中考数学压轴题 - 2008~2010

更新时间:2024-01-11 10:16:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2008_中考数学专题复习压轴题

1.(2008年四川省宜宾市)

已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D. (1) 求该抛物线的解析式;

(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;

(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.

?b4ac?b2?(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为???2a,4a??)

??2

.

2. (08浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点

的坐标分别为O(0,0),A(10,0),B(8,23),C(0,23),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S; (1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t的取值范围;

(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由. y y B B C C O O x T A x T A

?3. (08浙江温州)如图,在Rt△ABC中,?A?90,AB?6,AC?8,D,E分别是边AB,AC的

中点,点P从点D出发沿DE方向运动,过点P作PQ?BC于Q,过点Q作QR∥BA交AC于

1

R,当点Q与点C重合时,点P停止运动.设BQ?x,QR?y.

(1)求点D到BC的距离DH的长;

(2)求y关于x的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

A D P B H Q

R E C

4.(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x. (1)用含x的代数式表示△MNP的面积S; (2)当x为何值时,⊙O与直线BC相切?

(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

A A N C P 图 3

5、(2007浙江金华)如图1,已知双曲线y=B

D 图 2 M O B P C B

图 1

C N M O A N M O

k(k>0)与直线y=k′x交于A,B两点,点A在第一象限.试x解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为 ;若点A的横坐标为m,则点B的坐标可表示为 ; (2)如图2,过原点O作另一条直线l,交双曲线y=k(k>0)于P,Q两点,点P在第一象限.①说明x四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由. 2

y A O B 图1 P A x B Q O 图2 6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于合条件的点P的坐标;若不存在,请说明理由. 3,若存在,请求出符4 7.(2008浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:

(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;

②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度?,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.

(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (a?b,k?0),第(1)

题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.

3

(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=

1,求BE2?DG2的值. 2

8. (2008浙江义乌)如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.

(1)将直线l向右平移,设平移距离CD为t(t?0),直角梯形OABC被直线l扫过的面积(图中阴影部份)

为s,s关于t的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

①求梯形上底AB的长及直角梯形OABC的面积; ②当2?t?4时,求S关于t的函数解析式;

(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线上是否存..AB..

在点P,使?PDE为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,

请说明理由.

9.(2008山东烟台)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.

(1)求证:△BDE≌△BCF;

(2)判断△BEF的形状,并说明理由;

(3)设△BEF的面积为S,求S的取值范围.

4

10.(2008山东烟台)如图,抛物线L1:y??x2?2x?3交x轴于A、B两点,交y轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C、D两点. (1)求抛物线L2对应的函数表达式;

(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;

(3)若点P是抛物线L1上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线L2上,请说明理由.

11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.

(1)求A地经杭州湾跨海大桥到宁波港的路程. (2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元? (3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2

5

①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸??都是矩形. ②本题中所求边长或面积都用含a的代数式表示.

开”纸、“4开”纸、“8开”纸、“16开”纸?.已知标准纸的短边长为a. ...

(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:

第一步 将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B?处,铺平后得折痕AE; 第二步 将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.

则AD:AB的值是 ,AD,AB的长分别是 , . (2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.

(3)如图3,由8个大小相等的小正方形构成“L”型图案,它的四个顶点E,F,G,H分别在“16开”纸的边AB,BC,CD,DA上,求DG的长.

(4)已知梯形MNPQ中,MN∥PQ,∠M?90?,MN?MQ?2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.

A B?

4开

a

2开

8开 16开 图1

D F

A E

H

D G

B

E 图2

C

B

F 图3

C

13.(2008山东威海)如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.

(1)求梯形ABCD的面积;

(2)求四边形MEFN面积的最大值.

(3)试判断四边形MEFN能否为正方形,若能, 求出正方形MEFN的面积;若不能,请说明理由.

D M C N

A E F B

14.(2008山东威海)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y?(1)求m,k的值;

(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形, 试求直线MN的函数表达式.

友情提示:本大题第(1)小题4分,第(2)小题7分.对

完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)

6

y A B O x k

的图象上. x

小题都做的,第(3)小题的得分不重复计入总分.

