塑料薄膜基本知识

更新时间:2024-01-08 01:16:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一部分 软包装材料之---塑料薄膜基本知识

一、软包装之薄膜的定义

在国家包装通用术语(GB4122—83)中,软包装的定义为:软包装是指在充填或

取出内装物后,容器形状可发生变化的包装。用纸、铝箔、纤维、塑料薄膜以及它们的复合物所制成的各种袋、盒、套、包封等均为软包装。

一般将厚度在0.25mm以下的片状塑料称为薄膜。塑料薄膜透明、柔韧,具有良好的耐水性、防潮性和阻气性、机械强度较好,化学性质稳定,耐油脂,易于印刷精美图文,可以热封制袋。它能满足各种物品的包装要求,是用于包装易存、易放的方便食品,生活用品,超级市场的小包装商品的理想材料。以塑料薄膜为主的软包装印刷在包装印刷中占有重要地位。据统计,从1980年以来,世界上一些先进国家的塑料包装占整个包装印刷的32.5%~44%。

一般来说,因为单一薄膜材料对内装物的保护性不够理想,所以多采用将两种以上的薄膜复合为一层的复合薄膜,以满足食品保鲜、无菌包装技术的要求。复合薄膜的外层材料多选用不易划伤、磨毛,光学性能优良,印刷性能良好的材科,如:纸、玻璃纸、拉伸聚丙烯、聚酯等;中间层是阻隔性聚合物,如:铝箔、蒸镀铝、聚俯二氮乙烯电里层材料多选用无毒、无味的聚乙烯等热塑性树脂。

二、塑料阻透性技术介绍

1、塑料的阻透性?

塑料制品(容器、薄膜)对小分子气体、液体、水蒸汽及气味的屏蔽能力。 2、透过系数?

塑料阻透能力大小的指标。 定义:

一定厚度(1mm)的塑料制品,在一定的压力(1Mpa),一定的温度(23度),一定的湿度(65%)下,单位时间(1day=24小时),单位面积(1m2),通过小分子物质(O2、CO2、H2O)的体积或重量。表示为(cm3)、(g)

对于气体:

单位为cm3,mm/m2,d,mpa;

对于液体:

单位为 g,mm/m2,d,mpa;

3、常用中高阻透性塑料的透过系数

塑料品种/系数 EVOH(PE29%) O2 0.1 CO2 1.5 H2O 20-25 EVOH(PE38%) PVDC MXD6 PAN PEN PA666 PA6 PET HDPE PP LDPE EVA 0.4 0.5-4 2-5 8 12-22 15-30 25-40 49-90 2500 3000 10000 18000 6 1.-2 28 16 50 50-70 150-200 180 40-70 0.2-6 15-30 50 5-9 100 150 180-300 4、名词解释 EVOH:(EVAL)乙烯-乙烯醇共聚物 PA6—666: 聚酰胺(尼龙)

MXD6: 芳香尼龙,间苯二甲胺和己二酸的偏聚物 PVDC: 聚偏二氯乙烯 PAN: 聚丙烯晴

PEN: 聚萘二甲酸乙二醇脂 PET: 聚对苯二甲酸乙二醇脂 PP: 聚丙烯 PE: 聚乙烯 PS: 苯乙烯

HDPE: 高密度聚乙烯 LDPE 低密度聚乙烯

LLDPE 线性低密度聚乙烯

MLLDPE: 茂金属线性低密度聚乙烯 IONOMER:离子键聚合物

EVA: 乙烯-乙酸乙烯脂共聚物 TIE: 钛,树脂粘合剂

AC: 聚乙烯亚胺 AC: 乙醇:水 =1:6:3

PU: 聚氨脂 PU:固化剂:丙酮= 7:1:45 PVA: 聚乙烯醇

其中:高阻透材料:EVOH、PVDC、PAN、MXD6; 中阻透材料:PA、PEN、PET

5、塑料阻透方式?

层状共混成型阻透和复合成型阻透两种 层状共混为BOPA、BOPET等; 复合成型阻透又分为:

干式复合阻透和熔融共挤复合阻透

干式复合阻透典型为纸、CPP、BOPP、PET、铝铂、或镀铝膜的经层压后复合成

型,如奶包装屋顶盒、枕型袋等,

共挤复合阻透为多种塑料材料熔融共挤复合而成。

6、多层复合材料的阻透性公式:

1/P = T1/P1 + T2/P2 +T3/P3。。。。。。

式中:T1、T2-----各复合层厚度 P1、P2-----各透过系数

P:复合材料的总透过系数,层数越多、越厚,阻透性好,总的阻透性好。

7、多层共挤出复合的方式?

1]、一般性树脂与一般性树脂复合------适应于阻透性不强的酱油、醋等包装。 常用的树脂有:

LDPE、HDPE、LLDPE、PP、PS、PVC等。

2]、一般性树脂与中等阻透树脂的复合 ****

外层为一般性树脂,内层为中等阻透性树脂,3层—7层复合阻透。

LLDPE,LDPE,HDPE,PP,PS,PVC,+ PA,PET、EVA等

3]、中等性阻透树脂与中等性阻透树脂的复合*****

MXD6,PA6,PEN,PET,EVA,PA666,相容性好不需要黏结树脂,通常为2-3层结构的复合成型。

4]、一般性树脂与高阻透树脂的复合成型********

一般外层为:LDPE,HDPE,PP,PS,LLDPE,等

内层为:EVOH,MXD6,PVDC等,需要加黏结树脂。

5]、中等阻透性树脂与高阻透性树脂的复合成型 中等树脂为:PET,PA,EVA等

高阻透树脂:EVOH,MXD6,PVDC,PAN等不需要加黏结树脂。

8、国内外较普遍的阻透复合方式?

国外: PE//TIE//EVOH//TIE//PE

PE(EVA)//TIE/PA/EVOH/PA/TIE/PE

国内: PP/TIE/PA/TIE/PP,

LLDPE/TIE/PA/TIE/LDPE,

MLLDPE/TIE/EVOH/TIE/MLLDPE,

MLLDPE/TIE/PA/TIE/MLLDPE等等。

10、中、高阻隔复合材料的标准?

高阻隔标准 :O2透过量为5 ml/m2,d以下,透湿量为2g/m2,d以下。

中高阻透复合材料为

O2:5-10ml/m2,d H2O:10g/m2,d。

11、无菌包装的物理性能和机械性能指标

1]、O2透过率为 ≤1 ml

2]、拉伸强度为 ≥30Mpa 3]、断裂伸张率为 ≥40 4]、剥离力为 ≥1 5]、热合强度为 ≥40 6]、光线透过率为 ≤0.4 7]、袋的耐压性能如表:

袋的容量 内压保持(2mm) 保持压力(kpa) ≤25L 20 ≥25L 10

要求 无渗,无破裂 无渗,无破裂 破裂压力 (K pa) ≥25 ≥15 8]、袋的跌落性能如表:

袋的容量 ≤5L ≤25L ≥25L 三、复合包装材料

跌落高度H 0.8 0.6 0.4 要求 无渗漏,无破裂 无渗漏,无破裂 无渗漏,无破裂 在包装工业发展的基础上,物品的包装也得到相应的发展。从简单纸包装,到单层塑料薄膜包装,发展到复合材料的广泛使用。复合膜能使包装内含物具有保湿、保香、美观、保鲜、避光、防渗透、延长货架期等特点,因而得到迅猛发展。

复合材料是两种或两种以上材料,经过一次或多次复合工艺而组合在一起,从而构成一定功能的复合材料。一般可分为基层、功能层和热封层。基层主要起美观、印刷、阻湿等作用。如BOPP、BOPET、BOPA、MT、KOP、KPET等;功能层主要起阻隔、避光等作用,如VMPET、AL、EVOH、PVDC等;热封层与包装物品直接接触,起适应性、耐渗透性、良好的热封性,以及透明性、开日性等功

能,如LDPE、LLDPE、MLLDPE、CPP、VMCPP、EVA、EAA、E-MAA、EMA、EBA等。以下就复合软包装材料的内层材料开发、发展与现状作一点简述。 LDPE、LLDPE树脂和膜

我国的复合膜是从七十年代末起步的,从八十年代初期至中期,我国开始引进一些挤出机、吹膜机和印刷机,生产简单的二层或册层复合材料。如挤出复合的BOPP/PE、纸/PE、pp/PE;干式复合的BOPP/PE、PET/PE、BOPP/AL/PE、PET/AL/PE等,其中LDPE树脂和膜中,常共混一定比例的LLDPE,以增强其强度和挺度。主要应用在方便面、饼干、榨菜等食品的包装。一般涂布级的LDPE树脂有;IC7A、L420、19N430、7500等;吹膜级的LDPE树脂有:Q200、Q281、F210-6、0274等;LLDPE树脂有:218w、218F、FD21H等。 CPP膜、CPE膜

八十年代末至九十年代初期,随着新一代软包装设备和流延设备的引进,包装内含物的范围进一步扩大,一些膨化食品、麦片等包装袋的透明度要求较高,而煮沸、高温杀菌产品又相继的问市,对包装材料的要求也相应提高,以LDPE和LLDPE为主的内层材料已不能满足上述产品的要求。用流延法生产的具有良好热封性。耐油性、透明性、保香性以及特殊的低湿热封性和高温蒸煮性的CPP在包装上得到广泛使用。在此基础上开发的镀铝CPP,因其金属光泽、美观、阻隔的性能也迅速而大量使用。以及用流延法生产的CPE膜,因其单向易撕性、低温热封、透明度好也正进一步得到使用。 MLLDPE树脂

随着包装市场的不断发展和变化,对包装的特种要求也愈来愈多。美国的DOW化学公司用茂金属催化法聚合生产了茂金属聚乙烯MLLDPE。如APFINITY、POP1880、1881、1840、1450等树脂。接着美国的埃克森。日本的三井、美国的菲利浦也相继生产的MLLDPE。如埃克森的EX-CEED350D60、350D65、三井石化的E-VOLVE SP0540、SP2520、菲利浦的MPACT D143、D139等。由于MLLDPE与LDPE、LLDPE具有良好的共混性和易加工性,可在吹膜或流延加工中混合MLLDPE,混合比可由20%至70%。此类膜具有良好的拉伸强度、抗冲击强度、良好的透明性以及较好的低温热封性和抗污染性,以其作内层的复合材料广泛使用于冷冻、冷藏食品、洗发水、油、醋、酱油、洗涤剂等。能解决上述产品在包装生产、运输过程中的包装速度、破包、漏包、渗透等。 盖膜内层材料

果冻、果汁、酸奶、果奶、汤汁等液体包装杯。瓶,其主要材料是HDPE。PP、PS等。此包装的盖膜,既要考虑保质期限,又要考虑盖膜与杯子间的热封强度,还要考虑消费者使用方便——易撕性。达到这特殊性,内层材料只能与杯日形成界面粘合强度,而不能完全渗透、熔合在一起。一般用改性的EVA树脂。如美国杜邦APPEEL53007。日本东洋的TOPCO L-3388、法国LOTRYL 20MA 08、日本HIRO.DINE的WT231等。其结构可以为:PET/PE/HM、BOPA/PE/HM、PET/VMPET/PE/HM、PET/AL/PE/HM、纸/PE/AL/PE/HM。对于要求盖膜与底杯盖牢、不撕开,一般要求底杯的材质与盖膜内层材料一致,以便二种材料热封时,完全熔合。如HDPE杯,其盖膜内层材料为:LDPE或EAA;PP杯,其盖膜的内层为CPP膜;PET瓶,我们已找到一种经过涂布改性的PET膜作热封层,封盖装农药PET瓶,取得了满意的结果。 共挤膜

以单层LDPE或LDPE与其它树脂共混生产的薄膜,性能单一,无法满足现代物品发展对包装的要求,因此用共挤吹膜或共挤流延设备生产的共挤膜,其

PEN与PET分子结构的不同之处在于用萘环代替了PET分子中的苯环,聚合物的原料单体用2,6萘二甲酸代替对苯二甲酸,其构成与PET类似。因此,PEN是聚酯材料中佼佼者,它几乎在所有方面都优于PET,具有优异的阻隔性,对紫外线的吸收性、耐热性和化学稳定性。我们可由聚酯瓶的发展潜力预见到PEN的发展前景。掺入PEN的聚酯瓶无论从其耐热性、阻隔性还是从其他方面看,让其作为饮料包装中的主角将无可非议。

1,4 MXD6芳香族尼龙

在我国,4种典型的阻隔材料中,EVOH、PEN、腈基树脂的开发目前还是空白,PVDC在国内食品包装方面的应用已经起步,但仍然不能满足国际、国内食品包装市场的竞争需求,阻隔性塑料材料在我国食品包装市场有广阔的发展前景。

八、 应用实例

一般推荐使用5层、7层共挤设备,其中5层结构应用最广,如ABCBD、ABCBA。例如:3层共挤层结构为:PA/Ad/PE(PP),尼龙在外层,得不到保护。尼龙耐冲击性差,容易划伤、漏气,又有亲水性,容易吸湿气,氧气阻透性降低。如果是5层结构,PP(PET)/PE、PA外/Ad/PA/Ad/PP(PE)。这样尼龙受到了两面保护又能阻止尼龙吸湿。7层、9层经过实验,如果各种树脂安排得当,保质期可达1年以上,几乎达到马口铁罐头效果。例如PET/Ad/PA/EVOH/PA/Ad/PE(PP)。

在多层薄膜中,各层的功能和作用不尽相同。

氧气阻透层:根据包装物贮存期,确定相应的阻透性材料(PVDC、EVOH)及层厚,尼龙厚度一般为20%、EVOH一般10-15%,厚度偏差不得超过10%,在这个范围内,对包装物贮存影响甚小。 粘层(AD):尼龙、EVOH虽然具有良好的挤出成型性,但在共挤出时与其它层(LDPE、PP、EVA)无结能力,必须采用专门的结树脂作为结层,以达到层间较高的剥离强度。因此,选择层材料是一个非常重要的因素。应根据结构选择适宜的牌号,厚度一般为5-15g/m2。

内外层:尼龙、EVOH虽然氧气透过量很小,但水蒸汽透过量甚大,因此,确定内外层材料时,应充分考虑对水蒸汽阻透性这一问题,同时内层材料必须兼顾热封性能及热封强度,如采用LDPE、mlLDPE、EVA、PPO等,必要时,可用Surlyn、PRIMCOR、POP改性。当用作复合基材时,外层表面电晕处理强度应

达到38-42达因。

九、多层共挤复合薄膜与单层塑料薄膜相比较

与单层塑料基材薄膜相比较,多层共挤复合薄膜大大简化了干式复合薄膜的生产工艺,增加了功能,并且可通过厚度的有效调整使功能得到量化,结构组合方便灵活、选用材料范围广。综合表现为功能全而变化灵活,成本低而质量水平高,附加值高而市场适应性强。因此,多层共挤出复合薄膜在包装上得到了广泛应用。

多层共挤出复合薄膜的结构及其发展趋势

通常意义上,多层共挤出复合薄膜的结构取决于薄膜的功能需求。在满足工艺要求的前提下,通过不同聚合物的组合,满足包装材料的阻隔、热封、本体强度、抗穿刺、耐环境适性、二次加工特性、延长储藏和货架期限等功能需求。而从功能需求分析,由五种聚合物形成的组合已足矣。但在市场上已开始应用七层、九层、十层乃至更多层的共挤出复合薄膜,使之成为一种趋势,并

得到迅速的发展。共挤出复合薄膜的结构设计正逐步要求能系统地达到集功能、技术、成本、环保、安全、二次加工于一体的理想境界。 1、阻隔性

(1)在阻隔层中用多层相同的聚合物替代单层聚合物,可提高阻隔层的稳定性。例如,设定PA材料为阻隔层,其阻氧率为40个单位。为了保证其阻氧性能的稳定,通常其厚度的设定值为材料的理论计算值+设备负误差值+安全系数。而当我们采用多层相同的聚合物替代时,其厚度的设备负误差值明显下降,安全系数明显提高。

