矿床地球化学国家重要实验室

更新时间:2023-08-21 15:08:01 阅读量: 高等教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

~中科院地化所矿床地球化学国家重点实验室LA-ICP-MS 实验室分析方法中英对译 (Analytical methods)

中文(In Chinese):

(1)磁铁矿微区元素含量分析方法描述

磁铁矿、铬铁矿微量元素含量在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS分析完成。激光剥蚀系统为ESI的NWR 213 nm激光剥蚀系统,ICP-MS为Agilent 7700x电感耦合等离子质谱仪。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约30s的空白信号和50s的样品信号。以USGS 参考玻璃(如GSE-1G,BCR-2G, BIR-1G 和BHVO-2G) 为校正标准,采用多外标-内标法(Dare et al., 2012)对元素含量进行定量计算。这些USGS 玻璃中元素含量的推荐值据GeoReM 数据库(http://georem.mpch-mainz.gwdg.de/)。对分析数据的离线处理采用软件ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a)完成。(2)碳酸盐微区元素含量分析方法描述

方解石、白云石微量元素含量在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS分析完成。激光剥蚀系统为Coherent公司生产的193 nm 准分子激光系统,ICP-MS为Agilent 7700x电感耦合等离子质谱仪。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS 中。每个采集周期包括大约30s的空白信号和50s的样品信号。以MPI-DING 参考玻璃(如GOR128-G,ATHO-G, StHs6/80-G,T1-G) 为校正标准,采用多外标-内标法(Chen et al., 2011)对元素含量进行定量计算。校准物质中元素含量的推荐值据GeoReM 数据库(http://georem.mpch-mainz.gwdg.de/)。对分析数据的离线处理采用软件ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a)完成。

(3)磷酸盐微区元素含量分析方法描述

磷灰石微量元素含量在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS分析完成。激光剥蚀系统为Coherent公司生产的193 nm

~

准分子激光系统,ICP-MS为Agilent 7700x电感耦合等离子质谱仪。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约30s的空白信号和50s的样品信号。以NIST610、NIST612、NIST614为校正标准,采用多外标-内标法(Chew et al., 2016)对元素含量进行定量计算。校准物质中元素含量的推荐值据GeoReM 数据库(http://georem.mpch-main z.gwdg.de/)。对分析数据的离线处理采用软件ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a)完成。

(4)硅酸盐微区元素含量分析方法描述

微区元素含量分析在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS分析完成。激光剥蚀系统为Coherent公司生产的193 nm 准分子激光系统,ICP-MS为Agilent 7700x电感耦合等离子质谱仪。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约30s的空白信号和50s的样品信号。以USGS 参考玻璃(如NIST 610,BCR-2G, BIR-1G 和BHVO-2G) 为校正标准,采用多外标、无内标法(Liu et al., 2008a)对元素含量进行定量计算(注意!不同矿物处理方法不同)。这些USGS 玻璃中元素含量的推荐值据GeoReM 数据库(http://georem.mpch-mainz.gwdg.de/)。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a)完成。

(5)锆石U-Pb定年方法描述

锆石微量元素含量和U-Pb同位素定年在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS分析完成。激光剥蚀系统为Coherent公司生产的193 nm 准分子激光系统,ICP-MS为Agilent 7700x电感耦合等离子质谱仪。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约30s的空白信号和60s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a)完成。U-Pb 同位素定年中采用锆石标准91500 作

~

外标进行同位素分馏校正,每分析6-8个样品点,分析2次91500。对于与分析时间有关的U-Th-Pb 同位素比值漂移,利用91500 的变化采用线性内插的方式进行了校正(Liu et al., 2010a)。锆石样品的U-Pb 年龄谐和图绘制和年龄权重平均计算均采用Isoplot (Ludwig, 2003)完成。锆石微量元素含量利用多个USGS 参考玻璃(NIST 610,BHVO-2G,BCR-2G,BIR-1G)作为多外标、Si 作内标的方法进行定量计算(Liu et al., 2010a). 这些USGS 玻璃中元素含量的推荐值据GeoReM 数据库(http://georem.mpch-mainz.gwdg.de/)。