(3)选做题:在平面直角坐标系中,点P的坐标 y Q1 为(5,0),点Q的坐标为(0,3),把线段PQ向右平

移4个单位,然后再向上平移2个单位,得到线段P1Q1, Q 2 则点P1的坐标为 ,点Q1的坐标为 . P1 1

O 1 2 3 P x

15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.

如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.

(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;

(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

y

C

A B x

M O

7 D

16.(2008年浙江省绍兴市)将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点

2秒时,动点P从点A出发以相等的速3度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒). Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动

(1)用含t的代数式表示OP,OQ;

(2)当t?1时,如图1,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标; (4) 连结AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.问:PQ与AC能否平行?PE与AC 能否垂直?若能,求出相应的t值;若不能,说明理由.

8

y C Q O P 图1

A x D B C y B E Q O 图2 P A x

17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线y??3x?3与x轴交于点A,与y轴交于点C,抛物线y?ax2?23x?c(a?0)经过A,B,C三点. 3(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;

(2)在抛物线上是否存在点P,使△ABP为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;

(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.

9

y A C O F B x 图16

18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y?轴的正半轴上,且AB?1,OB?3,矩形ABOC绕点O按顺时针方向旋转60后得到矩形EFOD.点

2A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y?ax?bx?c过点A,E,D.

(1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式;

(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

y E A B

10

F C D O x

19.(2008年四川省巴中市) 已知:如图14,抛物线y??相交于点B,点C,直线y??323x?3与x轴交于点A,点B,与直线y??x?b443x?b与y轴交于点E. 4(1)写出直线BC的解析式. (2)求△ABC的面积.

(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?

20.(2008年成都市)如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且AB=35,sin∠OAB=5. 5(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;

(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;

(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S?QMN,△QNR的面积S?QNR,求S?QMN∶S?QNR的值.

11

21.(2008年乐山市)在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C若C的坐标为(0,2),AB=5, A,B两点的横坐标XA,XB是关于X的方程x2?(m?2)x?n?1?0的两根: (1) 求m,n的值

(2) 若∠ACB的平分线所在的直线l交x轴于点D,试求直线l对应的一次函数的解析式 (3) 过点D任作一直线l`分别交射线CA,CB(点C除外)于点M,N,则

是,求出定值,若不是,请说明理由

11?的值是否为定值,若CMCNC M A D O B N L`

22.(2008年四川省宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.

12

(1)求该抛物线的解析式;

(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;

(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.

?b4ac?b2?(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为???2a,4a??)

??2

23.(天津市2008年)已知抛物线y?3ax2?2bx?c,

(Ⅰ)若a?b?1,c??1,求该抛物线与x轴公共点的坐标;

(Ⅱ)若a?b?1,且当?1?x?1时,抛物线与x轴有且只有一个公共点,求c的取值范围;

(Ⅲ)若a?b?c?0,且x1?0时,对应的y1?0;x2?1时,对应的y2?0,试判断当0?x?1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

24.(2008年大庆市)

如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).

(1)求S△DBF;

(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;

(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.

D D C F 13 G

A

F

E B G

A

B

E

C

.

25. (2008年上海市)已知AB?2,AD?4,?DAB?90?,AD∥BC(如图13).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.

(1)设BE?x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;

(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长; (3)联结BD,交线段AM于点N,如果以A,N,D为顶点的三角形与△BME相似,求线段BE的长.

D D A A

M C B B E C

备用图 图13

26. (2008年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.

如图,甲,乙两村坐落在夹角为30的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30的3km处,点A在点M的正西方向,点D在点M的南偏西60的23km处.

为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:

方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值; 方案二:供水站建在乙村(线段CD某处),甲村要求管道建设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值; 方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.

综上,你认为把供水站建在何处,所需铺设的管道最短?

??? 14

北 东 B 甲村 A M C 乙村 D 图① E A F 甲村 M C 乙村 D 图② E B F 30? O 30? O

27. (2008年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题: (1)当t为何值时,PQ∥BC?