(2)而当我们确认所设定的阻隔层厚度足以满足阻隔要求时,则在阻隔层注入多层相同的聚合物替代单层聚合物,这样可降低阻隔薄膜高附加值原材料的成本。

(3)在阻隔层中用两种不同的聚合物替代单一品种的聚合物,可明显提高其薄膜的阻隔性。例如,将EVOH层与典型的PA层结合在一起,既能保护PA的抗穿刺性,又增加了EVOH的强度,提高了EVOH的防裂性。而对一个五层结构而言要同时使用两种不同的阻隔层,则其中一层只能在最外层,为了防止外层阻隔薄膜易受外力损伤而导致阻隔效果的下降,通常采用增加PA厚度的方法进行弥补,结果导致成本的提高。 2、其他

(1)将热封层和复合层各分为两组,其中一组采用价格较便宜的聚合物替代价格较高的聚合物,以减少薄膜的成本,同时又保持了薄膜的强度。另一组则使用能满足其功能要求的功能性聚合物。用多层的概念制作更经济的复合薄膜。例如,将两种1kg重的薄膜作比较,五层结构的薄膜所需的材料费比七层结构薄膜所需的材料费高约19%。

(2)利用层数更多的共挤出薄膜可改良五层以下PA共挤出薄膜的性能。例如,利用附加粘合层可以通过增加薄膜的水蒸汽阻隔作用,提高薄膜的阻隔性能。同时获得的另一个优点是可以使薄膜更柔软、手感好并具有良好的防裂性能。

(3)利用层数更多的共挤出薄膜可改善五层以下PA共挤出薄膜的耐应力翘曲。同时满足了制袋等二次加工的需要。

(4)集干式复合薄膜除里印以外的其他功能于一体,使复合工序简单、复合结构趋于灵活、功能趋于多样、成本有明显下降、更具安全性、更符合卫生及环保要求,社会效益和经济效益更加显著。

随着高分子合成技术的不断进步,具有独特物理机械性能的新型聚合物可广泛用来满足包装的需要。多层共挤复合基材薄膜的功能及结构将具有更大的灵活性和经济性。通过成型设备、工艺的应用及完善,配合复合结构独特有效的设计,将使薄膜生产商对包装功能的多样化、包装结构的合理化、包装效益的最大化等理念的追求及思维方式产生革命性的作用。但是科学地运用原料,设计合理的产品结构以及与加工工艺的紧密配合,则是摆在我们每一个复合薄膜生产商面前永无止境的挑战性课题。因为只有当加工设备、加工原料、结构设计(加工艺)三者的技术资源得到充分利用,并达到最佳状态时,才能使包装基材在其最终产品上以最经济、最合理、最充分、最廉价的形式出现,并满足市场的需求。

十、薄膜的印刷技术

一、塑料薄膜的印前处理

塑料薄膜一般采用凹版印刷、柔性版印刷以及丝网印刷等工艺,通常在印刷后还要进行复合加工,以达到良好的使用效果。而各种塑料的表面特性,因其分子结构、极性基团、结晶程度以及化学稳定性等因素不同而有很大的差异。这些因素对于印刷油墨的结合牢度、复合薄膜的黏结强度等影响甚大。故在印刷或复合加工前,应视不同塑料的表面性质,适当地进行表面处理,以求获得优良的加工适性。 1.提高薄膜的可印性

从理论上讲,在承印物上要获得良好的可印性,承印物的表面张力应高于印刷油墨的表面张力。

PP、PE膜系非极性高分子材料,化学性能稳定,表面张力小,加之合成树脂时添加的开口剂、抗静电剂、耐老化剂等影响,难与油墨黏结。

为了提高塑料薄膜的表面张力,改善其润湿性能和黏结性能,从而提高印刷油墨的牢度,常用的表面处理方法有以下几种。

①电晕处理法。利用高频(中频)高压电源,在放电刀架和刀片的间隙产生一种电晕释放现象,对塑料薄膜进行表面处理,这种方法叫电晕处理,也称电子冲击或电火花处理。其处理作用为:

a.通过放电,使两极之间的氧气电离,产生臭氧。臭氧是一种强氧化剂,可以立即氧化塑料薄膜表面分子,使其由非极性转化为极性,表面张力提高。

b.电子冲击后,使薄膜表面产生微凹密集孔穴,使塑料表面粗化,增大表面活性。

②化学处理法。采用重铬酸钾—硫酸等氧化剂溶液处理聚烯烃薄膜表面,使其生成羟基、羰基等极性基团,同时得到一定程度的粗化。

③光化学处理法。选择适当波长的紫外线照射高聚物表面,使其产生裂解、交联和氧化等化学变化。

目前,生产中多采用电晕处理方法。化学处理法处理时间较长,处理液具有化学侵蚀性,只在不便使用其他处理方法时应用;光化学处理法效果还不够理想,耗时较长,成本较高。 2.防静电处理

薄膜的静电形成是由于PE和PP具有优良的介电性能,电阻高、导电性差。薄膜在挤出收卷过程中因摩擦而产生静电在印刷过程中使静电进一步产生和积累,并不易释放,使薄膜表面聚积大量的静电荷。薄膜印刷中的静电会给操作带来一系列难题,直接影响印品的质量。由于静电黏连,薄膜问处于缺氧状态,会阻碍塑料表面里层的固化过程;若遇高温、高湿环境,更易形成墨层黏连,轻则使印墨移染,增加印刷、分切、整理等工序的难度,重则薄膜互相部连,撕不开,造成印品报废。 十一、塑料的热封性

塑料的热封性对于软塑包装材料来讲是十分重要的一个性能要求,因为对于任何一个软塑包装制品来讲都要做成口袋;都要依靠热熔融而焊接成口袋A2型式来包装各种商品,包装商品后的口袋也要靠热封来封口,可以说热封性是软包装的主要特性要求,没有塑料的热封性,也就没有软包装。

根据日本工业标准ISZ1526-1976中的规定,标准热封强度是在130~140℃的温度、1kgF/cm2的压贴力以及2~3s的热封时间下热封LDPE挤出涂布了的热封层的剥离强度为该树脂的热封强度。 一个树脂的热封性有以下几方面的要求:

(一)标准热封强度

这是热封用树脂在最佳热封条件下的热封强度。标准热封强度,对于同一种主要基材薄膜,如:BOPA6而言,标准热封强度主要受挤出涂布热封用树脂的挤复厚度和树脂的类型的影响。例如:主基材薄膜为BOPA6 15μm厚,以LDPE挤涂复合,热封在130~140℃的温度,2kgF/cm2压力及1s时间下进行,热封强度kgF/15mm宽同厚度的关系如下:

LDPE厚度μm20、30、40、50、60、70热封强度,kgF/15mm1.0、1.5、2.5、3.5、4.2、5.5热封强度同热封树脂厚度基本上成直线正比上升。对于同一种LDPE而言,标准热封强度同树脂的MI和密度有关,例如:对于PT300#/挤涂20μ的LDPE而言;150℃,2kgF/cm2及0.5s热封时,MI=3.7g/10miND=

0.923g/cm,热封强度为1.25kgF/15mm;MI=3.0D=0.921的热封强度为1.4 kgT/15mm;MI=7.0D=0.917,热封强度为1.75kgF/15mm;MI=9.5,D=0.917。热封强度为2.0kgF/15mm。由此可知热封强度随MI的提高,而显著增加。日本三井石油化学(株)上市了改进了热封强度水准的新的热封用树脂牌号VL-LDPE和CS-C的特殊聚烯烃,其150℃下热封强度可达5~6kgF/15mm。

(二)低温热封性(强度)

所谓低温热封强度是表示该树脂具有较低的热封温度,可以在较低的热封温度下得到可靠的热封强度,适宜于高速自动充灌成型设备的要求。这种树脂的热封起始温度低。对于LDPE而言,其低温热封性主要受MI和密度的影响。高MI和低密度的LDPE,低温热封性好,-5乙烯相共聚的树脂的低强热封性,受共聚单体的成分和含量有很大的关系,例如:EVA树脂,随VA含量的增加密度提高,软化温度和熔融温度降低,EVA树脂的低温热封性变好,EVA结晶度随VA含量提高而降低,当VA含量超过25%EVA成了无定形聚合物。 (三)夹杂物热封性

夹杂物热封性是指在热封树脂热封表面感染了灰尘、油腻、脏物、商品内容物粉未等的情况下,其热封性仍旧较好的一种性能叫夹杂物、热封性。夹杂物、热封性在充灌液体、粉米食品或者农药时尤为重要,夹杂物热封性较好的树脂在SurlYN(离子型树脂)、LLDPE及EMAA、EEA等树脂。

第二部分 共挤吹膜的生产、工艺技术和应用

第一章 基本原料介绍

一、常用塑料包装材料简介

一、聚乙烯(PE)

(一) 性能及用途

聚乙烯是典型的热塑性塑料,为无臭、无味、无毒的可燃性白色粉末。成型用的聚乙烯树脂均为经挤出造粒的蜡状颗粒料,外观呈乳白色。 聚乙烯的分子量在1万~100万之间,分子量超过100万的为超高分子量聚乙烯。分子量越高,其物理力学性能越好,但随着分子量的增高,加工性能降低。因此,要根据使用情况选择适当的分子量和加工条件。高分子量聚乙烯是个加工结构材料和负荷材料,而地分子量聚乙烯只适合作涂覆、上光剂、润滑剂和软化剂等。

聚乙烯的力学性在很大程度上取决于复合物的分子量、支化度和结晶度。高密度聚乙烯的拉伸强度为20~25MPa,而低密度聚乙烯的拉伸强度只有10~12MPa。聚乙烯的伸长率主要取决于密度,密度大,结晶度高,其蔓延性就差。

聚乙烯的电绝缘性能优异。因为它是非绝缘材料,其介电常教及介电损耗几乎与温度、频率无关;高频性能很好,适于制造各种高频电缆和海底电缆的绝缘层。

(二) 品种

1. 低密度聚乙烯(LDPE) (1) 性能

低密度聚乙烯的密度范围为0.910~0.925g/cm?。分子结构为主链上带有长、短不同支链的支链型分子。在主链上每1000个碳原子中约带有50个以下的乙基、丁基或更长的支链。与高密度和中密度聚乙烯相比,它具有较低的结晶度(55%~65%),较低的软化点(108?C~126?C)以及较宽的熔体指数(0.2~80g/10min)。

由于低密度聚乙烯的化学结构与石蜡烃类似,不含极性基团,所以具有良好的化学稳定性,对酸、碱和盐类水溶液具有耐腐蚀作用。它的电性能及好,具有导电率低、介电常数低、介电损耗低以及介电强度高等特性。但低密度聚乙烯的耐热性能较差,也不耐氧和光老化。因此,为了提高其耐老化性能,通常要在树脂中加入抗氧剂和紫外线吸收剂等。

低密度聚乙烯具有良好的柔软性、延伸性和透明性,但机械强度低于高密度聚乙烯和线型低密度聚乙烯。

(2)用途

低密度聚乙烯主要用于制造薄膜。薄膜制品约占地密度聚乙烯制品总产量的一半以上,用于农用薄膜及各种食品、纺织品和工业品的包装。低密度聚乙烯电绝缘性能优良,常用作电线电缆的包覆材料。注射成型制品有各种玩具、盖盒、容器等。与高密度聚乙烯掺混后经注射成型和中空成型可制管道及容器等。

2.高密度聚乙烯(HDPE) (1)性能

高密度聚乙烯的高密度为0.941~0.965g/cm?。分子结构为线型结构,支链少,平均每1000个碳原子仅含有几个支链。与低密度聚乙烯相比,高密度聚乙烯结晶度达80%~90% ,密度大,使用温度较高,硬度和机械强大较大,耐化学性能好。

(2)用途

高密度聚乙烯的用途与低密度聚乙烯不同。低密度聚乙烯约50%~70%用于制造薄膜;而高密度聚乙烯则主要用于制造中空硬制品,约占总消费量的40%~65% 。具体用途有:吹塑法制造各种瓶、罐及各种工业用槽、桶等容器;注射成型制造各种盆、桶、蓝、篓、筐等日用成器、日用杂品和家具等;挤出成型制造各种管材、捆扎带以及纤维、单丝等。此外,还可用于制造电线电缆的包覆材料和合成纸;加入大量无机钙盐以后,还可以制造钙塑包装箱和家具、门窗等。最近,高密度聚乙烯用于制造高强度超薄薄膜,做食品、农副产品和纺织品的包装材料发展很快。

3.中密度聚乙烯(MDPE) (1)性能

密度为0.926~0.940g/cm?,分子结构为支链数介于高密度聚乙烯和低密度乙烯之间的线型高分子。结晶度为70%~75%,软化温度为110?C~115?C,除兼有高、低密度聚乙烯的性能外,还具有优良的抗应力开裂性、刚性及耐热性。

(2)用途

最适宜于高速吹塑成型制造瓶类,高速自动包裹用薄膜以及各种注射成型制品和旋转成型制品,如桶、罐等。还可用于电线电缆包覆层。

4.线型低度密度聚乙烯(LLDPE)

(1)性能

线型低密度聚乙烯的密度为0.910~0.925g/cm?。

由于线型低密度聚乙烯分子侧链为短支链,分子结构介于线型高密度聚乙烯和带有长支链的高压法低密度聚乙烯之间,所以其物理机械性能优于普通低密度聚乙烯。在机械性能方面,线型低密度聚乙烯的拉伸强度比普通低密度与乙烯高50%~70%,伸长率高50%以上,耐冲击强度、穿刺强度及耐低温冲击性能均比低密度聚乙烯好。在物理性能方面,在相同密度情况下,线型低密度聚乙烯的熔点比低密度聚乙烯高,使用温度范围宽,允许使用温度比低密度聚乙烯高10?C~15?C。

(2)用途

线型低密度聚乙烯可代替低密度聚乙烯制造薄膜、管材、注射成型制品、中空吹塑容器、旋转成型制品及电线电缆包覆材料等。制得的产品的机械性能比低密度聚乙烯好。所以,制造相同强度的制品时,线型低密度聚乙烯制品可减薄。 二、聚丙烯(PP)

(一)性能

聚丙烯重量轻,密度为0.90~0.91g/cm?,是通用塑料中最轻的一种。

聚丙烯具有优良的耐热性,长期使用的温度可达100?C~120?C,无载荷时使用温度可达150?C,聚丙烯是通用塑料中唯一能在水中煮沸,并能经受135?C的消毒温度的品种,因此可制造输送热水的管道。

聚丙烯的耐低温性能不如聚乙烯,催化温度为-10?C~-13?C(聚乙烯为-60?C)。低温甚至室温下的抗冲击性能不佳,低温下易脆裂是聚丙烯的主要缺点。

聚丙烯是一种非极性所料,具有优良的化学稳定性,并且结晶度越高,化学稳定性越好。除强化性酸(如发烟硫酸、硝酸)对他有腐蚀作用外,室温下还没有一种溶剂能使聚丙烯溶解,只是低分子量的脂肪烃、芳香烃和氯化烃对它有软化或溶胀作用。它的吸水性很小,吸水率还不到0.01%。

聚丙烯在成型和使用中易受光、热、氧的作用而老化。聚丙烯在大气中12天就老化变脆,室内放置4个月就会变质,通常需添加紫外线吸收剂、抗氧剂、炭黑和氧化锌等来提高聚丙烯制品的耐候性。

