高中118个三角函数公式,终于找到了,大学也要用的
更新时间:2023-08-14 08:53:01 阅读量:1 IT计算机 文档下载
- 高中常用三角函数公式推荐度:
- 相关推荐
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2;
1-sin(a) = [sin(a/2)-cos(a/2)]^2;;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
正在阅读:
高中118个三角函数公式,终于找到了,大学也要用的08-14
信息论与编码姜丹第三版答案04-06
金工实习试题及答案10-17
智慧树幼儿园6项管理制度01-23
米克朗HPM1150U - 1350U维修手册 - 图文12-18
空间解析几何教学大纲05-24
汽车销售管理系统毕业设计论文05-07
荔蒲县一小2018-2019学年一年级下学期数学3月月考试卷07-04
2016年航空航天尔雅考试答案05-09
设计概算土建部分编制流程及注意事项10-17
- 供应商绩效评价考核程序
- 美国加州水资源开发管理历史与现状的启示
- 供应商主数据最终用户培训教材
- 交通安全科普体验教室施工方案
- 井架安装顺序
- 会员积分制度
- 互联网对美容连锁企业的推动作用
- 互联网发展先驱聚首香港
- 公司文档管理规则
- 机电一体化系统设计基础作业、、、参考答案
- 如何选择BI可视化工具
- 互联网产品经理必备文档技巧
- 居家装修风水的布置_家庭风水布局详解
- 全省基础教育信息化应用与发展情况调查问卷
- 中国石油--计算机网络应用基础第三阶段在线作业
- 【知识管理专题系列之五十八】知识管理中如何实现“场景化协同”
- 网络推广方案
- 中国石油--计算机网络应用基础第二阶段在线作业
- 汽车检测与维修技术专业人才培养方案
- 详解胎儿颈透明层
- 三角函数
- 公式
- 终于
- 找到
- 高中
- 大学
- 118
- 高Thiele模的Langmuir_Hinshelwood型动力学方程的有效因子
- 自然科学概论3
- 2014届高考语文一轮演练:4 正确使用词语(包括熟语) Word版含答案]
- 中国人婚姻质量问卷的编制和信效度分析
- CATIA心得体会
- 2014高考总复习 数列
- 2013年内蒙古自治区在岗职工平均工资情况
- 利用位图实现大数据量绘图的快速显示
- 团队接待流程
- 设置JAVA环境变量
- 《计算机审计》上机实验报告4
- 09小学科学实验室工作计划
- IS THERE ANY HOPE FOR FACE RECOGNITION
- 如何管理企业内的小白兔式员工
- 物业楼栋管家岗位职责
- 完善临终关怀 提高生命质量
- 卫生资格《初级护士》妇产科精华论-预防护理产褥感染
- 公安基础知识讲义
- 屋面防水试验
- 廉政风险防范管理工作培训材料