(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;

(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由; (4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

B B P P A Q 图①

C A 图② Q C P?28. (2008年江苏省南通市)已知双曲线y?n)(在A点左侧)是双曲线y?线y?

k1与直线y?x相交于A、B两点.第一象限上的点M(m,x4k上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲xk于点E,交BD于点C. x(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.

(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.

(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

15

29. (2008年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:

(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?

答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)

图1

压轴题答案

?c?31. 解:( 1)由已知得:?解得

?1?b?c?0?c=3,b=2

16

∴抛物线的线的解析式为y??x2?2x?3 (2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F

所以四边形ABDE的面积=S?ABO?S梯形BOFD?S?DFE

111AO?BO?(BO?DF)?OF?EF?DF 222111=?1?3?(3?4)?1??2?4 222=

=9

(3)相似

如图,BD=BG?DG?1?1?2 BE=BO?OE?3?3?32 DE=DF?EF?2?4?25 222所以BD?BE?20, DE?20即: BD?BE?DE,所以?BDE是直角三角形

222222222222222所以?AOB??DBE?90?,且所以?AOB??DBE.

AOBO2, ??BDBE22. (1) ∵A,B两点的坐标分别是A(10,0)和B(8,23), ∴tan?OAB?23?3,

10?8 ∴?OAB?60?

当点A′在线段AB上时,∵?OAB?60?,TA=TA′, ∴△A′TA是等边三角形,且TP?TA?, ∴TP?(10?t)sin60??113(10?t),A?P?AP?AT?(10?t),

222y A′ C O E B P A x ∴S?S?A?TP13?A?P?TP?(10?t)2, 2823 当A′与B重合时,AT=AB=?4,

sin60?T 所以此时6?t?10.

(2)当点A′在线段AB的延长线,且点P在线段AB(不与B重合)上时,

17

纸片重叠部分的图形是四边形(如图(1),其中E是TA′与CB的交点), 当点P与B重合时,AT=2AB=8,点T的坐标是(2,0) y 又由(1)中求得当A′与B重合时,T的坐标是(6,0) A′ 所以当纸片重叠部分的图形是四边形时,2?t?6. P E B (3)S存在最大值 C F 1当6?t?10时,S? ○

3(10?t)2, 8O T A x 在对称轴t=10的左边,S的值随着t的增大而减小,

∴当t=6时,S的值最大是23.

2当2?t?6时,由图○1,重叠部分的面积S?S○?A?TP?S?A?EB

∵△A′EB的高是A?Bsin60?, ∴S?313 (10?t)2?(10?t?4)2?82233(?t2?4t?28)??(t?2)2?43 88 ?当t=2时,S的值最大是43;

3当0?t?2,即当点A′和点P都在线段AB的延长线是(如图○2,其中E是TA′与CB的交点,F○

是TP与CB的交点),

∵?EFT??FTP??ETF,四边形ETAB是等腰形,∴EF=ET=AB=4,

∴S?11EF?OC??4?23?43 22综上所述,S的最大值是43,此时t的值是0?t?2. 3. 解:(1)??A?Rt?,AB?6,AC?8,?BC?10.

?点D为AB中点,?BD?1AB?3. 2??DHB??A?90?,?B??B.

?△BHD∽△BAC, DHBDBD312???AC??8?. ,?DH?ACBCBC105(2)?QR∥AB,??QRC??A?90.

???C??C,?△RQC∽△ABC, ?RQQCy10?x?,??, ABBC610 18

即y关于x的函数关系式为:y??(3)存在,分三种情况:

3x?6. 5①当PQ?PR时,过点P作PM?QR于M,则QM?RM.

A

??1??2?90?,?C??2?90?,

D P B 1 M 2 H Q

R E C

??1??C.

QM484?cos?1?cosC??,??,

105QP51?3???x?6?425??,?x?18. ??12555②当PQ?RQ时,?A D B H

A D B H

E P R Q

C

P E Q R C 312x?6?, 55?x?6.

③当PR?QR时,则R为PQ中垂线上的点, 于是点R为EC的中点,

11?CR?CE?AC?2.

24QRBA?tanC??,

CRCA3?x?6156?5?,?x?.

2281815综上所述,当x为或6或时,△PQR为等腰三角形.