聚丙烯的力学强度、刚性和耐应力开裂都超过高密度聚乙烯,而且有突出的延伸性和抗弯曲疲劳性能,用它制成的活动铰链经过7000万次弯曲试验,竟无损坏痕迹。

聚丙烯的电绝缘性能优良,特别是高频绝缘性很好,击穿电压强度也高,加上吸水率低,可用于120?C使用的无线电、电视的耐热绝缘材料。

(二)用途

聚丙烯综合性能优良,可以用注射成型、挤出成型、中空成型制成各种制品。在这些用途中用于注射成型制品居首位,包括日用器具、娱乐和体育用品、玩具等;汽车部件,如蓄电池壳体、空调零件、散热器叶片等;硬包装,如医疗洗涤器、盖罩、化妆品盒;机械

零件,如洗衣机洗槽、搅拌器、空气管。挤出成型制品包括电线、电缆、薄膜、片材、管材等。薄膜主要用于包装服装、针织品、食品、香烟等。中空成型制品包括容器、瓶类。聚丙烯纤维分长丝(单丝、复丝、膨体纱)、短纤丝。纤维可代替棉、麻、丝、毛等天然纤维。主要用于生产机织和针织,如地毯、沙发布、捆扎材料、绳索和编织袋等。

三、聚氯乙烯(PVC)

(一)性能

聚氯乙烯是无毒、无臭的白色粉末,密度为1.40g/cm?,加入增塑剂和填料的聚氯乙烯塑料的密度为1.15~2.00g/cm?。

聚氯乙烯的力学性能取决于聚合物的分子量、增塑剂和填料的含量。聚合物的分子量越大,力学性能、耐寒性、热稳定性越高,但成型加工比较困难;分子量低则相反。增塑剂的加入,它不但能提高聚氯乙烯的流动性,降低塑化温度,而且使其变软。通常,在100份聚氯乙烯树脂中增塑剂量大于25份即变成软质塑料,伸长率增加,而拉伸强度、刚度、硬度等力学性能均降低;增塑剂加入量小于25份时为硬质或半硬质塑料,具有较高的力学强度。

聚氯乙烯是无定型聚合物,它的玻璃化温度(Tg)为80?C左右,在此温度下即开始软化,随着温度的升高,力学性能逐渐丧失。显然,Tg是聚氯乙烯理论使用温度的上限。但在实际应用中,聚氯乙烯的长期使用温度不宜超过65?C。聚氯乙烯的耐寒性较差,尽管齐催化温度低于-50?C,但低温下即使软质聚氯乙烯制品也会变硬、变脆。由于聚氯乙烯含氯量达65%,因而具有阻燃性和自熄性。

聚氯乙烯的热稳定性差,无论受热或日光都能引起变色,从黄色、橙色、棕色直到黑色,并伴随着力学性能和化学性能的降低。

聚氯乙烯具有较好的典型能,其电绝缘性可与硬橡胶媲美。

(二)用途

聚氯乙烯的应用比较广泛。在包装材料方面,它可制造包装薄膜、收缩薄膜、复合薄膜和透明片材,还可制作集装箱和周转箱以及包装涂层。

四、聚苯乙烯(PS)

(一)性能

聚苯乙烯是质硬、脆、透明、无定型的热塑性塑料。没有气味,燃烧时冒黑烟。密度为1.04~1.09g/com?,易于染色和加工,吸湿性低,尺寸稳定性、电绝缘和热绝缘性能极好。 聚苯乙烯的力学性能同制造方法、分子量大小、取向度以及所含杂质有关。分子量大的强度高,分子量在5万以下的拉伸强度很低,10万以上的其拉伸强度的改善就不明显了。分子量高时成型困难,通常分子量控制在5~20万。

聚苯乙烯可溶解于许多溶剂中,如苯、甲苯、四氯化碳、氯仿、邻二氯苯等。

聚苯乙烯的透光率为87%~92%,其透光性仅次于有机玻璃。折光指数为1.59~1.60。受光照射或长期存放,会出现面混浊和发黄现象。 聚苯乙烯毒性极低,属于卫生安全的塑料品种。 (二)用途

聚苯乙烯由于具有高透明度、廉价、刚性、绝缘、印刷性好、易成型等优点,使它在青工制品,装潢和包装等方面有一定的使用价值。 五、聚对苯二甲酸乙二醇脂 (PET)

(一)性能

聚对苯二甲酸乙二醇脂系结晶型聚合物,密度为1.30~1.38g/cm?,熔点为255?C~260?C,在热塑性塑料中具有最大的强韧性,其薄膜拉伸强度可与铝箔相匹敌,为聚乙烯的9倍,聚碳酸酯和尼龙的3倍。

聚对苯二甲酸乙二醇脂在较宽的温度范围内,保持其优良的物理机械性能,-20?~80C?内温度的影响很小,长期使用温度可达120?C,能在150?C使用一段时间。

聚对苯二甲酸乙二醇脂在较高温度下,也能耐氟氢酸、磷酸、乙酸、乙二酸,但盐酸、硫酸、硝酸能使它受到不同程度的破坏,如拉伸强度下降。强碱尤其是高温下的碱,能使它的表面发生水解,其中以氨水的作用更剧。 (二)用途

聚对苯二甲酸乙二醇脂除了大量用于抽丝做纤维外,多用于制造薄膜,大量用于电影片基、X光片基、录音音像带基。由于电性能好,在电气、电子工业中可做B级(130?C)绝缘材料。此外,还大量用于吹塑瓶子,如用于调味品、食用油、饮料、化妆用品瓶子。注射制品坚韧耐磨,吸湿性小,尺寸稳定,弹性模量高,并具有优良的电性能和耐化学性,主要用于机械、电气电子精密结构件,如线圈骨架、配电开关、继电器原件等。

六、聚酰胺(PA) (一)性能

聚酰胺是乳白色或微黄色不透明粒状或粉状物,密度为1.02~1.15g/cm?,吸水率为0.3%~9.0%,随着链节中碳原数的增加,密度和吸水率趋于降低。

聚酰胺的结构可以看作是聚乙烯分子链中每间隔一定距离嵌入一个聚酰胺基团。这中间隔随链节中碳原子数的增加而增大,其性能受聚酰胺基团的影响变小,作为聚乙烯的性质增加。例如,聚酰胺的拉伸强度弯曲强度、熔点和吸水率等都随着链节中碳原子数的增加而降低。但由于聚酰胺基团的存在,聚酰胺类聚合物都显示出耐磨、易吸水的共性。

与金属比,聚酰胺的刚性比较低,表面硬度和耐蠕变性也较差,但它的比强度高于金属,比压缩强度与金属相当。

聚酰胺的拉伸强度、弯曲强度和硬度随温度和吸水率的增大而降低。而冲击强度则随温度和吸水率的增大而明显提高。

聚酰胺居于有优良的耐磨性,各种聚酰胺的摩擦系数差别不大,通常在0.1~0.3之间。如果在聚酰胺中添加二流化钼、石墨等填料或聚四氟乙烯粉末,可进一步提高其耐磨性。 聚酰胺的熔点温度范围窄,通常在180?C~280?C之间,长期使用温度一般不宜超过

100?C。若在100?C以上的温度下长期与氧接触,会使制品逐渐呈现褐色,丧失使用性能。 大多数聚酰胺具有自燃性,少数品种具有可燃性,但对火焰的传播速度很慢。

聚酰胺在室温下耐稀酸、弱碱和大多数盐类,但强酸、较高浓度的酸及强氧化剂会使其明显受到侵蚀,在较高温度下发生破坏。

聚酰胺的耐溶剂性优良。能耐烃类、油类及一般溶剂,如四氧化碳、乙酸甲脂、苯、四氢呋喃等。它对矿物油、植物油均呈惰性,但水和醇及其类似的化合物能使聚酰胺溶胀,在常温下可溶于极性的酚类化合物和氯化钙的甲醇溶液。

各种聚酰胺的电性能在干态时基本相同,具有较高的电阻值,但随着温度和吸水率的增加有明显的降低;介电常数与此相反,虽吸水率的增加而增大。 (二)用途

聚酰胺在工业上主要用于制造各种机械、汽车、化工、电子和电器装置的零部件,特别用于高强度或耐磨制件,如各种齿轮、滑轮、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、各种壳体、工具手柄、支撑架、汽车灯照等。在电子仪器设备、继电器等电

器设备中制作零件、电梯导轨、建筑装饰用扶手等。在包装上可制成薄膜,与铝箔制成复合材料,用于罐头、食品和饮料的包装。 七、聚偏二氯乙烯 (PVDC) (一)性能

聚偏二氯乙烯是硬币、韧性、半透明至透明材料,带有不同程度的黄色。经紫光照射后发暗橙道淡紫色荧光。密度为1.70~1.75g/cm?,吸水性<0.1% 。

与其他塑料相比,聚偏二氯乙烯对很多气体和溶液具有很低的透过率,故广泛用作包装材料。纯聚偏二氯乙烯由于难以制得适当的测试样品,因而很少获知其机械性能。主要是测定共聚物的强度。聚偏二氯乙烯的机械性能与结晶的种类、数量和定向程度有关。拉伸强度随结晶度升高,而韧性和伸长率则随之而下降。

聚偏二氯乙烯在热、紫外线、离子辐射、碱性试剂、催化金属或盐类作用下容易分解,分解反应的共同特点是有氯或氢释放出来。

(二)用途

聚偏二氯乙烯除作纤维用外,主要用作包装薄膜。此外还可作为防湿的涂料和粘合剂。 八、聚乙烯醇 (PVA) (一)性能

聚乙烯醇的密度为1.26~1.29g/cm?,折射率为1.52,紫外线照射后发蓝白色荧光。吸水性大,浸入水中能溶解。对纤维的含水率可达30%~50%,在65%RH、25?C环境下的湿率也可达4.5% 。能透过水蒸气,但难透过醇蒸汽,更不能透过有机溶剂蒸汽、惰性气体和氢气。聚乙烯醇薄膜的阻气性甚至优于聚偏二氯乙烯薄膜。聚乙烯醇的弹性模数为4400~5400MPa,拉伸强度为35MPa,伸长率取决于含湿量,平均可达450%;纤维的湿强度是干强度的55%~60%;薄膜的硬度随分子量的增加而增加。聚乙烯醇虽为结晶性高聚物,但熔点不敏锐,融熔温度范围为220?C~240C?。玻璃化温度为85?C。

聚乙烯醇受热软化,稳定使用温度为120?C~140C?。在250?C,有氧存在分解时,产生自然。由于聚乙烯醇在一般气候条件下都会吸湿,故不宜在电绝缘方面应用。

(二)用途

由于聚乙烯醇具有良好的透明性、五静电性、韧性、印刷性,极好的阻气性和良好的耐化学性,作为水溶性的包装材料是个分适宜的。 九、乙烯-醋酸乙烯脂共聚物(EVA)

(一)性能

EVA共聚物是高分子的热塑性聚合物,是典型的无规共聚体。EVA由于在乙烯支链中引入由极性的醋酸集团所组成的短支链,打乱了原来的结晶状态,从而降低了支链上乙烯的结晶度,同时还增加了聚合物链之间的距离。这就使EVA比聚乙烯更富有柔韧性和弹性。 EVA的熔体指数(MI)的大小与聚合工艺条件有关,亦与VA含量有关,在同一聚合条件下,VA含量逾高,其MI亦逾高。

EVA的介电常数、介电损耗角正切值与共聚物中VA含量呈线性的函数关系,即VA含量越高,其介电常数也就越大。

EVA热分解温度为229?C~230?,也有文献报道在250C?以上。

EVA对于气体和湿气的渗透性要比低密度聚乙烯高,因此它不宜做高度抗渗透材料。EVA的耐油、耐化学药品性比聚乙烯、聚氯乙烯稍差,随VA含量的增加,这一倾向愈加明显。

(二)用途

EVA可作为收缩薄膜、重包装袋、可挠性电线和电缆护套,也常用于注射和吹塑制品、热

熔粘合剂、各种板材纸张涂层、泡沫制品等。EVA还可作为其他树脂的改性剂。

十、聚碳酸酯(PC) (一)性能

聚碳酸酯是无色或微黄色透明颗粒,无味、无臭、无毒。密度为1.2g/cm?,吸水率小于0.16%,透明率为75%~90%,折光指数(25?C)1.5890,可制成透明、半透明,不透明的各种制品。

聚碳酸酯具有优异的冲击强度和耐蠕变性,拉伸强度和弹性模量也较高,而且能在较高的温度范围内保持较高的力学强度;不足之处是它的疲劳强度和耐磨性差。聚碳酸酯既有良好的耐寒性,又有良好的耐热性。它的脆化温度为-100%,最高使用温度为100%,可在-60~120?C下长期使用。

聚碳酸酯对热、氧、大气和紫外线有良好的稳定性。但长期在室外使用或在强光照射下,其表面会变暗,失去光泽、泛黄,甚至产生龟裂。

聚碳酸酯是极性聚合物,电性能比非极性的碳氢聚合物稍差,但仍属于电性能优良的塑料品种。

(二)用途

聚碳酸酯的用途十分广泛,可用作机械零件,能耐油酸可作食品和医药包装薄膜,能经受高温消毒,可作外科医疗器械。由于其力学强度高,又可作安全防护用的面罩、安全帽、机械防护罩等,以及飞机的挡风罩、座舱盖、空调管道、舱门、仪表盘、座位及结构材料等。日前,聚碳酸酯已成为航空和宇航工业中不可缺少的材料。 乙烯-乙烯醇共聚物(EVOH)

将乙烯聚合物的加工性和乙烯醇聚合物的阻隔作用相结合,乙烯-乙烯醇共聚物不仅表现出极好的加工性能,而且也对气体、气味、香料、溶剂等呈现出优异的阻断作用。由于同乙烯结合而具有热稳定性,含有EVOH阻隔层的多层容器是完全可以重复利用的。正是这些特点,在食品包装方面使含有EVOH阻隔层的塑料容器能代替许多玻璃和金属容器。化学和性能在今天可利用的聚合物中,聚乙烯醇(PVOH)的气体渗透率最低。但是,PVOH是水溶性的,而且难以加工。EVOH共聚物是这样制取的:首先是乙烯和醋酸乙烯共聚,然后是水解该共聚物得到乙烯-乙烯醇。因此,仍然保留了高度的阻隔作用,而且在防潮和加工性能方面有明显改善。从性质上来说,EVOH共聚物是高度结晶体,它的性质主要取决于其共聚单体的相对浓度。一般地说,当乙烯含量增加时,气体阻隔性能下降,防潮性能改进,且树脂更易于加工。

EVOH树脂的最显著特点是其对气体的阻隔作用。它被用在包装结构中,通过防止氧气的渗入来提高香味和质量的保留程度。在使用充气包装技术中,EVOH树脂有效地保留了用来保护产品的二氧化碳或氮气。由于在EVOH树脂的分子结构中存在着羟基,EVOH树脂具有亲水性和吸湿性。当吸附湿气后,气体的阻隔性能会受到影响。但是,阻隔层中的湿含量可以精心地控制,使用多层技术将如聚烯烃等强隔湿树脂把EVOH树脂层包裹起来,可以做到这一点。耐油EVOH树脂也具有很强的耐油性和耐有机溶剂性能。在68°F下浸入各种溶剂和油中1年后,重量增加的百分数为:对环己烷、二甲苯、石油醚、苯和丙酮等溶剂为0%,对乙二醇为2.3%,对甲醇为12.2%,对色拉油为0.1%。热/机械性能EVOH树脂具有高的机械强度、弹性、表面硬度,耐磨性和耐气候性,并且有强的抗静电性。EVOH薄膜具有高光泽和低雾度,因而高度透明。EVOH树脂是所有商用强阻隔树脂中,热稳定性最高的树脂,这一性质使加工中产生的废料的可以再生和再利用,再生料中含有多达20%以上的EVOH。加工在多层结构中使用EVOH提供隔层有三种基本方法,