(6)石英微量元素分析

石英微量元素分析在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS 完成。激光剥蚀系统为GeoLasPro 193nm ArF 准分子激光器,电感耦合等离子体质谱(ICP-MS)为Agilent 7900。激光剥蚀过程中采用氦气载气、氩气为补偿气,并加入少量氮气提高灵敏度,三者在进入ICP之前通过一个T 型接头混合。样品仓为标配的剥蚀池,其中加入树脂制作的模具来获得一个较小体积的取样空间,以降低记忆效应,提高冲洗效率。分析过程中,激光工作参数一般为频率9~10Hz,能量10~12J/cm2,束斑44μm。在测试之前用SRM610对ICP-MS 性能进行优化,使仪器达到最佳的灵敏度和电离效率(U/Th≈1)、尽可能小的氧化物产率(ThO/Th<0.3%)和低的背景值。含量计算采用多外标、总量归一化法(Liu et al.,2008;刘勇胜等,2013)。外标为NIST SRM610或GSE-1G,每分析10次样品则分析外标两次(NIST SRM610/GSE-1G+ 10个石英测试点+ NIST SRM610/GSE)。NIST SRM612、GSD-1G 以及一个天然石英标样被用来监控数据质量。石英标样中具有相对均一的Ti(57±4 μg/g)、Al(154±15 μg/g)、Li (30±2 μg/g)、Fe(2.2±0.3 μg/g)、Mn(0.34±0.04 μg/g)、Ge(1.7±0.2 μg/g)和Ga(0.020±0.002 μg/g)等元素含量(Audétat et al., 2015)。分析结果表明多数元素的准确度优于10%。详细分析流程见蓝廷广等(2017)和Lan et al. (2018).

(7)单个包裹体微量元素含量分析

单个流体包裹体主、微量元素的含量分析在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS 完成。激光剥蚀系统为GeoLasPro 193nm ArF 准分子激光器,电感耦合等离子体质谱(ICP-MS)为Agilent 7900。

~

激光剥蚀过程中采用氦气载气、氩气为补偿气,并加入少量氮气提高灵敏度,三者在进入ICP之前通过一个T型接头混合。样品仓为标配的剥蚀池,其中加入树脂制作的模具来获得一个较小体积的取样空间,以降低记忆效应,提高冲洗效率。单个样品的信号采集包括大约20s的空白信号、50s包裹体取样时间、20s左右信号衰减至背景值的时间。分析过程中,激光工作参数一般为频率9~10Hz, 能量10-11J/cm2,束斑24-44μm(根据包裹体大小调整)。在测试之前用SRM610对ICP-MS性能进行优化,使仪器达到最佳的灵敏度和电离效率(U/Th≈1)、尽可能小的氧化物产率(ThO/Th<0.3%)和低的背景值。数据校正使用NIST SRM610做外

wt.%)为内标(Heinrich et al., 2003)。氯标、氯化钠等效盐度(NaCl

equivalent

化钠等效盐度通过单独的流体包裹体测温获得。每分析10个包裹体分析两次NIST SRM610(NIST SRM610+10 流体包裹体 + NIST SRM610)。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算)采用软件SILLS(Guillong et al., 2008)完成。为了排除基质石英的影响,信号选择同时有Na、K或其他阳离子信号的区间。对于以氯化物为主的流体包裹体,推荐选择电价平衡(charge-balance)的方式来计算(Allen et al., 2005)。使用含五种元素的人工合成流体包裹体来监控数据准确度,其所含元素理论值为Na=K=Ca=2.05 wt.%,Rb=300 ppm, Cs=200 ppm,准确度一般优于16%。

In English:

(1)Trace element analyses of magnetite by LA-ICP-MS

Major and trace element analyses were conducted by LA-ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences. Laser sampling was performed using the NWR UP-213 Nd:YAG laser. An Agilent 7500x ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas which was mixed with Argon via a T-connector before entering the ICP-MS. Each analysis incorporated a background acquisition of approximately 30 s (gas blank) followed by 50 s of data acquisition from the sample. Element contents were calibrated against multiple-reference materials (GSE-1G,

~

BCR-2G, BIR-1G and BHVO-2G) combined with internal standardization (Dare et al., 2012). The preferred values of element concentrations for the USGS reference glasses are from the GeoReM database (http://georem.mp ch-mainz.gwdg.de/). Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration were performed by ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a).

(2)Trace element analyses of carbonate by LA-ICP-MS

Major and trace element analyses were conducted by LA-ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences. Laser sampling was performed using a GeoLas Pro193 nm ArF excimer laser. An Agilent 7500x ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas which was mixed with Argon via a T-connector before entering the ICP-MS. Each analysis incorporated a background acquisition of approximately 30 s (gas blank) followed by 50 s of data acquisition from the sample. Element contents were calibrated against multiple-reference materials (GOR128-G,ATHO-G, StHs6/80-G,T1-G) combined with internal standardization (Chen et al., 2011). The preferred values of element concentrations for the reference glasses are from the GeoReM database (http://georem.mp ch-mainz.gwdg.de/). Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration were performed by ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a).

(3)Trace element analyses of apatite by LA-ICP-MS

Major and trace element analyses were conducted by LA-ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences. Laser sampling was performed using a GeoLas

~

Pro193 nm ArF excimer laser. An Agilent 7500x ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas which was mixed with Argon via a T-connector before entering the ICP-MS. Each analysis incorporated a background acquisition of approximately 30 s (gas blank) followed by 50 s of data acquisition from the sample. Element contents were calibrated against multiple-reference materials (NIST610、NIST612、NIST614) combined with internal standardization (Chew et al., 2016). The preferred values of element concentrations for the reference glasses are from the GeoReM database (http://georem.mp ch-mainz.gwdg.de/). Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration were performed by ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a).