524. 解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.

∴ △AMN ∽ △ABC.

A M O P B

图 1

C N xAN∴ AM?AN,即?.

43ABAC3∴ AN=x. ……………2分

4∴ S=S?MNP?S?AMN?133?x?x?x2.(0<x<4) ……………3分 2481MN. 2(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =在Rt△ABC中,BC =AB?AC=5. 由(1)知 △AMN ∽ △ABC.

B 19

M O Q D 图 2

N 22A C

xMN∴ AM?MN,即?.

45ABBC5x, 45∴ OD?x. …………………5分

8∴ MN?过M点作MQ⊥BC 于Q,则MQ?OD?5x. 8在Rt△BMQ与Rt△BCA中,∠B是公共角, ∴ △BMQ∽△BCA. ∴ BM?QM.

BCAC55?x8?25x,AB?BM?MA?25x?x?4. ∴ BM?24324∴ x=

96. 4996时,⊙O与直线BC相切.…………………………………7分 49(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.

A ∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC. ∴ △AMO ∽ △ABP.

∴ 当x=

∴ AM?AO?1. AM=MB=2.

ABAP2故以下分两种情况讨论:

3① 当0<x≤2时,y?SΔPMN?x2.

8B M O P 图 3

N C ∴ 当x=2时,y最大?323?2?. ……………………………………8分 82M E P O A ② 当2<x<4时,设PM,PN分别交BC于E,F.

∵ 四边形AMPN是矩形, ∴ PN∥AM,PN=AM=x. 又∵ MN∥BC, ∴ 四边形MBFN是平行四边形. ∴ FN=BM=4-x.

∴ PF?x??4?x??2x?4. 又△PEF ∽ △ACB.

N C B F 图 4

S?PEF?PF??∴ ?. ?ABS???ABC∴ S?PEF?232?x?2?. ……………………………………………… 9分 23392y?S?MNP?S?PEF=x2??x?2???x2?6x?6.……………………10分

82820

929?8?当2<x<4时,y??x?6x?6???x???2.

88?3?8时,满足2<x<4,y最大?2. ……………………11分 38综上所述,当x?时,y值最大,最大值是2. …………………………12分

3k5. 解:(1)(-4,-2);(-m,-) m∴ 当x?(2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ一定是平行四边形 ②可能是矩形,mn=k即可 不可能是正方形,因为Op不能与OA垂直. 解:(1)作BE⊥OA, 2∴ΔAOB是等边三角形 ∴BE=OB·sin60o=23, ∴B(23,2) ∵A(0,4),设AB的解析式为y?kx?4,所以23k?4?2,解得k??3,的以直线AB的解析式为 3y??3x?4 3(2)由旋转知,AP=AD, ∠PAD=60o,

∴ΔAPD是等边三角形,PD=PA=AO2?OP2?19 6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=23,∴B(23,2) ∵A(0,4),设AB的解析式为y?kx?4,所以23k?4?2,解得k??o

3, 3以直线AB的解析式为y??3x?4 3(2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD是等边三角形,PD=PA=AO2?OP2?19

如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30° 21

∴GD=

1BD=23353,DH=GH+GD=+23=, 222∴GB=3373BD=,OH=OE+HE=OE+BG=2??

2222∴D(537,) 22(3)设OP=x,则由(2)可得D(23?x,2?3133 x)若ΔOPD的面积为:x?(2?x)?2224解得:x?7. 解:

?23?21?23?21所以P(,0) 33

(1)①BG?DE,BG?DE ????????????????????????2分 ②BG?DE,BG?DE仍然成立 ????????????????????1分

在图(2)中证明如下

∵四边形ABCD、四边形ABCD都是正方形

0∴ BC?CD,CG?CE, ?BCD??ECG?90

∴?BCG??DCE?????????????????????????1分

22

∴?BCG??DCE (SAS)?????????????????????1分

∴BG?DE ?CBG??CDE

又∵?BHC??DHO ?CBG??BHC?900 ∴?CDE??DHO?900 ∴?DOH?900

∴BG?DE ????????????????????????????1分

(2)BG?DE成立,BG?DE不成立 ???????????????????2分 简要说明如下

∵四边形ABCD、四边形CEFG都是矩形,

且AB?a,BC?b,CG?kb,CE?ka(a?b,k?0)