它们是:共挤出结构。EVOH树脂同聚烯烃或聚酚胺结合形成构架。EVOH薄膜层压到其它基质上,或用其它材料作涂层。用EVOH树脂作各种基质或单层容器的涂层。不需要特殊改变,就可容易地在传统制造设备上进行加工。利用商用设备,EVOH树脂适用于下列加工中:单层或多层薄膜挤出;片材和型材共挤出;共挤出吹塑;共挤出涂层;层压(或叠层)和注塑。

含有EVOH树脂构架或EVOH薄膜的二次加工如热成型、真空成型和印刷等都很容易进行。同其它聚合物一样,EVOH树脂可通过过热来改性。包括多层涂层或共挤出涂层的涂层技术也可以用来生产多层结构物,最后得到的结构非常类似于共挤出结构。可用EVOH树脂喷涂,浸入或滚筒涂层等方法。生产盛装碳酸化饮料的容器或达到阻隔溶剂、香料或气味的目的。EVOH树脂对大多数聚合物的附着力很差,为克服这一困难,需使用特殊设计的粘接树脂或“连接树脂”。但尼龙除外,无需使用粘接树脂,EVOH树脂就可以很好地粘附到尼龙上。新发展随着刚性、高阻隔塑料包装的增长,对EVOH树脂提出了新的性能要求。为满足这些需求,EVOH供货商提供了某些牌号的产品,象J102(美国EVAL公司-EVALCA)和日本Goshei公司的ST系列产品。这些产品提高了可加工性和更宽的成型范围。其它产品,象美国EVAL公司的F100和E151也被开发出来,它们具有更好的粘度且和用于刚性容器中典型的聚烯烃有更好的匹配性。在塑料回收领域,EVOH树脂更具有优越性。用过的高密度聚乙烯牛奶瓶和多层瓶(含有EVOH树脂)共混后,被用来生产非食品用的容器。

应用含有EVOH树脂的阻隔层结构用在所有硬和软包装和包括无菌、热注入和压煮的所有类型的食品加工中。用含有EVOH材料包装的产品有:调味品(酱油)、番茄沙司、汁、食用面糊、肉产品、乳酪制品和加工过的水果。非食品应用包括溶剂、化学品及与医药有关的产品包装。机动车的燃料箱、燃料管和空调设备的制造商正在评价是否用EVOH结构来减少烃和/或氟利昂的排放。商业信息供货商包括:日本Nippon Goshei,日本的Kuraray有限公司和美国的EVAL公司。

粘合树脂的介绍(常用粘合性聚合物)

在多层共挤复合技术和涂布复合等技术中经常要用到粘合树脂,杜美国邦公司称为TIE,日本三井公司称为ADMER,以及日本三菱公司,韩国SK公司和阿托非纳公司的产品,还有南京奥光和南京六合公司的相关产品。

粘合树脂通常是一类接枝改性的聚合物。通过将共聚单体接枝在聚合物的主链上形成官能支链,使暴露在主链外的官能支链迅速,高效地与被粘合材料发生化学反应。粘合性材料的润湿,扩散,化学键以及物理纠缠是决定粘合强度的主要因素。

常用粘合性聚合物是一种酸酐改性的乙烯-醋酸乙烯,聚乙烯,聚丙烯聚合物和一些酸共聚物。根据聚合物载体的种类分别用于粘合PE,PP,沙林,EVA,PA,和EVOH,PVC,纸张等,这类粘合树脂可用于普通的挤出和共挤出设备进行加工。

粘合树脂的功能就是将通常来说互相不能粘合的树脂或基材粘合在一起。其粘合的效果通常用剥离强度表征。

1、酸酐改性的乙烯-醋酸乙烯共聚物(简称EVA改性粘合树脂) 就像EVA一样,它的改性粘合树脂有有类似于EVA树脂的密度和熔指,可粘合多种材料。比如:PE,EVA,PA6,沙林。

EVA改性粘合树脂在共挤出时必须保证有充分的时间使酸酐激活,以确保产生足够的粘合力。因此温度的设置非常重要。为了确保粘合强度,在粘合树脂接触其他被粘合材料前,应使粘合树脂的熔体保持在210摄氏度以上的熔体温

度数分钟,从而确保其在共挤出加工时的粘合性能。为了防止EVA因加工温度过高而降解,加工温度应该限制在238度。

如果粘合性能良好,则可将加工温度降至230度左右。粘合树脂在210度以上的时间越长,酸酐激活得越充分。但是过高的温度或挤出机中死角造成滞留时间过长可能会引起树脂老化。

具体温度设置还要根据螺杆设计,挤出机背压限制,压力限制,共挤出时和其它材料的流变性能匹配以及其他材料的热稳定性影响等因素而进行调整。此外粘合树脂在挤出机中滞留的时间也会影响薄膜的质量,应该使它在挤出机中的流动尽可能顺畅。

由于酸酐改性的EVA粘合树脂的软化点较低,所以在加工时应保持挤出机的加料段的温度尽可能低,然后在压缩段迅速将温度升到熔点。

通常可通过用水冷却料筒喉部和螺杆加料段可避免树脂架桥问题。要根据挤出量的需要来选择合适的螺杆,可以使用标准聚烯烃螺杆但要避免过深的螺槽影响粘合树脂的剪切熔融。同时应该避免使用过大的螺杆在低速下挤出粘合树脂。

2、酸酐改性的线形低密度聚乙烯聚合物(简称LLDPE粘合树脂)

具有类似与线形低密度聚乙烯LLDPE的密度和熔体指数。可粘合多种材料,比如:乙烯-乙烯醇共聚物(EVOH),PA6,PE,离子型聚合物(沙林)和乙烯的共聚物。具有和LLDPE树脂有相似的物理性能。可用于吹膜,流延薄膜/片材等共挤出工艺。用LLDPE粘合树脂生产聚乙烯阻隔结构的共挤出薄膜比用EVA粘合树脂为基材的生产薄膜有更好的耐热性能。也可以用于共挤出涂布工艺,每个牌号的树脂的流变性能不同,因此都具有其特定的应用场合。

LLDPE粘合树脂对EVOH有良好的粘合性能,对PA具有优异的粘合性。 同上面EVA一样,加工温度的设定非常关键。

在200度以上的熔融温度中保持几分钟,以激活酸酐基团。

在和EVA或EVOH这类树脂热敏树脂材料共挤出时,为了防止EVA和EVOH的温度过高,酸酐改性的LLDPE粘合树脂的加工温度不得超过235度。

如果粘合力足够好,可将粘合树脂加工温度降到210—220度。

当和尼龙PA及其他热稳定的树脂共挤出加工时,它的加工温度可以高一些,最大不超过250度。并可适当降低。超过260度就会出现晶点问题。

采用共挤出生产工艺时:控制材料和加工工艺参数并使不同材料的熔体黏度匹配是最关键的工艺技术。

3、酸酐改性的聚丙烯聚合物(简称PP粘合树脂)

具有类似与聚丙烯PP的密度和熔体指数。可粘合多种材料,比如:PP,乙烯-乙烯醇共聚物(EVOH),PA6。

具有和PP树脂有相似的物理性能。可用于吹膜,流延薄膜/片材等共挤出工艺。温度的设置非常重要。为了确保粘合强度,在粘合树脂接触其他被粘合材料前,应使粘合树脂的熔体保持在210摄氏度以上的熔体温度数分钟,从而确保其在共挤出加工时的粘合性能。

在和EVA或EVOH这类树脂热敏树脂材料共挤出时,为了防止EVA和EVOH的温度过高,酸酐改性的PP粘合树脂的加工温度不得超过235度。

如果粘合力足够好,可将粘合树脂加工温度降到210—220度。

当和尼龙PA及其他热稳定的树脂共挤出加工时,它的加工温度可以高一些,最大不超过250度。

4、酸酐改性的高密度聚乙烯聚合物(简称HDPE粘合树脂)

具有强韧,耐高温的特点,广泛用于共挤出流延,吹膜,片材耐煮沸结构,PE与PA,EVOH的粘合,铝塑粘合结构等。温度的设置:酸酐改性的HDEP粘合树脂的加工温度不得超过235度。如果粘合力足够好,可将粘合树脂加工温度降到210—220度。当和尼龙PA及其他热稳定的树脂共挤出加工时,它的加工温度可以高一些,最大不超过250度。

5、乙烯和甲基丙烯酸酯的共聚物(主要用于涂布)略

6、粘结性树脂的性能及其在共挤复合中的应用 一、粘结性树脂的性能牌号

所谓粘结性树脂是指这些树脂有良好的热粘合性,同多种树脂有良好的相容性。能在熔融状态下同多种树脂相—混配的一类树脂。它们中绝大多数是乙烯同极性聚合物单体的共聚物,例如:乙烯同丙烯酸及其酯类、乙烯同醋酸乙烯酯、乙烯同顺丁烯二酸或顺丁烯二酸酐的共聚物等。在软塑包装业中最常使用的粘结性树脂是乙烯同醋酸ZJ烯酯共取的EVA为墓础的美国Dupont公司开发生产的商品名为Bvnel的共挤㈩用相容剂,以乙烯同丙烯酸盐的共聚物为基础的离子型树脂Surlyn、以美国Dow化学公司生产的乙烯同丙烯酸的共聚物为基础的商品名为Pfimacor相容剂等各种粘结性树脂的性能牌号及用途如下: 1.离子型树脂Surlyn Dupont公司生产:的Surlvn树脂是软塑包装业中很重要的一类树脂,它具有良好的同尼龙、EVAL、铝箔及除聚丙烯外的各类聚乙烯的粘结相容性。透明性好,耐针刺性好、耐汕脂、耐溶剂性好、热封性优、82%下可以热封,具有良好的低温热封性、夹杂物、热封性、无嗅无毒无味,可直接同食品药品接触,在无菌包装中是铝/塑/纸复合包装中不可缺少的内封层材料。

2.Primacor

Pnmacor是Dow化学公司生产的乙烯同丙烯酸的共聚物,即:EAA共聚物,它同尼龙、聚烯烃(PO)、铝箔、纸有卓越的粘结性;对油、油脂、酸、盐有良好耐性,热封性能优良,热封强度比离子型聚合物还要高;符合美国FDA要求;吸水量低。Primacor可以用于挤出涂布、共挤出复合或单独吹塑成膜,吹膜可应用于干式复合内封层用,热封可靠、无渗漏。Primacor的各种牌号中,2912、2150、3330、3340、3440、3460可用于挤出涂布,其加I温度为:170~/230%’/280%/290cC/290~C。用于挤出吹膜的牌号为1320、1410、1430上述所有牌号的丙烯酸含量为3%-9.7 %。吹膜级的熔融指数为1.5-5S/lOmin,而挤涂级的熔融指数为5.5-20s/lOmin应当指出的是为防止高温下Primacor树脂的腐蚀性,加工设备中与树脂接触的部分应采用镀铬或镀镍,并且在停机前要使用熔融指数二22/lOmin左右的LDPE作清洗树脂,在280~C下把Prima-cor全部清洗出来为止

二、粘结性树脂在挤出涂布及共挤复合中的应用

1.Surlyn在铝/塑/纸复合膜中的应用

TetraPak公司生产的铝/塑/纸复合包装膜是用于无菌包装牛奶及其它非碳酸饮料的主要材料,其结构为PE挤涂层(保护印刷用)/印刷层(表印)/纸/PE/铝箔/PE/Surlyn(内封层)。Surlyn作为内封层是同PE共挤出涂布于铝箔上面的。为了使LDPE挤涂于铝箔上而有良好的粘结性,应当用较高的温度(290℃—300~C)并使用较长的气隙(Airgap),这样可以使LDPE有较大的氧化程度,以提高粘结力。

2.Bynel 3095、3048和3036在生产共挤阻隔性包装膜中的应用

实例①:LDPE/Bynel/PA/Bynel/LDPE用于包装汉堡牛排、热狗肠、咸肉的真空包装。

实例②:PA/EVAIJPA/Bynel/Surlyn用于包装汉堡牛排、热狗肠、咸肉的真空包装。 实例③:PA/EVAL/Bynel/Surlyn用于热狗肠、咸肉真空包装。

实例④:PA/Byne~Sudyn包装熟的火腿。

实例⑤:HDPE/Bynel/PA/Bynel/EVA用于包装芳香阻隔层糕点、配合料、包装盒的衬里。

实例⑥:LLDPE/Bynel/PA/Bynel/LLDPE铺垫用气泡包装膜。

3.使用Bynel 3036、E—162和31 01共挤多层复合片材和共挤吹塑阻隔性容器 实例①:PET/Bynel/HIPS高抗冲的热成型复合片材,可代替ABS片材。

实例②:PP/Bynel/EVAL/ByneUpp,生产高阻隔复合容器,用以代替玻璃和金属容器。

实例③:PC/Bynel/EVA[JBynel/PP, 生产高阻隔复合容器,用以代替玻璃和金属容器。

实例④:HIPS/Bynel/EVAL/ByneUpp,生产阻隔复合容器,用以代替玻璃和金属容器。

4.其它共挤复合膜的生产例子

实例①:PA/Surlyn 1652/PE,有高度的阻隔性和良好的强韧性,用于真空食品包装。 实例②:PA/CXA/LDPE CXA是粘结性树脂,该共挤复合膜有良好强度和高度的阻隔性,用于真空食品包装。

实例③:PA/UBE-BondFll00/PE UBE-BondFll00是日本宇部兴产生产的粘结性树脂、同尼龙和PO(聚烯烃)均有良好粘结性,高强度,高阻隔,易热封、用于真空食品包装。 第一章 薄膜的生产和成型过程 1、多层共挤吹膜生产设备技术特点

摘要:多层共挤吹塑薄膜已广泛应用,其关键是生产设备与生产技术,本文对设备作详细介绍。 关键词:包装;吹膜;机械

1前言

在目前全球塑料包装膜市场上,带有尼龙的多层共挤膜比例越来越高,现在欧美、日本等地的尼龙消耗量每年增长10%以上,在中国的消耗量每年增长30%,而尼龙在多层共挤高阻隔性包装膜成分中只占10%~15%,可见这种包装膜在日常生活中使用量越来越大,而且还会更加普及,它可以使各种食品的保质期延长两倍以上,生产高档塑料包装膜定行业在目前和未来十年里,都是极具发展潜力的。

吹膜机组主要有几部分组成,如挤出机、机头、风环内冷、牵引及其收卷等,一套质量好的吹膜机组要求从挤出直到收卷的整个过程都不能的缺陷,如果其中任何一个环节的设计原理和制造质量出现问题,生产出来的制品质量就会降低很多,即影响使用又影响销路,这个问题应当引起重视。

从中国吹膜机制造的现状可以看出,技术含量低是一项最大的问题,吹膜机的技术水平直接影响到制品的质量,这就是为什么众多有实力的厂家不得购买国外的先进设备,但是高昂的设备价格提高了生产的成本,在市场上竞争能力受到了影响。按照技术难度和重要程度来分,欧美一些发达国家将机头和收卷的技术就放在首要位置,另外在吹膜工艺上也力求改进,使制品

的质量不断提高,然而,中国与其他国家在国情上有很大的不同点,改进的项目太多了,会使生产成本增加很多,但是制品的质量提高不大,我们应当针对中国的国情进行必要的改进,同时又要保证逐渐降低成本,扩大销路。

2多层共挤吹膜技术的特点

多层共挤膜机组中有很多技术在中国已经得到很好的运用与发展,例如挤出机技术,按照目前中国所使用的情况已经完全达到要求了,人们对它的投入较大,取得的成果喜人,在行业里,人们称之为主机,而其余部分则称为辅机,恰恰是这些辅机技术的改进,极大地提高了制品的质量。