(4)Trace element analyses of silicate by LA-ICP-MS

Major and trace element analyses of silicate were conducted by LA-ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences. Laser sampling was performed using a GeoLas Pro 193 nm ArF excimer laser. An Agilent 7500x ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas which was mixed with Argon via a T-connector before entering the ICP-MS. Each analysis incorporated a background acquisition of approximately 30 s (gas blank) followed by 50 s of data acquisition from the sample. Element contents were calibrated against multiple-reference materials (NIST 610,BCR-2G, BIR-1G and BHVO-2G) without applying internal standardization (Liu et al., 2008a). The preferred values of element concentrations for the reference glasses are from the GeoReM database (http://georem.mp ch-mainz.gwdg.de/). Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration were performed by

~ ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a).

(5)U-Pb dating and trace element analyses of zircon by LA-ICP-MS U-Pb dating and trace element analyses of zircon were conducted synchronously by LA-ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences. Laser sampling was performed using a GeoLas Pro193 nm ArF excimer laser. An Agilent 7500x ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas which was mixed with Argon via a T-connector before entering the ICP-MS. Each analysis incorporated

a background acquisition of approximately 30 s (gas blank) followed by

60 s of data acquisition from the sample. Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration for trace element analyses and U-Pb dating were performed by ICPMSDataCal (Liu et al., 2008a; Liu et al., 2010a). Zircon 91500 was used as external standard for U-Pb dating, and was analyzed twice every 6-8 analyses (i.e., 2 zircon 91500 + 6-8 samples + 2 zircon 91500). Uncertainty of preferred values for the external standard 91500 was propagated to the ultimate results of the samples. Concordia diagrams and weighted mean calculations were made using Isoplot (Ludwig, 2003). Trace element compositions of zircons were calibrated against multiple-reference materials (NIST 610,BHVO-2G,BCR-2G,BIR-1G) combined with Si internal standardization.The preferred values of element concentrations for the USGS reference glasses are from the GeoReM database (http://georem.mpch-mainz.gwdg.de/).

(6)Trace element analyses of quartz by LA-ICP-MS

Quartz trace element analyses was conducted at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences (IGCAS) by using an Agilent 7900 ICP-MS equipped with a

~

GeoLasPro 193 nm ArF excimer laser. Laser repetition of 10 Hz, energy density of 12J/cm2 and spot size of 44 μm were used during the analyses. For the quantitative calibrations, external standard of NIST SRM610 or GSE-1G was used and analyzed twice every 10 analyses. An internal standard-in-dependent calibration strategy, which is based on the normalization of the sum of all metal oxides to 100 wt%, was applied to the calibrations (Liu et al., 2008). NIST SRM612 and GSD-1G were analyzed to monitor the accuracy of the results, which show that the uncertainties of most elements are less than 10%. A nature quartz standard was also analyzed to monitor the accuracy. This standard has recommended values for Ti (57±4 ppm), Al (154±15 ppm), Li (30±2 ppm), Fe (2.2±0.3 ppm), Mn (0.34±0.04 ppm), Ge (1.7±0.2 ppm) and Ga(0.020±0.002 ppm) (Audétat et al., 2015). The detailed analytical procedures are described in Lan et al. (2017, 2018).

(7)Major and trace element analyses of fluid inclusion by LA-ICP-MS Individual fluid inclusion major and trace element analyses was conducted at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences (IGCAS) by using an Agilent 7900 ICP-MS equipped with a GeoLasPro 193 nm ArF excimer laser. The standard ablation cell was optimized with resin mold to get a small volume and to improve the washout efficiency. Laser repetition of 9~10 Hz and energy density of 10-11 J/cm2 were used during the analyses. Laser spot size changed from 24 to 44 μm based on the sizes of the fluid inclusions.

being added to increase Helium was used as the carrier gas with 3 ml/min N

2

the sensitivity. Argon was used as the makeup gas and mixed with the carrier gas via a T-connector before entering the ICP. NIST SRM610 was

wt.% concentrations used as the external standard and the NaCl

equivalent

obtained independently by microthermometry as the internal standard

~

(Heinrich et al., 2003). NIST SRM610 was analyzed twice every 10 analyses. The data collected from the ICP-MS were processed by the SILLS software (Guillong et al., 2008). The charge-balance method was adopted to correct the modeled amounts of Na (from the NaCl eqv. wt%) for salinity contributions of other chloride salts (Allan et al., 2005). To ensure the fluid inclusion signals being processed without the interference from the host crystal, only spectra containing signals coincident with Na and other cations were selected. Synthetic ?uid inclusions containing ?ve elements of Na, K, Ca, Rb and Cs (standard values are Na=K=Ca= 2.05 wt%, Rb=300 ppm, Cs= 200 ppm) were also analyzed to monitor the accuracy, which show the total uncertainties of less than 16%. The detailed analytical procedures are described in Lan et al. (2017, 2018).

本文来源:https://www.bwwdw.com/article/39ci.html

Top