BCCGb??,?BCD??ECG?900 DCCEa∴?BCG??DCE

∴?BCG??DCE???????????????????????????1分

∴?CBG??CDE

又∵?BHC??DHO ?CBG??BHC?900 ∴?CDE??DHO?900 ∴?DOH?900

∴BG?DE ?????????????????????????????1分

22222222(3)∵BG?DE ∴BE?DG?OB?OE?OG?OD?BD?GE

又∵a?3,b?2,k?1 23265 ??????????????????1分 4222222 ∴ BD?GE?2?3?1?()?22 ∴BE?DG?65 ???????????????????????????1分 48. 解:

(1)①AB?2 ?????????????????????????????2分OA?8?4,2OC?4,S梯形OABC=12 ?????????????????2分

②当2?t?4时,

直角梯形OABC被直线l扫过的面积=直角梯形OABC面积-直角三角开DOE面积

23

S?12?12(4?t)?2(4?t)??t2?t8?4????????????????4分

(2) 存在 ????????????????????????????????1分

8P(?12,4),P(?4,4),P(?,4),P4(4,4),P5(8,4) ?(每个点对各得1分)??5分 1233 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D为直角顶点,作PP1?x轴

OE?2OD,?设OD?b,OE?2b.Rt?ODE?Rt?PPD?在Rt?ODE中,(图示阴影) ,1?b?4,2b?8,在上面二图中分别可得到P点的生标为P(-12,4)、P(-4,4)

E点在0点与A点之间不可能;

② 以点E为直角顶点

同理在②二图中分别可得P点的生标为P(-

以点P为直角顶点

24

8,4)、P(8,4)E点在0点下方不可能. 3

同理在③二图中分别可得P点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4), E点在A点下方不可能.

综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-P(8,4)、P(4,4).

8,4)、 3下面提供参考解法二:

以直角进行分类进行讨论(分三类):

此时(D-b,o),E(O,2b) 第一类如上解法⑴中所示图?P为直角:设直线DE:y?2x?2b,b1b3b的中点坐标为(-,b),直线DE的中垂线方程:y?b??(x?),令y?4得P(?8,4).由已知

2222可得2PE?DE即2?(b?8)?(4?2b)?b?4b化简得3b2?32b?64?0解得

32222283bb1?8,b2?将之代入(P-8,4)?P(4,4)、 P1?2(?4,4);

32此时(D-b,o),E(O,2b) 第二类如上解法②中所示图?E为直角:设直线DE:y?2x?2b,,直线PE的方程:y??1x?2b,令y?4得P(4b?8,4).由已知可得PE?DE即2(4b?8)2?(4?2b)2?b2?4b2化简得b2?(2b?8)2解之得 ,

b1?4,b2?48将之代入(P4b-8,4)?P3?(8,4)、P4(?,4) 33此时(D-b,o),E(O,2b) 第三类如上解法③中所示图?D为直角:设直线DE:y?2x?2b,,直线PD的方程:y??1(x?b),令y?4得P(?b?8,4).由已知可得PD?DE即2 P-b-8,4)?P(-12,4)、82?42?b2?4b2解得b1?4,b2??4将之代入(5?. P6(?4,4)(P6(?4,4)与P2重合舍去)

综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-P(8,4)、P(4,4).

事实上,我们可以得到更一般的结论:

8,4)、 3OA?h、如果得出AB?a、OC?b、设k?

b?a,则P点的情形如下 h25

直角分类情形 k?1 k?1 P1(h,h) ?P为直角 P1(?h,h) P2(?h,h) P3(?hk,h) 1?khkP4(,h) k?1?E为直角 hP2(?,h) 2P5(?h(k?1),h) ?D为直角 P3(0,h) P4(?2h,h) P6(?h(k?1),h)

9.

10.

26

11. 解:(1)设A地经杭州湾跨海大桥到宁波港的路程为x千米,

x?120x······································································································· 2分 ?, ·

1023解得x?180.