(1)多层共挤机头 目前中国的业内人士都知道多层共挤机头有很多种类,国内各类文献介绍也很多,但是由于地域的局限性,所写的内容不够详细和准确,本文在此介绍一种多流道平面叠加式机头。

照片中显示的是五层共挤双流平面叠加式机头,它是由碟形片叠加而成的,每层碟形片有两个进料口,可以挤出两层薄膜,使每一层受热均匀,有效改善塑化性能,所以,这种五层共挤的叠加机头吹制出来的膜可以获得十层的效果,制品厚度的误差在5%以内。碟与碟之间加有隔热层,可以单独控制每一层机头的温度,相邻层之间温度之差可高达80℃。根据不同的生产要求。可以撤走、增加或重新布置各层机头,增减容易,节省费用。整个机头全部采用38CrMoAIA材料制成,具有良好的热稳定性,经过特殊的热处理工序,内部电镀抛光的加工手段,保证了薄膜的强度,节省原料,而且改善塑化性能,提高产品质量。经测定,同样厚度的包装膜,这种多层共挤膜强度高于同类复合膜30%,在相同的强度条件下,这种多层共挤膜要比同类复合膜节省原料20%以上。

与锥形叠加机头相比,在相同条件下,平面叠加式机头结构紧凑,它的实际高度只有锥形叠加机头的60%,提高了塔架的有效高度,在七层和九层共挤吹膜机组中,这种机头就有了绝对的优势;

业内人士都知道,在多层共挤吹膜工艺中,LDPE和PA的塑化温度相差很大,只有能够独立加热的机头才可以生产,锥形叠加机头表面上可以独立加热,但细细分析又有些不妥,通过剖面图可以看出,它的圆柱部分是相对独立的,但是其圆锥部分已经插入到另外一层的圆柱体中,理论上已经受到另外一层加热温度的影响了,况且,在长期生产过程中,金属的热传导会使各层锥形叠片温度互相干扰,趋于一致,必须增加隔热层才能保证相邻两种材料的温度差。这种设计思想在平面叠加式机头体现的非常明显。

由于平面叠加式机头采用侧面进料,机头内流道拐点少,没有死点,频繁停机和开机时绝不会有糊料现象,特别是吹制尼龙这种材料的时候,它的优越性是无与伦比的,这种机头的设计理论已经超出了传统思想观念,是理论上的一种飞跃。

(2)自动收卷机

收卷机从名义上分类有两种,一种是表面摩擦式收卷机,另外一种是转位式中心收卷机;针对不同的品种,又出现了带中心辅助卷曲的表面摩擦式收卷机、间隙式表面摩擦收卷机以及带有表面摩擦辅助的中心式收卷机、间隙式中心转位收卷机等等。

这种收卷机在市场上使用得最为广泛,它的技术要点就是张力控制和薄膜展平。展平技术在收卷中极其重要,一套合理的展平机构甚至可以弥补机组中的某些缺陷,需要指出的是,展平机构的功能范围是有限的,在这个范围之外薄膜会恢复到展平前的状态,因此,在上牵引和下牵引之间设置展平装置的想法是错误的,它不但增加成本,而且会损坏薄膜,最终还没有起到作用,这套机构只能在卷曲辊之前使用。目前国产的收卷机上设置的展平机构无一例外都是不合理的,展平机构的技术要点在于薄膜的角度、机构的位置和弯曲的弧度,这是一点都不能错的,尽管如此,薄膜的折径对展平的效果有很大影响,折径越小,展平效果就会越好,当薄膜的厚度与层数增加并经过擦边或折叠时,可以去掉展平机构。

张力控制要求与薄膜的厚度、层数和膜卷的直径有关系,由于机械化水平的提高,欧美国家的满卷直径一般为1200mm,随着张力控制理论的提高,也有几家收卷到直径1500 mm。在单层薄膜满卷直径小于1000mm时,一般都采用恒定的张力控制.满卷直径太大的单层或者多层卷曲,应该采用曲线张力控制,张力大小随着直径来变化。张力控制机构的灵敏度就应该更高,反之亦然,当薄膜的厚度和层数增加并经过擦边或折叠时,这种表面摩擦式收卷机就必须附加中心辅助卷曲机构了。

这是一台用于大棚膜和土工膜卷曲的带中心辅助卷曲的表面摩擦式收卷机,首先明确的是,这种收卷机对张力控制的精度和灵敏度要求都不高,不过,这种薄膜在卷曲时张力还是很大的,有时大到出现打滑现象,这里摩擦卷是主要的,中心卷起到辅助作用,单是中心卷的扭矩不足以卷起如此大的膜卷,只起到收紧卷芯的功能,以保证膜卷的完美。同样道理,带有表面摩擦辅助的中心式收卷机是以中心收卷为主,表面摩擦收卷为辅以帮助增加动力。

这种收卷机主要用于膜厚较小,卷径也小的场合,它是最大满卷直径不宜超过400mm,其主要技术除了展平和张力控制以外,还需要有一个橡胶压辊靠在膜卷上,因此,多数情况下,它的收卷效果要好于摩擦式收卷机。需要注意的是,在卷曲很薄的薄膜如香烟膜等,每一个辊都必须有动力,防止拉伤薄膜。(图五)右侧的照片就是这样一种收卷机。国内用来卷曲地膜的八辊摩擦卷取是不能用来收卷包装膜的。

(3)吹膜工艺的改进

吹膜工艺主要指吹膜生产中的一些主要步骤,如挤出、成型、冷却、牵引和收卷等,它们的主要目的是为了保证制品的质量和产量,说到产量,它是降低生产成本的一个重要因素,影响产量的因素有很多,但是增大挤出量、提高牵引速度已经是轻而易举的事,最主要的因素当属机头的设计加工水平。本文提到的多层平面叠加机头由于挤出层数多出一倍,吸热面积就大,塑化效果好,自然就会提高质量,辅之以冷却技术的提高,产量可以提高50%。

所谓冷却技术,就会让人想到风环和内冷以及冷水机组,这都已经是普遍使用的技术了,人们多想到这些技术可以提高产量,但是用它来提高质量的人并不多,北美使用冷却技术主要是为了提高质量,他们用乙二醇制冷机组来替代冷水机组,提出风环和内冷的出口温度要达到50℃,目的是提高冷却和结晶速度,这样就会提高制品的透明度、强度和韧性,也就是提高经济效益。在冷却方式中,水冷的效果是最好的,然而从卫生角度考虑,医用膜和食品包装膜不允许使用水冷,即使流延里的冷水辊都是不可以使用的,因为室内空气与冷却水的温度差异,会使冷却辊的表面凝结水汽,不符合卫生要求,由此可以看出,制品的生产车间也必须满足这些卫生要求。

由于平面叠加机头从侧面进料,因此机头无法旋转,只好采用上牵引旋转,上牵引旋转在世

界上也分几种,虽然外形不尽相同,但是工作都很可靠,由于旋转原理自身的影响,薄膜会产生周期性偏移,如果收卷时不进行切边的话,就要加上电子纠偏装置。

北美还有一种红外线测厚技术,通过机头的局部加热,来提高薄膜的均匀度,它号称可以将制品的厚度误差控制在3.5%以内,对于这项技术我们应当辩证来看,首先,在设备、环境等的综合影响之下,我们是否能够生产出误差3.5%以内的制品?另外,在保证5%误差的基础上,设备增加十万美金获得这样的成绩在消费市场上必要性如何?这都是用户们应当考虑的问题。很明显,在包装膜市场上,高档优质的制品一定要有高技术、高质量的设备来生产,开发产品应当以市场为主,提高设备的性能价格比。

3吹膜技术的应用和发展趋势

通过提高吹膜机挤出、成型、冷却、牵引和收卷等一系列技术水平,我们已经生产优质多层共挤薄膜,应用在各行各业,如医院用的输液袋,各类食品用的包装袋,总之,生产高强度,高阻隔性,高透明性的包装膜已经是明显的趋势,在这个前提下,提高质量,降低成本是主要任务,随着市场要求和吹膜技术的不断提高,共挤的层数会更多,但是在中国,包装膜吹膜设备的规格会出现向小型化发展的趋势。

从吹膜工艺对制品质量的影响来看,小规格的多层共挤吹膜设备有许多优点。第一、薄膜质量好;这里的薄膜指的是输液膜、高阻隔膜等高档薄膜,小规格的共挤设备生产的制品泡径适中,从制冷机组出来的冷风在这种规格中的冷却效果最好,而且折径较小的薄膜无论是牵引、旋转还有收卷,成品的表面质量都是最好,不容易出现皱纹。第二、性能价格比高;小规格设备并不是什么都小,这种五层平面叠加机头的产量很大,通过口模的变换,可以生产出小规格的薄膜,在提高质量的同时,其产量也是其它同类设备的1.5倍,它价钱便宜、能耗低、生产效率高、机架高度小,厂房高度可以降低,卫生环境好控制、可以为更多用户所接受。通过成本分析可以计算出,两台小设备所生产制品的产量如果与一台大设备产量相同的话,这样的两台小设备成本总和要少于一台大设备,而且小设备生产出的制品质量高于大设备。第三、适应经过分切这一道工序,分切多了,对收卷效果会有影响,同时,这种设备无法生产小规格筒状包装膜,如重包装袋等。而小机器可以吹制0~800mm范围之内的任何规格、任何层数的筒状类、分切类包装膜,在不用修改任何设备配置的情况下,它能够生产的制品种类最多,适应市场的多样化要求,最重要的是,在这样的规格和成本下制品极具质量价格优势,在市场竞争中立于不败之地。

PP薄膜用于吹膜的PP为IPP工艺(上吹和下吹)主要是下吹法,但下吹后薄膜不能马上用纸芯收卷,因为PP膜有收缩性,24小时后才能用纸卷收。 1、薄膜级PP挤出吹膜用北京燕山:2600,MI:10,辽阳石化:1088,MI:6-10;国产F600均聚,F650共聚,F630等日本三菱石化:FX3B;7,0 FW3; 8,5。FA3,MI=9,日本住友化学:WF315,MI=11;美国福聚: PD-943;8,0吹膜级 1088B大韩油化 11薄膜级,吹塑膜,一般用途,一般包装膜,食品服装.吹膜级 T36F华北一炼 3.2适于拉膜机生产的单层和共挤膜,用于较高流动性液体的包装,食品包装,纺织品包装,粘胶带,装饰带,热收缩膜。吹膜级 F1002燕化 1.7透明镀金属食品包装 2、流延蒸煮膜用原料有了好的设备,还必须有好的原料,并掌握合适的工艺条件才能制造出优良的产品。CPP一般蒸煮膜使用二元无规共聚丙烯原料,其制成的薄膜袋可耐121-125℃高温杀菌30-60分钟。CPP高温蒸煮膜使用嵌段共聚丙烯原料,其制成的薄膜袋可耐135℃高温杀菌,30分钟。根据多年积累的经验及各方面的交流,特推荐下列厂商牌号的原料以供选用:进口蒸煮膜原料牌号: ①韩国SK公司: 一般用:R14OH(含防粘爽滑剂)/R14OM(无添加剂) 熔指:6.0;特点:透明度好,50μ;雾度:1.7% 高温用:B33OF(无添加剂) 熔指:7.5;

特点:抗冲击性好,45μ445g ②韩国SUMSUNG公司 一般用:RF402(含防粘爽滑剂)/RF401(无添加剂) 熔指:7.0;特点:鱼眼、晶点少 ③韩国HONAM公司 一般用:SFC650RA(含防粘爽滑剂)/SFC650RT(无添加剂) 熔指:8.0;特点:适宜冷冻 ④日本CHISSD公司 一般用: CF3073(含防粘、爽滑剂) 熔指:7.5; 高温用:CF7051(无添加剂) 熔指:8.5国产蒸煮膜原料牌号: 上海石化: 一般用:F800E(含防粘爽滑剂)/F800EDF(无添加剂) 熔指:8.0上述牌号为国内CPP厂家生产蒸煮膜常用原料,性能稳定、质量可靠。需要说明的是,由于蒸煮袋加工的手段不同、存装的食物不同、销售的地区不同,因而对薄膜性能的要求也不同。在选用原料时就要考虑下游厂家的不同要求而有所变更配方。例如:开口性好,热封层就要添加适当的防粘剂;刚性好,芯层就要共混适当比例的均聚树脂;薄膜柔性好、冲击强度高、低温热封性好,就不妨添加10-15%日本三井公司的“TAFMER”树脂。生产蒸煮袋的厂家一般对BOPET、BOPA的选择余地很小,相反对CPP的要求就高了。CPP的生产者如何应对客户的需求选择,是扩展蒸煮袋膜市场的根本途径。工艺:CPP蒸煮膜厚度范围约为50—90μm,它的生产工艺要求根据各企业所拥有的设备、场地、原料不同而因机、因地、因料制宜。但共同的规律必须遵循。①加工温度:对薄膜性能影响最大的是温度。挤出机、模头的加热温度一般控制在230-250℃间,料筒阶段温度为

180(190)-210(220)-220(230)-230(250)℃,熔体温度保持在240℃±15℃为宜。树脂温度升高,膜的纵向(MD)拉伸强度增大,透明度增高,但膜的横向(TD)拉伸强度下降。流涎冷却辊温度控制在20-25℃左右。流涎辊温度低,薄膜透明度好,流涎辊温度高,薄膜透明度差,但刚性好。 3、 PP的下吹设备 1]、摸头可选用顶部(低)进料的螺旋机头,由于PP熔体黏度较小,模坯向下挤出时,摸坯壁厚会因自重下垂而减薄,故其摸头的间隙相对地大些,约0,8-1,2mm,摸头摸口直径,可根据IPP的宽度,吹胀比进行设计见表:薄膜折径 120-200 200-320 240-400 300-500 600-800摸口直径 80 100 150 200 350吹胀比 1,0-1,6 1,3-2,0 1,0-1,7 1,0-1,6 1,0-1,4 2]、冷却水环冷却水环由冷却水槽和定型套管组成,冷却水环的定型管内径,必须与膜泡外径相吻合。下吹与上吹不同之处就是:薄膜的折经不仅取决与吹胀比,还必须有相应内径的冷却定型水环配合,每生产一种规格的IPP,都有一个相配套的冷却水环。冷却水环可用不锈钢制造,定型套管的内表面必须光滑,定型套管外包纱布,膜泡从定型套管内穿过,并夹带水膜进入人字夹板。 3]、干燥器冷却水膜泡的水,经导向板(人字夹板)后流入水槽。从薄膜带走的水珠,需经干燥器除去水分。干燥器由两组电加热器组成,干燥器表面温度在50度以下,也可使用送风机吹风,加速出去薄膜水分。 PP用粘合树脂日本MEDIC系列:P502,MI=1.3 ; P553, MI=2.4 ; P604U , MI=2.5 IPP的成型工艺条件 1]、树脂:IPP选用薄膜级树脂均聚级或共聚级,熔体流速6--12g/10min,挤出级树脂透明度差,晶点多。 2]、挤出机加热温度,如下:进料段: 150-180熔融段: 180-200出料段: 200-220连接段: 210-220摸头段: 200-210 3]、冷却水环的冷却水温度水温过高透明度差,夏季生产冷却水槽要加冷冻水,冷却水温过低,薄膜会发粘,冷却水温控制在15-20范围。此外,冷却水环内的水流量过小或局部缺少,会造成薄膜厚度不均匀,若水流量过急,会冲击膜泡,使薄膜产生褶皱。 4]、吹胀比 PP的结晶度高,较难吹胀,故其吹胀比较小。一般为1-2。 5]、牵伸比一般为2-3,薄膜的牵伸速度不能过快,否则会影响其冷却定型。 6]、螺杆转速 36-65r/min,#45;若为#75,为12-120r/min,机头表压50MPA; 7]、口模间隙 0,8-1,2mm 8]、薄膜的后伸缩 IPP会产生后收缩,虽然经冷却定型,也要待24小时才能稳定,采用无纸芯卷饶,薄膜从伞型卷饶轴取出后平置。若用纸芯卷饶,薄膜的后收缩会使膜卷出现暴筋,薄膜产生变形。 9]、水冷用PA为1020CA,黏度3,0,熔融温度224,密度1,14。中粘; PA为1030CA,黏度4,5高粘。

