?2n2n1?x? x?(0,1](1?x)2n?1?(1?x)?2?0 x?0从而S(x)?limSn(x)??,S(x)在[0,1]不连续,故级数不一致收敛。 2n???1?x x?(0,1]2. 设Sn(x)?nx1?nx22.试问

b?Sn(x)?在[0,1]上是否一致收敛?是否有

limn??? b aSn(x)dx?? an??limSn(x)dx?

12,?N,?n?N,

解:对?x?[0,1],S(x)?limSn(x)?0,但对0???n??都?x0?1n?[0,1],使Sn(x)?S(x)? 1 012??,所以?Sn(x)?在[0,1]上不一致收敛

另外lim 1n??? 1 0Sn(x)dx?limn???nx1?nx22dx?lim b aln(1?n)2n2n???0,

? 0n??limSn(x)dx??100dx?0,所以lim.试问

n???Sn(x)dx?? b an??limSn(x)dx

3. 设Sn(x)?x1?nx22?Sn?(x)?在(??,??)上是否一致收敛?是否有

?x(?)limSnn???n???Slnixm? 其中()x?(??,??).

? 23 / 27

解:对?x?(??,??),有Sn'(x)?1?nx2222n??(1?nx)2n2,从而S'(x)?limSn'(x)???1 x?0?0 x?0325

但对0???325,?N,?n?N,都?x0??(??,??),使Sn'(x)?S'(x)???

所以?Sn'(x)?在(??,??)上不一致收敛

??1 x?0??x?又limSn'(x)??,limSn(x)??lim?0, 22?n??n??n??1?nx???0 x?0???(x)?limSn(x)所以limSnn??n?????

?4. 求S(x)??n?1(1nn?x)的收敛域,并讨论和函数的连续性.

解:设un(x)?(1n?x),则limnnn??un(x)?lim1nn???x?x,有根值判别法,当x?1时,级

数绝对收敛;当x?1时,级数发散;当x?1时,级数发散;所以级数的收敛域为x?1。 对?x0?(?1,1),总???0,使x0?(?1??,1??)?(?1,1),从而un(x)在

?(?1??,1??)上连续,且S(x)??un?1n(x)在(?1??,1??)一致收敛,从而S(x)在

(?1??,1??)上连续,故S(x)在x0上连续,由?x0?(?1,1)得 S(x)在(?1,1)上连续

习 题 9-4

1. 讨论下列函数序列在指定区间上的一致收敛性. (1) Sn(x)?xe?nx, x?(0, ??);

?nx解:对?x?(0, ??),S(x)?limSn(x)?limxen??n???0

1e?],则对

又Sn(x)?xe?nx在x?1n处取得最大值

1ne,从而对???0,取N?[?nx?n?N,有Sn(x)?S(x)?(2)Sn(x)?sin1ne??,所以Sn(x)?xe在x?(0, ??)一致收敛

xn;

(i)x?(??, ?),

24 / 27

解:对?x?(??, ?),S(x)?limSn(x)?limsinn??n??xn?0

对???0,取N?[??则对?n?N,有Sn(],x)S?(x)nsi?xn??n所以Sn(x)?sin??,

xn在x?(??, ?)一致收敛

(ii)x?(??, ??);

解:对?x?(??, ?),S(x)?limSn(x)?limsinn??n??xn?0

对??12?0,?N,?n0?2N?N,?x0?5N??(??, ??),使

Sn0(x0)?S(x0)?sin5N?2N?1??,所以Sn(x)?sinxn在x?(??, ?)不一致收敛

2. 讨论下列函数项级数的一致收敛性.

?(1)

?n?1(?1)nnx?2,x?(?2, ??);

解:对任意的x?(?2, ??),un(x)?12n?1?,而

?n?112n?1收敛,由M判别法,原级数一致收敛。

?(2)

?n?1sinnx3n?x44,x?(??, ??).

解:对任意的x?(??, ??),un(x)?敛。

1n4/3?,而

?n?11n4/3收敛,由M判别法,原级数一致收

3. 设un(x)?1n3?ln(1?nx),(n?1, 2, 3, ?). 证明函数项级数?un(x)在[0, 1]上一致

n?122收敛,并讨论其和函数在[0, 1]上的连续性、可积性与可微性.

解:由un'(x)?2nxn(1?nx)1n32322?0对任意的x?[0,1]成立,从而

1n30?un(0)?un(x)??ln(1?nx)?un(1)??22ln(1?n)?22ln(1?n)n3?2n2

?n?12n2收敛,由M判别法知

?un?1n(x)在[0, 1]上一致收敛

25 / 27

?(1)un(x)?C[0,1],

?un?1?n(x)在[0, 1]上一致收敛,所以和函数在[0, 1]连续(定理1)

(2)un(x)?C[0,1],

?un?1?n(x)在[0, 1]上一致收敛,所以和函数在[0, 1]可积(定理2)

(3)由un'(x)?1n2,

?n?11n2?收敛,由M判别法知

?un?1n'(x)在[0, 1]上一致收敛,从而和函数在

(定理3) [0, 1]可微。

习 题10-1

1.一块金属板平底锅在xOy平面上占据的区域是D?{(x,y)|0?x?1,0?y?1}, 已知板上点

(x,y)处的温度为T?720xy(1?x)(1?y).锅底上点P0?(它的逃逸方向为( D ).

11,)处的蚂蚁为了逃向温度更低的地方, 43; C.{?16,?9}; D.{16,9}. A.{?9,16}; B.{9?,16}解:gradTp0?(80,45)?5(16,9),而梯度方向是温度降低最快的方向

2.一个高l为的柱体储油罐,底面是长轴2a为,短轴为2b的椭圆,现将储油罐平放,当油罐中油面高度为

32b时,计算油的质量。(长度单位为m,质量为kg,油的密度为常数?kg/cm).

32b时,垂直地面的截面面积为

3解:储油罐平放一般指长轴平行与地面,当油罐中油面高度为

bS??2?b2abb?ydy?(222?3?34)ab(平方米)

所以m??V??(2?3?34)abl?10 kg

64. 在一个形状为旋转抛物面z?x?y的容器内,已经盛有8?cm的水,现又倒入120?cm的水,

问水面比原来升高多少cm.

解:旋转抛物面容器的体积是深度h的函数,

2233V(h)?2???2dV??h0dz2??dxdy?x?y?z?hx?y?z2?h0?zdz??h22,从而h?2V(h)?,所以题中水面

升高的高度为?h?2V(h2)??2V(h1)??2?128???2?8???12cm

习 题10-3

26 / 27

1. 设x??1,证明:

(1)当0???1时,?1?x????1??x;

??1证明:取f(x)??(1?x),则f'(x)???(1?x),f''(x)???(??1)(1?x)??2 ?0,

所以f(x)为(?1,??)上的严格凸函数,从而对?x,x0?0?(?1,??),由定理6.2.3,恒有,即f(x)?f(x0)?f'(x)(x?x)?(1?x)??1??x 00所以(1?x)???1??x

?(2)当??0或??1时,?1?x???1??x .

??1证明:取f(x)?(1?x),则f'(x)??(1?x),f''(x)??(??1)(1?x)??2?0,

所以f(x)为(?1,??)上的严格凸函数,从而对?x,x0?0?(?1,??),由定理6.2.3,恒有

f(x)?f(x0)?f'(x)(x?x),即(1?x)?1??x 002. 设0?x?1. 证明: e证明:令f(x)?(1?x)e

2x??1?x1?x.

2x?(1?x),利用单调性可证(略)

27 / 27

本文来源:https://www.bwwdw.com/article/3ag7.html

Top