由题意得

?A地经杭州湾跨海大桥到宁波港的路程为180千米. ······················································ 4分

(2)1.8?180?28?2?380(元),

····························· 6分 ?该车货物从A地经杭州湾跨海大桥到宁波港的运输费用为380元. ·

(3)设这批货物有y车,

由题意得y[800?20?(y?1)]?380y?8320, ································································· 8分 整理得y?60y?416?0,

2 27

解得y1?8,y2?52(不合题意,舍去), ········································································ 9分 ············································································································· 10分 ?这批货物有8车.

12. 解:(1)2,21······························································································ 3分 a,a. ·

44(2)相等,比值为2. ···················· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG?x,

在矩形ABCD中,?B??C??D?90?,

??HGF?90?,

??DHG??CGF?90???DGH,

?△HDG∽△GCF,

DGHG1???, CFGF2?CF?2DG?2x.············································································································· 6分 同理?BEF??CFG. ?EF?FG,

?△FBE≌△GCF,

1?BF?CG?a?x. ········································································································ 7分

4?CF?BF?BC,

12······································································································ 8分 ?2x?a?x?a, ·

44解得x?2?1a. 42?1·············································································································· 9分 a. ·

4即DG?(4)

32a, ························································································································ 10分 1612分

27?1822a. 813. 解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分 ∵ AB∥CD, ∴ DG=CH,DG∥CH.

28

∴ 四边形DGHC为矩形,GH=CD=1.

∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,

C D ∴ △AGD≌△BHC(HL).

M N AB?GH7?1∴ AG=BH==3. ………2分 ?22∵ 在Rt△AGD中,AG=3,AD=5, ∴ DG=4.

A B E G H F 1?7??4?∴ S梯形ABCD??16. ………………………………………………3分

2(2)∵ MN∥AB,ME⊥AB,NF⊥AB,

C D ∴ ME=NF,ME∥NF.

M N ∴ 四边形MEFN为矩形.

∵ AB∥CD,AD=BC, ∴ ∠A=∠B.

∵ ME=NF,∠MEA=∠NFB=90°, A B E G H F ∴ △MEA≌△NFB(AAS).

∴ AE=BF. ……………………4分 设AE=x,则EF=7-2x. ……………5分 ∵ ∠A=∠A,∠MEA=∠DGA=90°, ∴ △MEA∽△DGA.

AEME∴ . ?AGDG4∴ ME=x. …………………………………………………………6分

348?7?49∴ S矩形MEFN?ME?EF?x(7?2x)???x???. ……………………8分

33?4?677当x=时,ME=<4,∴四边形MEFN面积的最大值为49.……………9分

436(3)能. ……………………………………………………………………10分

4由(2)可知,设AE=x,则EF=7-2x,ME=x.

3若四边形MEFN为正方形,则ME=EF. 4x21 即 ?7-2x.解,得 x?. ……………………………………………11分

3102∴ EF=7?2x?7?2?2114?<4. 105?14?196. ????525??2∴ 四边形MEFN能为正方形,其面积为S正方形MEFN14. 解:(1)由题意可知,m?m?1???m?3??m?1?. 解,得 m=3. ………………………………3分

∴ A(3,4),B(6,2);

∴ k=4×3=12. ……………………………4分 (2)存在两种情况,如图:

①当M点在x轴的正半轴上,N点在y轴的正半轴 上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).

∵ 四边形AN1M1B为平行四边形,

29

y A N1 M2 O N2 B M1 x

∴ 线段N1M1可看作由线段AB向左平移3个单位,

再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).

由(1)知A点坐标为(3,4),B点坐标为(6,2), ∴ N1点坐标为(0,4-2),即N1(0,2); ………………………………5分 M1点坐标为(6-3,0),即M1(3,0). ………………………………6分

2设直线M1N1的函数表达式为y?k1x?2,把x=3,y=0代入,解得k1??.

32∴ 直线M1N1的函数表达式为y??x?2. ……………………………………8分

3②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2). ∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2, ∴ N1M1∥M2N2,N1M1=M2N2.