4、挤出机的重要工作原则

下面是关于挤出的要牢记的重要原则。这些原则能够帮助您省钱、生产高质量产品并更加有效地使用设备。 1.机械原则

挤出的基本机理很简单——一个螺杆在筒体中转动并把塑料向前推动。螺杆实际上是

一个斜面或者斜坡,缠绕在中心层上。其目的是增加压力以便克服较大的阻力。就一台挤出机而言,有3种阻力需要克服:固体颗粒(进料)对筒壁的摩擦力和螺杆转动前几圈时(进料区)它们之间的相互摩擦力;熔体在筒壁上的附着力;熔体被向前推动时其内部的物流阻力。

牛顿曾解释说,如果一个物体没有向一个给定的方向运动,那么这个物体上的力就在这个方向中平衡。螺杆不是以轴向运动的,虽然在圆周附近它可能横向快速转动。因此,螺杆上的轴向力被平衡了,而且如果它给塑料熔体施加了一个很大的向前推力那么它也同时给某物体施加了一个相同向后推力。在这里,它施加的推力是作用在进料口后面的轴承——止推轴承上。

多数单螺杆是右旋螺纹,像木工和机器中使用的螺杆和螺栓。如果从后面看,它们是反向转动,因为它们要尽力向后旋出筒体。在一些双螺杆挤出机中,两个螺杆在两个筒体中反向转动并相互交叉,因此一个必须是右向的,另一个必须是左向的。在其它咬合双螺杆中,两个螺杆以相同的方向转动因而必须有相同的取向。然而,不管是哪种情况都有吸收向后力的止推轴承,牛顿的原理依然适用。

2.热原则

可挤出的塑料是热塑料——它们在加热时熔化并在冷却时再次凝固。熔化塑料的热量从何而来?进料预热和筒体/模具加热器可能起作用而且在启动时非常重要,但是,电机输入能量——电机克服粘稠熔体的阻力转动螺杆时生成于筒体内的摩擦热量——是所有塑料最重要的热源,小系统、低速螺杆、高熔体温度塑料和挤出涂层应用除外。

对于所有其他操作,认识到筒体加热器不是操作中的主要热源是很重要的,因而对挤出的作用比我们预计的可能要小(见第11条原则)。后筒体温度可能依然重要,因为它影响齿合或者进料中的固体物输送速度。模头和模具温度通常应该是想要的熔体温度或者接近于这一温度,除非它们用于某具体目的像上光、流体分配或者压力控制。

3.减速原则

在多数挤出机中,螺杆速度的变化通过调整电机速度实现。电机通常以大约1750rpm的全速转动,但是这对一个挤出机螺杆来说太快了。如果以如此快的速度转动,就会产生太多的摩擦热量而且塑料的滞留时间也太短而不能制备均匀的、很好搅拌的熔体。典型的减速比率在10:1到20:1之间。第一阶段既可以用齿轮也可以滑轮组,但是第二阶段都用齿轮而且螺杆定位在最后一个大齿轮中心。

在一些慢速运行的机器中(比如用于UPVC的双螺杆),可能有3个减速阶段并且最大速度可能会低到30rpm或更低(比率达60:1)。另一个极端是,一些用于搅拌的很长的双螺杆可以以600rpm或更快的速度运行,因此需要一个非常低的减速率以及很多深冷却。 有时减速率与任务匹配有误——会有太多的能量不能使用——而且有可能在电机和改变最大速度的第一个减速阶段之间增加一个滑轮组。这要么使螺杆速度增加到超过先前极限或者降低最大速度允许该系统以最大速度更大的百分比运行。这将增加可获得能量、减少安培数并避免电机问题。在两种情况中,根据材料和其冷却需要,输出可能会增加。

4.进料担当冷却剂

挤出是把电机的能量——有时是加热器的——传送到冷塑料上,从而把它从固体转换成熔体。输入进料比给料区中的筒体和螺杆表面温度低。然而,给料区中的筒体表面几乎总是在塑料熔化范围之上。它通过与进料颗粒接触而冷却,但热量由热前端向后传递的热量以及可控制加热而保持。甚至当前端热量由粘性摩擦保持并且不需要筒体热量输入时,

可能需要开后加热器。最重要的例外是槽型进料筒,几乎专用于HDPE。

螺杆根表面也被进料冷却并被塑料进料颗粒(及颗粒之间的空气)从筒壁上绝热。如果螺杆突然停止,进料也停止,并且因为热量从更热的前端向后移动,螺杆表面在进料区变得更热。这可能引起颗粒在根部的粘附或搭桥。

5.在进料区内,粘到筒体上滑到螺杆上

为了使一台单螺杆挤出机光滑筒体进料区的固体颗粒输送量到达最大,颗粒应该粘在筒体上并滑到螺杆上。如果颗粒粘在螺杆根部,没有什么东西能把它们拉下来;通道体积和固体的入口量就减少了。在根部粘附不好的另一个原因是塑料可能会在此处热炼并产生凝胶和类似污染颗粒,或者随输出速度的变化间歇粘附并中断。

多数塑料很自然地在根部滑动,因为它们进入时是冷的,而且摩擦力还没有把根部加热到和筒壁一样热。一些材料比另一些材料更可能粘附:高度塑化PVC,非晶体PET,和某些最终使用中想要的有粘附特性的聚烯烃类共聚合物。

对于筒体,塑料有必要粘附在这里以便它被刮掉并被螺杆螺纹向前推动。颗粒和筒体之间应该有一个高的摩擦系数,而摩擦系数反过来也受后筒体温度的强烈影响。如果颗粒不粘附,它们只是就地转动而不向前移动——这就是为什么光滑的进料不好的原因。 表面摩擦并非影响进料的唯一因素。很多颗粒永远都不接触筒体或螺杆根部,因此在颗粒物内部必须有摩擦和机械与粘度连锁。

带槽筒体是一种特殊情况。槽在进料区,进料区与筒体其余部分是热绝缘的并是深度水冷的。螺纹把颗粒推入槽内并在一个相当短的距离内形成一个很高的压力。这增加了相同输出较低螺杆转速的咬合允量,从而前端产生的摩擦热量减少,熔体温度更低。这可能意味着冷却限制吹制膜生产线中更快的生产。槽特别适合于HDPE,它是除过氟化塑料之外最滑的普通塑料。

6.材料的花费最大

在某些情况下,材料成本可以占到产成本的80%——多于其他所有因素之和——除过少数质量和包装特别重要的产品比如医用导管。这个原则自然引出两个结论:加工商应该尽可能多地重复使用边角料和废品来代替原材料,并尽可能严格地遵守容差以免背离目标厚度及产品出现问题。

7.能源成本相对来说并不重要

尽管一个工厂的吸引力和真正问题和上升的能源成本在同一水平线上,运行一台挤出机所需的能源仍然是总生产成本中很少一部分。情况总是这样的因为材料成本非常高,挤出机是一个有效的系统,如果引入了过多能量那么塑料就会很快变得非常热以致于无法正常加工。

8.螺杆末端的压力很重要

这个压力反映螺杆下游所有物体的阻力:过滤网和污染扎碎机板、适配器输送管、固定搅拌器(如果有)以及模具自身。它不但依赖于这些组件的几何图形还依赖于系统中的温度,这反过来又影响树脂粘度和通过速度。它不依赖于螺杆设计,它影响温度、粘度和通过量时除外。就安全原因来说,测量温度是很重要的——如果它太高,模头和模具可能爆炸并伤害附近人员或机器。

压力对于搅拌是有利的,特别在单螺杆系统的最后区域(计量区)。然而,高压力也意味着电机要输出更多的能量——因而熔体温度更高——这可以规定压力极限。在双螺杆中,

两个螺杆相互咬合是一种更加有效的搅拌器,因此用于这种目的时不需要压力。 在制造空心部件时,比如使用支架对核心定位的蜘蛛模具制造的管子,必须在模具内产生很高的压力来帮助分开的物流重新组合。否则,沿焊接线的产品可能较弱并且在使用时可能出现问题。

9.输出=最后一个螺纹的位移+/-压力物流和泄漏

最后一个螺纹的位移叫做正流,只依赖于螺杆的几何形状、螺杆速度和熔体密度。它由压力物流调节,实际上包括了减少输出量的阻力效果(由最高压力表示)和增加输出量的进料中的任何过咬合效果。螺纹上的泄漏可能是两个方向中的任意一个方向。

计算每个rpm(转)的输出量也是有用的,因为这表示某时间螺杆的泵出能力的任何下降。另外一个相关的计算是所用每马力或千瓦的输出量。这表示效率并能够估计一台给定电机和驱动器的生产能力。

10.剪切率在粘度中起主要作用

所有普通塑料都有剪力下降特性,意思是在塑料运动得越来越快时粘度变低。一些塑料的这个效果表示得特别明显。例如一些PVCs在推力增加一倍时流速会增加10倍或更多。相反,LLDPE剪力下降得不是太多,推理增加一倍时其流速只增加3到4倍。减少了的剪力降低效果意味着挤出条件下的高粘度,这反过来又意味着需要更多的电机功率。这可以解释为什么LLDPE运行时温度比LDPE高。流量以剪切率表示,在螺杆通道中时大约是100s-1,在多数模具口型中是100和100s-1之间,在螺纹与筒壁间隙和一些小模具间隙中大于100s-1。熔体系数是粘度的一个常用的测量方法但却是颠倒的(比如是流量/推力而不是推力/流量)。可惜,其测量是在剪切率在10s-1或更小时而且在熔体流速很快的挤出机中可能不是一个真实的测量值。

11.电机与筒体对立,筒体与电机对立

为什么筒体的控制效果并非总是和期望的一样,特别是在测量区内?如果对筒体加热,筒壁处的材料层粘度变小,电机在这个更加光滑的筒体内运行需要的能量更少。电机电流(安培数)下降。相反地,如果筒体冷却,筒壁处的熔体粘度增大,电机必须更加用力地转动,安培数增加,通过筒体时除去的一些热量又被电机送回。通常,筒体调节器的确对熔体产生效果,这是我们所期望的,但是任何地方的效果都没有区域变量大。最好是测量熔体温度来真正了解发生了什么情况。

第11条原则不适用于模头和模具,因为那里没有螺杆转动。这就是为什么外部温度变化在那里更加有效。可是,这些变化是从里到外因而不均匀,除非在一个固定搅拌器中搅匀,这对于熔体温度变化以及搅拌都是一个有效的工具。

5、挤出机过滤网对塑料挤出成型的影响

在挤出机的挤出过程中,熔融物料通过过滤网被输送给模具。过滤网使物料得到过滤,并能改进物料的混合效果。但是,过滤网也能使工艺过程产生波动,导致背压和熔融物料温度上升,有时还会减少.挤出机的过滤网被固定在一个多孔或槽的保护板上,这样可以使挤出机和模具之间形成密封。干净的过滤网所产生的压力较小,可能只有50~

100lb/in2(1lb=0.4536Kg,1in=25.4mm)。随着压力的增加,过滤网上所截留的树脂中的杂质数量就变多,从而阻塞过滤网。

过滤网会影响熔融物料的温度

当更换阻塞的过滤网时,压力会突然下降,熔融物料的温度也可能会下降,从而造成产

品的尺寸发生变化。为了保持产品的同一尺寸,可以调整挤出机的螺杆转速,也可以调整挤出机的线性速度。在挤出圆形产品时,这些变化可能不会导致严重的问题,但在挤出扁平或者外形不规则的产品时,熔融物料温度的变化可能会影响产品的外形尺寸。比如,在一个扁平模具里,较冷的熔融物料可能使片材中心偏薄,而使周边偏厚。这种情况可以通过对模具的自动或手动调整得到校正。

在过滤网变换器后面,配备一个能够保证熔融物料稳定地进入模具的齿轮泵,可以防止上述问题的发生。但是,熔融物料在过滤网更换后所发生的温度变化仍然需要通过对模具的调整来解决。同时,由于齿轮泵容易被坚硬的杂质损坏,因此,齿轮泵也需要得到精细的过滤网的保护。

有些硬质PVC加工商不愿使用过滤网的原因是,过滤网会使PVC熔融物料温度升高而易发生降解,这样就需要热稳定性更好的物料,从而增加了材料的成本。若使用PVC专用的过滤网变换器,也会增加成本。所以大多数硬质PVC加工商要么回避使用过滤网,要么使用不带变换器的粗过滤装置,只过滤较大颗粒的杂质。

如何选择过滤网

钢丝是挤出机最常用的金属过滤网材料。不锈钢虽然比较昂贵,但可用于某些PVC生产线或其他场合以避免出现生锈。镍合金过滤网被应用于避免被氟聚合物或者PVDC所腐蚀的场合。

一般情况下,过滤网筛眼(或者说每英寸的金属丝数目)为20~150或更多。20筛眼的过滤网比较粗;40~60筛眼的过滤网比较细;80~150筛眼的过滤网则很精细。

大多数过滤网的筛眼都呈方格编织,每个方向的金属丝数目相同。荷兰式编织法是在水平方向采用粗金属丝,并规定为双数,比如,32 x120根/in(1in=25.4mm)。用荷兰式编织法制得的过滤网不需要在过滤装置内设置并联筛网就能起到精细过滤作用。

筛眼数目相同的过滤网的孔径是根据金属丝的直径来确定的,没必要完全一致。比如,由行距为24in、直径为0.02in的金属丝做成的20筛眼的过滤网,其每侧的开孔为0.01in;而由行距为30in、直径为0.01in的金属丝做成的20筛眼过滤网,其每侧的开孔稍大,为0.04in。这是因为细金属丝的过滤不够细,而且更容易阻塞(1in=25.4mm)。

一般情况下,过滤装置的安装方式是:最粗糙的滤网对着保护板,而最细的滤网则面对挤出机。比如,从保护板到挤出机的滤网排列方式可能是20筛眼/40筛眼/60筛眼,因为这种布置结构可以防止滤网被堵,并能将杂质“吹入”保护板的开孔内。

如果最细的滤网为80或更多的筛眼,为了防止该滤网被熔融物料的旋转运动或大的杂质阻塞,则可以将一个粗糙滤网放到前面(比如20/100/60/20筛眼的排列)。因为这种装置类型从两边看相同,所以为了保证它们不会被颠倒,有时也采用对称的布置方式(20筛眼/60筛眼/100筛眼/60筛眼/20筛眼)。

有些加工商故意将滤网装颠倒,让粗滤网先过滤上游表面较大颗粒杂质。他们认为,这种方法可容许更多侧面熔融物料通过,并使保护板上游表面的物料较少发生分解。

有关过滤网注意事项

由于钢丝滤网容易生锈,所以在储藏时要避免潮湿,否则铁锈将会出现在挤出物里。更为严重的是,生锈滤网很容易发生断裂并使所过滤出的杂质漏过,因此,要将滤网装入塑料袋或者防锈纸中储藏。

当正在挤压PVC材料时,切不可将裸露的滤网放置在挤出机头部。这是因为机头模具附近空气中的盐酸会对其产生腐蚀。挤出PVC时的最佳做法是,在模头上方安装一个排烟橱,并且一定要使备用滤网远离此处放置,甚至可将其用袋装好后放置在冷柜内。

吹扫、清洁保护板时很容易出现反卷现象,使密封面受到破坏,并使滑动面不相匹配,从而产生泄露。这样,不但会造成清洗工作费时,而且泄露的熔融物料可能会影响热电偶数值,还会损坏加热器,有时甚至可能导致着火。

对于单排气、两级挤出机而言,如果过滤网处的背压变大,那么其第二段产量将会减少,但其第一段的产量不会受到影响。当背压大约增至2500 lb/in2(1lb

=0.4536Kg,1in=25.4mm)时,来自第一段的熔融物料就开始徐徐泄露入排气孔。为了避免此类现象发生,一定要在压力处于较低时就更换滤网。另外,过滤装置后面的齿轮泵也有抑制熔融物料泄露入排气孔的作用。

如果滤网过滤到大片杂物(比如纸片),它会突然完全失效,这样就会使挤出机的压力迅速达到峰值。所以,为了防止上述情况发生,必须要有诸如安全隔膜、安全销或与压力表相连的报警等安全系统。

6、螺杆的参数与选择

一般螺杆分为三段即加料段,压缩段,均化段。

加料段——底经较小,主要作用是输送原料给后段,因此主要是输送能力问题,参数(L1,h1),h1=(0.12-0.14)D。

压缩段——底经变化,主要作用是压实、熔融物料,建立压力。参数压缩比ε=h1/h3及L2。准确应以渐变度A=(h1-h3)/L2。

均化段(计量段)——将压缩段已熔物料定量定温地挤到螺杆最前端、参数(L3,h3),h3=(0.05-0.07)D。

对整条螺杆而言,参数L/D-长径比

L/D利弊:L/D与转速n,是螺杆塑化能力及效果的重要因素,L/D大则物料在机筒里停留时间长,有利于塑化,同时压力流、漏流减少,提高了塑化能力,同时对温度分布要求较高的物料有利,但大之后,对制造装配使用上又有负面影响,一般L/D为(18~20),但目前有加大的趋势。

其它螺距S,螺旋升角φ=πDtgφ,一般D=S,则φ=17°40′。

φ对塑化能力有影响,一般来说φ大一些则输送速度快一些,因此,物料形状不同,其φ也有变化。粉料可取φ=25°左右,圆柱料φ=17°左右,方块料φ=15°左右,但φ的不同,对加工而言,也比较困难,所以一般φ取17°40′。

棱宽e,对粘度小的物料而言,e尽量取大一些,太小易漏流,但太大会增加动力消耗,易过热,e=(0.08~0.12)D。

总而言之,在目前情况下,因缺乏必要的试验手段,对螺杆的设计并没有完整的设计

手段。大部分都要根据不同的物料性质,凭经验制订参数以满足不同的需要,各厂大致都一样。

一.PC料(聚碳酸酯)

特点:①非结晶性塑料,无明显熔点,玻璃化温度140°~150℃,熔融温度215℃~225℃,成型温度250℃~320℃。

②粘度大,对温度较敏感,在正常加工温度范围内热稳定性较好,300℃长时停留基本不分解,超过340℃开始分解,粘度受剪切速率影响较小。

③吸水性强 参数选定:

a.L/D针对其热稳定性好,粘度大的特性,为提高塑化效果尽量选取大的长径比,本厂取26。

由于其融熔温度范围较宽,压缩可较长,故采用渐变型螺杆。L1=30%全长,L2=46%全长。

b.压缩比ε由渐变度A需与熔融速率相适应,但目前融熔速率还无法计算得出,根据PC从225℃融化至320℃之间可加工的特性,其渐变度A值可相对取中等偏上的值,在L2较大的情况下,普通渐变型螺杆ε=2~3,本厂取2.6。

c.因其粘度高,吸水性强,故在均化段之前,压缩段之后于螺杆上加混炼结构,以加强固体床解体,同时,可使其中夹带的水份变成气体逸出。

d.其它参数如e,s,φ以及与机筒的间隙都可与其它普通螺杆相同。

二.PMMA(有机玻璃)

特点:①玻璃化温度105℃,熔融温度大于160℃,分解温度270℃,成型温度范围很宽。 ②粘度大,流动性差,热稳定性较好。 ③吸水性较强。 参数选择 a.L/D选取长径比为20~22的渐变型螺杆,视其制品成型的精度要求一般L1=40%,L2=40%。

b.压缩比ε,一般选取2.3~2.6。

c.针对其有一定亲水性,故在螺杆的前端采用混炼环结构。 d.其它参数一般可按通用螺杆设计,与机筒间隙不可太小。 三.PA(尼龙)

特性:①结晶性塑料,种类较多,种类不一样,其熔点也不一样,且熔点范围窄,一般所用PA66其熔点为260℃~265℃。

②粘度低,流动性好,有比较明显的熔点,热稳定性差。 ③吸水性一般。

参数选择

a.L/D选取长径比18~20的突变型螺杆。

b.压缩比,一般选取3~3.5,其中防止过热分解h3=0.07~0.08D。

c.因其粘度低,故止逆环处与机筒间隙应尽量小,约0.05,螺杆与机筒间隙约0.08,如有需要,视其材料,前端可配止逆环,射嘴处应自锁。

d.其它参数、可按通用螺杆设计。 四.PET(聚酯)

特性:①熔点250℃~260℃,吹塑级PET则成型温度较广一点,大约255℃~290℃。 ②吹塑级PET粘度较高,温度对粘度影响大,热稳定性差。 参数选择

①L/D一般取20,三段分布L1=50%-55%,L2=20%。

②采用低剪切、低压缩比的螺杆,压缩比ε,一般取1.8~2,同时剪切过热导致变色或不透明h3=0.09D。

③螺杆前端不设混炼环,以防过热,藏料。

④因这种材料对温度较敏感,而一般厂家多用回收料,为提高产量,我厂采用的是低剪切螺杆,所以可适当提高马达转速,以达到目的。同时在使用回收料方面(大部分为片料),本厂根据实际情况,为加大加料段的输送能力,也采取了加大落料口径在机筒里开槽等方式,取得了比较好的效果。

五.PVC(聚氯乙烯)

热敏性物料,一般分为硬质和软质,其区别在于原料中加入增塑剂的多少,少于10%的为硬质,多于30%为软质。

特点:①无明显熔点,60℃变软,100℃~150℃粘弹态,140℃时熔融,同时分解,170℃分解迅速,软化点接近于分解点,分解释放于HC1气体。

②热稳定性差,温度、时间都会导致分解,流动性差。

设计原则a.温度控制严格,螺杆设计尽量要低剪切,防止过热。

b.螺杆、机筒要防腐蚀。

c.注塑工艺需严格控制。

一般讲,螺杆参数为L/D=16~20,h3=0.07D,ε =1.6~2,L1=40%,L2=40%。 为防止藏料,无止逆环,头部锥度20°~30°,对软胶较适应,如制品要求较高,可采用无计量段,分离型螺杆,此种螺杆对硬质PVC较适合,而且为配合温控,加料段螺杆内部加冷却水或油孔,机筒外加冷水或油槽,温度控制精度±2℃左右。

7、LDPE吹塑薄膜生产工艺及常见故障分析

大多数热塑性塑料都可以用吹塑法来生产吹塑薄膜,吹塑薄膜是将塑料挤成薄管,然后趁热用压缩空气将塑料吹胀,再经冷却定型后而得到的筒状薄膜制品,这种薄膜的性能处于定向膜同流延膜之间:强度比流延膜好,热封性比流延膜差。吹塑法生产的薄膜品种有很多,比如低密度聚乙烯(LDPE)、聚丙烯(PP)、高密度聚乙烯(HDPE)、尼龙(PA)、乙烯一乙酸乙烯共聚物(EVA)等,这里我们就对常用的低密度聚乙烯(LDPE)薄膜的吹塑生产工艺及其常见故障进行简单的介绍。 聚乙烯吹塑薄膜材料的选择

1.选用的原料应当是用吹膜级的聚乙烯树脂粒子,含有适量的爽滑剂,保证薄膜的开口性。 2.树脂粒子的熔融指数(MI)不能太大,熔融指数(MI)太大,则熔融树脂的粘度太小,加工范围窄,加工条件难以控制,树脂的成膜性差,不容易加工成膜;此外,熔融指数(MI)太大,聚合物相对分子量分布太窄,薄膜的强度较差。因此,应当选用熔融指数(MI)较小,且相对分子量分布较宽的树脂原料,这样既能满足薄膜的性能要求,又能保证树脂的加工特性。吹塑聚乙烯薄膜一般选用熔融指数(MI)在2~6g/10min范围之间的聚乙烯原料。 吹塑工艺控制要点

吹塑薄膜工艺流程大致如下:

料斗上料一物料塑化挤出→吹胀牵引→风环冷却→人字夹板→牵引辊牵引→电晕处理→薄膜收卷

但是,值得指出的是,吹塑薄膜的性能跟生产工艺参数有着很大的关系,因此,在吹膜过程中,必须要加强对工艺参数的控制,规范工艺操作,保证生产的顺利进行,并获得高质量的薄膜产品。在聚乙烯吹塑薄膜生产过程中,主要是做好以下几项工艺参数的控制: 1.挤出机温度

吹塑低密度聚乙烯(LDPE)薄膜时,挤出温度一般控制在160℃~170℃之间,且必须保

证机头温度均匀,挤出温度过高,树脂容易分解,且薄膜发脆,尤其使纵向拉伸强度显著下降;温度过低,则树脂塑化不良,不能圆滑地进行膨胀拉伸,薄膜的拉伸强度较低,且表面的光泽性和透明度差,甚至出现像木材年轮般的花纹以及未熔化的晶核(鱼眼)。 2.吹胀比

吹胀比是吹塑薄膜生产工艺的控制要点之一,是指吹胀后膜泡的直径与未吹胀的管环直径之间的比值。吹胀比为薄膜的横向膨胀倍数,实际上是对薄膜进行横向拉伸,拉伸会对塑料分子产生一定程度的取向作用,吹胀比增大,从而使薄膜的横向强度提高。但是,吹胀比也不能太大,否则容易造成膜泡不稳定,且薄膜容易出现皱折。因此,吹胀比应当同牵引比配合适当才行,一般来说,低密度聚乙烯(LDPE)薄膜的吹胀比应控制在2.5~3.0为宜。 3.牵引比

牵引比是指薄膜的牵引速度与管环挤出速度之间的比值。牵引比是纵向的拉伸倍数,使薄膜在引取方向上具有定向作用。牵引比增大,则纵向强度也会随之提高,且薄膜的厚度变薄,但如果牵引比过大,薄膜的厚度难以控制,甚至有可能会将薄膜拉断,造成断膜现象。低密度聚乙烯(LDPE)薄膜的牵引比一般控制在4~6之间为宜。 4.露点

露点又称霜线,指塑料由粘流态进入高弹态的分界线。在吹膜过程中,低密度聚乙烯(LDPE)在从模口中挤出时呈熔融状态,透明性良好。当离开模口之后,要通过冷却风环对膜泡的吹胀区进行冷却,冷却空气以一定的角度和速度吹向刚从机头挤出的塑料膜泡时,高温的膜泡与冷却空气相接触,膜泡的热量会被冷空气带走,其温度会明显下降到低密度聚乙烯(LDPE)的粘流温度以下,从而使其冷却固化且变得模糊不清了。在吹塑膜泡上我们可以看到一条透明和模糊之间的分界线,这就是露点(或者称霜线)。

在吹膜过程中,露点的高低对薄膜性能有一定的影响。如果露点高,位于吹胀后的膜泡的上方,则薄膜的吹胀是在液态下进行的,吹胀仅使薄膜变薄,而分子不受到拉伸取向,这时的吹胀膜性能接近于流延膜。相反,如果露点比较低,则吹胀是在固态下进行的,此时塑料处于高弹态下,吹胀就如同横向拉伸一样,使分子发生取向作用,从而使吹胀膜的性能接近于定向膜。

基本性能的技术要求 1.规格及偏差

聚乙烯薄膜的宽度、厚度应当符合要求,薄膜薄厚均匀,横、纵向的厚度偏差小,且偏差分布比较均匀。 2.外观

要求聚乙烯薄膜塑化良好,无明显的\水纹\和\云雾\;薄膜的表面应当平整光滑,无皱折或仅有少量的活褶;不允许有气泡、穿孔及破裂现象;无明显的黑点、杂质,晶点和僵块;不允许有严重的挂料线和丝纹存在。 3.物理机械性能

由于吹塑后的聚乙烯薄膜用于印刷或者复合加工工艺时,要受到机械力的作用,因此,要求聚乙烯薄膜的物理机械性能应当优良,主要包括拉伸强度、断裂伸长率、撕裂强度等几项指标应当符合标准。

4.表面张力的大小

为了使印刷油墨和复合用胶粘剂在聚乙烯薄膜表面具有良好的润湿性和附着力,要求聚乙烯薄膜的表面张力应当达到一定的标准,否则就会影响印刷和复合生产的顺利进行。一般来说,聚乙烯薄膜的表面张力至少应当达到38达因以上,达到40达因以上更佳。 低密度聚乙烯(LDPE)吹塑薄膜常见故障及解决方法

1.薄膜太粘,开口性差

故障原因:

①树脂原料型号不对,不是吹膜级的低密度聚乙烯树脂粒子,其中不含开口剂或者开口剂的含量偏低;

②熔融树脂的温度太高,流动性太大;

③吹胀比太大,造成薄膜的开口性变差;

④冷却速度太慢,薄膜冷却不足,在牵引辊压力的作用下发生相互粘结; ⑤牵引速度过快。 解决办法:

①更换树脂原料,或向科斗中加一定量的开口剂; ②适当降低挤出温度和树脂的温度; ③适当降低吹胀比;

④加大风量,提高冷却效果,加快薄膜冷却速度; ⑤适当降低牵引速度。 2.薄膜透明度差 故障原因:

①挤出温度偏低,树脂塑化不良,造成吹塑后薄膜的透明性较差; ②吹胀比过小;

③冷却效果不佳,从而影响了薄膜的透明度; ④树脂原料中的水分含量过大; ⑤牵引速度太快,薄膜冷却不足。

解决办法:

①适当提高挤出温度,使树脂能够均匀塑化; ②适当提高吹胀比;

③加大风量,提高冷却效果; ④对原料进行烘干处理; ⑤适当降低牵引速度。 3.薄膜出现皱折 故障原因:

①薄膜厚度不均匀;

②冷却效果不够;

③吹胀比太大,造成膜泡不稳定,左右来回摆动,容易出现皱折;

④人字夹板的夹角过大,膜泡在短距离内被压扁,因此薄膜也容易出现皱折; ⑤牵引辊两边的压力不一致,一边高一边低;

⑥各导向辊之间的轴线不平行,影响薄膜的稳定性和平展性,从而出现皱折。 解决办法:

①调整薄膜的厚度,保证厚度均匀一致; ②提高冷却效果,保证薄膜能够充分冷却; ③适当降低吹胀比;

④适当减小人字夹板的夹角;

⑤调整牵引辊的压力,保证薄膜受力均匀; ⑥检查各导向轴的轴线,并使之相互平行。 4,薄膜有雾状水纹 故障原因:

①挤出温度偏低,树脂塑化不良;

②树脂受潮,水分含量过高。 解决办法:

①调整挤出机的温度设置,并适当提高挤出温度。

②将树脂原料烘干,一般要求树脂的含水量不能超过0.3%。 5.薄膜厚度不均匀 故障原因:

①模口间隙的均匀性直接影响薄膜厚度的均匀性,如果模口间隙不均匀,有的部位间隙大一些,有的部位间隙小一些,从而造成挤出量有多有少,因此,所形成的薄膜厚度也就不一致,有的部位薄,有的部位厚;

②模口温度分布不均匀,有高有低,从而使吹塑后的薄膜薄厚不均;

③冷却风环四周的送风量不一致,造成冷却效果的不均匀,从而使薄膜的厚度出现不均匀现象;

④吹胀比和牵引比不合适,使膜泡厚度不易控制;

⑤牵引速度不恒定,不断地发生变化,这当然就会影响到薄膜的厚度。 解决办法:

①调整机头模口间隙,保证各处均匀一致;

②调整机头模口温度,使模口部分温度均匀一致; ③调节冷却装置,保证出风口的出风量均匀; ④调整吹胀比和牵引比;

⑤检查机械传动装置,使牵引速度保持恒定。 6.薄膜的厚度偏厚 故障原因:

①模口间隙和挤出量偏大,因此薄膜厚度偏厚; ②冷却风环的风量太大,薄膜冷却太快; ③牵引速度太慢。 解决办法:

①调整模口间隙;

②适当减小风环的风量,使薄膜进一步吹胀,从而使其厚度变薄一些; ③适当提高牵引速度。 7.薄膜的厚度偏薄 故障原因:

①模口间隙偏小,阻力太大,因此薄膜厚度偏薄; ②冷却风环的风量太小,薄膜冷却太慢;

③牵引速度太快,薄膜拉伸过度,从而使厚度变薄。 解决办法: ①调整模口间隙;

②适当增大风环的风量,加快薄膜的冷却; ③适当降低牵引速度。 8.薄膜的热封性差 故障原因:

①露点太低,聚合物分子发生定向,从而使薄膜的性能接近定向膜,造成热封性能的降低; ②吹胀比和牵引比不适当(过大),薄膜发生拉伸取向,从而影响了薄膜的热封性能。 解决办法:

①调节风环中风量的大小,使露点高一点,尽可能地在塑料的熔点下进行吹胀和牵引,以减少因吹胀和牵引导致的分子拉伸取向;

②吹胀比和牵引比应适当小一点,如果吹胀比过大,且牵引速度过快,薄膜的横向和纵向拉伸过度,那么,就会使薄膜的性能趋于双向拉伸,薄膜的热封性就会变差。 9.薄膜纵向拉伸强度差

故障原因:

①熔融树脂的温度太高,会使薄膜的纵向拉伸强度下降;

②牵引速度较慢,薄膜纵向的定向作用不够,从而使纵向的拉伸强度变差;

③吹胀比太大,同牵引比不匹配,使薄膜横向的定向作用和拉伸强度提高,而纵向的拉伸强度就会变差; ④膜的冷却速度太快。 解决办法:

①适当降低熔融树脂的温度; ②适当提高牵引速度;

③调整吹胀比,使之与牵引比相适应; ④适当降低冷却速度。

10.薄膜横向拉伸强度差 故障原因:

①牵引速度太快,同吹胀比相差太大,使纵向产生纤维化,横向强度就变差; ②冷却风环的冷却速度太慢。 解决办法:

①适当降低牵引速度,使之与吹胀比相配合;

②加大风环风量,使吹胀膜快速冷却,避免在较高 温度的高弹态下被拉伸取向。 11.膜泡不稳定

故障原因:

①挤出温度过高,熔融树脂的流动性太大,粘度过小,容易产生波动; ②挤出温度过低,出料量少;

③冷却风环的风量不稳定,膜泡冷却不均匀; ④受到了外来较强气流的干扰和影响。 解决办法:

①调整挤出温度;

②调整挤出温度;

③检查冷却风环,保证四周的送风量均匀一致; ④阻止和减小外界气流的干扰。 12,薄膜表面粗糙,凹凸不平 故障原因:

①挤出温度太低,树脂塑化不良; ②挤出速度太快。

解决办法:

①调整挤出的温度设置,并适当提高挤出温度,保证树脂塑化良好; ②适当降低挤出速度。 13.薄膜有异味 故障原因:

①树脂原料本身有异味;

②熔融树脂的挤出温度太高,造成树脂分解,从而产生异味; ③膜泡冷却不足,膜泡内的热空气没有排除干净。 解决办法:

①更换树脂原料;

②调整挤出温度;

③提高冷却风环的冷却效率,使膜泡充分冷却。 8、共挤出吹塑复合薄膜成型故障的排除

序号不正常现象产生原因解决方法

1泡管歪钭1;机头口模间隙不均匀1;调整口模间隙均匀 2;装配的机头不符合要求2;应重新装配

3;牵引辊不正3;调整

2薄膜厚度不均1;机头内料流通道及环形1;应折御机头,重新调整间隙 缝隙分布不均匀

2;泡管冷却不均匀2;应调整风冷环的安装位置及风冷 环的出风量,使其与机头对中且 出风均匀

3;泡管歪钭3;应调整泡形

4;水冷环不对中或不水平4;应调整水冷环的安装位置和水平 度,使其与机头对中且保持水平.

5;泡管周围空气流动太大5;应在泡管周围置挡风屏障,排除 外界气流的干扰。

6;口模温度太低6;应适当提高温度

3熔料线1;机头压缩比太小1;应改进机头设计,加大压缩比。 2;机头温度控制不当.2;应适当调整

4挂料线1;上料口有析出物及杂质1;应使用铜刮刀铲除,严重应折机头. 2;机头温度控制不当,熔料2;应适当降低机头温度 过热分解

3;机头结构设计不当,流道3;应改进机头设计,消除滞料死角 内有滞料死角.

5丝纹1;口模及芯棒加工粗糙. 1;应提高加工精度,流道表面必须具 有较高的光洁度

2;人字板或导辊表面有异物2;应清除异物

6黄点破洞1;过滤网阻塞,熔料过热分解1;应更换过滤网.

2;机头温度太高,特别是尼龙2;应清理机头内的焦化滞料,并适当 的加工温度太高降低成型温度

7晶点僵块1;原料不符合成型要求. 1;应更换原料. 2;熔料塑化不良2;应严格控制工艺条件,尤其是挤出 尼龙的挤出机,应严格控制机身和 机温度头

3;过滤网设置不当. 3;应重新设置.

8薄膜局部发白1;泡管歪钭1;应调整泡形

2;尼龙薄膜层厚度不均. 2;应调整尼龙薄膜层的厚薄均匀.

9气泡1;尼龙水份含量超标. 1;应干燥处理,尼龙烘干温度80度 2;挤出机排气不良. 2;应提高机筒真空度.

10薄膜阻隔性差1;阻隔层太薄1;应加大尼龙层挤出机的挤出量. 2;阻隔层厚度不均匀2;应调整其厚薄均匀度.

11薄膜剥离强度差1;口模定型段太短1;应适当加长定型段 2;口模温度太低. 2;应适当提高加工温度. 3;层与层之间粘附力小3;粘合剂有问题

4;电晕值不够4;提高电晕值

5;复合层原料含爽滑剂量多5;改用含有爽滑剂少的原料 12薄膜卷曲1;泡管冷却不当1;应适当调整风量和风温 2;后处理时间及温度控制不当2;应适当调整. 3;两种薄膜挤出收缩不一致3;应适当调整 13薄膜皱折1;薄膜厚薄不均匀. 1;调整口模间隙. 2;泡形不正2;应调整泡形

3;人字夹板张开角度不合适3;应适当调整(调小角度) 4;冷却水温度影响4;应适当提高水温或减少水量 5;膜管充气不当. 5;应适当控制充气或气量. 6;口膜各部温度不均6;调整温度,使其均匀 7;二层膜中有夹气7;消除夹气

14透明度差1;熔体温度偏低1;提高挤出温度 2;吹胀比过小2;提高吹胀比(4:1)

3;冷却不够3;加快冷却速度 4;原料4;更换原料

15单向强度偏低1;纵横向定向作用不平衡1;调整牵引比和吹胀比,使基本平衡 16薄膜撕裂强度低1;熔体温度偏高1;降低挤出温度 2;定向作用不够2;提高吹胀比和牵引比

3;冷却太快3;减慢冷却(冷却快可提高横向撕裂) 17穿孔1;成型温度太低1;提高挤出机机筒的温度 2;焦料(树脂分解,停车时间长) 2;冲干净焦料 18薄膜变色1;树脂发生降解1;降低料温

19 \厚度和宽度发生

波动(泡管不稳)\料流出现波动1;放慢挤出速度,并严格控温 2;压缩空气压力不稳2;检查供气是否有了泄气 3;环境空气流动不稳3;改善环境温度 20膜泡花加工温度太高

21膜泡上有苍蝇脚加工温度太高 22膜面上毛草加工温度太低 23膜上有竖印条PA未走顺

操作时易出现的问题和处理方法 1 PE绕螺杆

原因;温度太高

判别方法;车速提高,而产量不提高,自动变为手动 处理方法;将车速升降几个回会,将手动娈这自动

2 PE,飞车

判别方法;车速特别提高,产品同时提高,自动变为手动 处理方法;降低车速

3 PA吃不进料

表现为;压力上不去

判别方法;刚换PA时会出现这种现象

处理方法;将加料口切断料,用PE(LLDPE)棒直接增加料的压力 9、HDPE吹膜成型中间厚薄不均的解决方法

1.口模间隙调整不当。应调整口模间隙,保证出料口一致。

2。稳泡器未处于垂直状态。应重新安装或更换弯曲的稳泡器。

3。冷却风环供风不均匀。应检查风环与机头口模是否同心,风环出口与环内的堤坝板是否同心。同时,应调节送风量,使其均匀。 4。机头温度不均匀。应检查机头加温器是否正常。 5。稳泡器尺寸不适当。应更换尺寸适宜的稳泡器。

6。口模调节环变形,应更换调节环。7。泡管摆动,泡形不稳。应调整泡形。

10、HDPE吹塑薄膜故障的排除

序号不正常现象产生原因解决方法 1不出料或出料

不稳定1;事先开冷风机过久而使模面1;查看模面出口处胶料是否已经熔融 过冷

2;开机温度太低2;停机前稍为降温,挤完机筒料再停机

3;螺杆进料有胶料粘结3;料粘住时要在加料口施以压力或清

理螺杆

4;加料口有胶料结块4;降低加料段温度,开冷却水,清理结块 5;滤网堵塞5;更换滤网

2厚薄不均衡1;模头出口料不均匀1;调整模头间隙或清洗模头 2;冷却风环位置不正确或风量2;调整风环,风管 分配不均匀

3;吹胀比过大3;换大模头

4;厂房内空气流动过快4;挡板阻隔气流,防止直吹膜泡 3薄膜有皱纹1;膜厚不均1;调整口模间隙及风环位置 2;膜管不对称2;纠正挡板 3;冷却线过高3;降低冷却线

4;人字板摩擦力过大臣4;调整人字板安装角度或垫上摩擦系 数小的薄片

5;膜泡不稳定于5;固定挡板或降低挤出速度

4薄膜有鱼眼,箭头线胶状物,焦化小点1;熔料温度高或低1;调整温度. 2;滤网堵塞或破损2;更换滤网 3;原料有杂质3;更换原料 4;掺用粉料4;更换粉料

5;加热时间过长或停机时机筒5;停机时吹风机冷却10分钟

吹风机未开采

5挂料线1;在出料口处停有分解料或. 1;用铜铲刮出,严重时顶出心棒清理 杂质

2;模口被碰伤感2;修理模具

6薄膜吹不薄或

抽拉性差1;熔料温度过低1;提高温度 2;模头口间隙过大2;调整间隙

3;薄膜厚度不均匀3;改善薄膜厚度 4;冷却线过低4;提高冷却线

5;熔融指数过小或过大5;改用合适的原料熔指 7断膜1;原料有杂质1;选择好的原料.

2;色母不好2;选择好的色母

3;回料杂质多或加入量多3;降低回料的比例或不加回料 4;冷却线过低或温度过高或低4;提高冷却线,调整温度 5;滤网堵塞或破损5;更换滤网 6;吹胀比过小6;增加吹胀比 7;厚薄不均7;调整厚薄度 8;原料不适用8;更换原料

9;芯棒布料破损9;换芯棒

10;挤出速度过快10;降低挤出速度

常见故障及排除 序号缺点补救方法

1明显的纵向撕裂1;增大薄泡颈部的高度 2;增大吹胀比(小机头) 3;增大牵引速度及螺杆转速

4;减低熔体温度

2明显的横向撕裂1;缩小薄泡颈部的高度 2;减小吹胀比(小机头)

3落镖冲击强度太低1;有效利用薄泡颈部的高度 2;有效利用吹胀比

4膜泡不稳1;观察冷却风环的气流压力分布的均一性 2;减小冷却空气量及/或降低螺杆转速 3;减小薄泡颈高度及/或降低熔体温度 5薄膜到达牵引辊

之前起皱1;调整人字板的高度及角度(100~200) 2;调整护泡架或屏障板的张开程度 3;调整冷却气流

6薄膜在牵引辊之

后起皱1;减小牵引与收卷的距离 2;安装展幅辊

7收卷上形成起皱1;减小收卷张力 2;观察圆周薄膜厚度的均匀性

3;到达收卷之前充分骤冷薄膜

8边缘不均匀1;使用旋转或换向牵引及收卷工位 2;控制加工参数 9熔体破裂

(鲨鱼皮)1;升高机头温度 2;降低线速度 3;增加机头直径 4;增加模口间隙 5;添加加工助剂

LDPE吹塑薄膜故障的排除 序不正常现号 象 1;改进冷却风环结构设计,改进风口 或冷冻空气,聚冷 2;加大口模缝隙,一般1.5~3mm 3;应加大掺混比5~30%LDPE 1;降低牵引速度.增加膜厚 2;加大吹胀比 3;应适当提高霜线 4;清理机头 5;更换原料,选用密度较低,加工稳定 性较好的树脂 6;应适当减小间隙 7;应改换螺槽较深,压缩比较小的 LDPE专用螺杆 1;应适当降低螺杆转速使用LLDPE 螺杆及低压机头 2;应换密度较高的树脂 3;改进配方设计,可在LLDPE加少量 HDPE 10% 4;适当增加厚度 1;改进冷却风环结构设计,除去风环. 内的尘屑 2;清理机头. 3;应减小口模间隙 4;结构设计不合理,应改进设计划生育 5;应换用加工稳定性较高及蜡量较低 的树脂和母料 1;泡管冷却不良 1 薄膜透明度差 2;口模出料缝隙太小 3;原料掺LDPE太少 1;牵引速度太快,薄膜太薄 2;吹胀比太小 3;霜线太低 4;机头内有滞料焦化 2 冲击强度偏低 5;牌号选用不当 6;口模出料缝隙太大 7;螺杆类型不符要求 1;熔料温度太高 3 薄膜粘连 2;原料牌号选用不当 3;添加剂配方不合理 4;薄膜太薄 1;薄膜冷却不均匀 膜厚度变化不4 一 4;机头压力太高 2;机头内有焦化滞料 3;口模出料缝隙太大 5;原料牌号选用不当 6;机头过滤网层数不够 6;应适当增加 7;螺杆类型选用不当地 7;应使用均化型螺杆 1;熔料温度太高 1;应用特殊风环,采用冷冻空气冷却 2;口模出料缝隙太大 2;应适当减小 3;原料掺LDPE或HDPE比3;应加比例10~20%LDPE或HDPE 5 膜泡不稳定 例不 当 4;成型速度太快 4;应适当减慢 1;口模出料缝隙太小. 1;应适当加大 2;口模温度太低压 2;应适当提高 3;应使用较高熔体指数的线性3;原料不符合成型要求 6 熔体破裂 LLDPE 或含10~20%的LDPE掺混料 4;成型速度太快 4;应适当减慢 1;成型温度太低 1;应适当提高,一般机筒温度取198~ 210度,机头温度210~230度 挤出负荷太高 2;应适当加宽和增加机头内的出料7 2机头压力太高 水平 槽 降低机头压力 3;口模出料

本文来源:https://www.bwwdw.com/article/3a3x.html

Top