∴ 线段M2N2与线段N1M1关于原点O成中心对称. ∴ M2点坐标为(-3,0),N2点坐标为(0,-2). ………………………9分

2设直线M2N2的函数表达式为y?k2x?2,把x=-3,y=0代入,解得k2??,

3∴ 直线M2N2的函数表达式为y??x?2.

22所以,直线MN的函数表达式为y??x?2或y??x?2. ………………11分

33(3)选做题:(9,2),(4,5). ………………………………………………2分 15. 解:(1)解法1:根据题意可得:A(-1,0),B(3,0);

则设抛物线的解析式为y?a(x?1)(x?3)(a≠0)

23又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1 ∴y=x2-2x-3 ············································································································· 3分 自变量范围:-1≤x≤3 ···························································································· 4分

解法2:设抛物线的解析式为y?ax2?bx?c(a≠0)

根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上

?a?b?c?0?a?1?? ∴?9a?3b?c?0,解之得:?b??2

?c??3?c??3??∴y=x2-2x-3 ······················································································ 3分 自变量范围:-1≤x≤3 ··································································· 4分

(2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM, 在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=3 在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4

∴点C、E的坐标分别为(0,3),(-3,0) ··························································· 6分

∴切线CE的解析式为y?3······························································· 8分 x?3 ·

3y

C

A E O M 30 B x

(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ······························· 9分

??y?kx?3 由题意可知方程组?只有一组解 2??y?x?2x?3 即kx?3?x2?2x?3有两个相等实根,∴k=-2 ··················································· 11分 ∴过点D“蛋圆”切线的解析式y=-2x-3 ························································· 12分

16.

解:(1)OP?6?t,OQ?t?y C Q O D B C Q 2. 3y B C Q E P 图3 F A x

y B D1 P 图1

A x O 图2 P A x O (2)当t?1时,过D点作DD1?OA,交OA于D1,如图1, 则DQ?QO?54,QC?, 33?CD?1,?D(1,3).

(3)①PQ能与AC平行.

若PQ∥AC,如图2,则

OPOA?, OQOC即

1476?t6?,?t?,而0≤t≤, 2393t?331

?t?14. 9②PE不能与AC垂直.

若PE?AC,延长QE交OA于F,如图3,

QFOQQF???ACOC353t?23.

?2??QF?5?t??.

?3??EF?QF?QE?QF?OQ

?2??2??5?t????t??

?3??3?2?(5?1)t?(5?1).

3又?Rt△EPF∽Rt△OCA,?PEOC?, EFOA?6?t3?,

?2?6(5?1)?t???3?7?t?3.45,而0≤t≤,

3?t不存在.

17. 解:(1)?直线y??3x?3与x轴交于点A,与y轴交于点C.

······································································································ 1分 ?A(?1,0),C(0,?3) ·

?点A,C都在抛物线上,

??2330?a??ca????? ??3 3?c??3??3?c???抛物线的解析式为y?3223··································································· 3分 x?x?3 ·33?43?1,? ·············································································································· 4分 ?顶点F????3??(2)存在 ································································································································ 5分

32

···························································································································· 7分 P,?3) ·1(0····························································································································· 9分 P,?3) 2(2(3)存在 ······························································································································ 10分

理由: 解法一:

延长BC到点B?,使B?C?BC,连接B?F交直线AC于点M,则点M就是所求的点. ············································································································ 11分 过点B?作B?H?AB于点H.

y ?B点在抛物线y?32230) x?x?3上,?B(3,33H A C B O B x

3在Rt△BOC中,tan?OBC?,

3??OBC?30?,BC?23,

在Rt△BB?H中,B?H?M F 图9 1BB??23, 2························································· 12分 BH?3B?H?6,?OH?3,?B?(?3,?23) ·设直线B?F的解析式为y?kx?b

?3??23??3k?bk????6??43 解得?

?k?b???b??33?3??2?y?333 ··············································································································· 13分 x?623??y??3x?3x???3103?7???? ?M?,333 解得??7?7?? 103x??y????y??,62??7?

?3103??········· 14分 ?在直线AC上存在点M,使得△MBF的周长最小,此时M???7,?. ·7??解法二:

过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求. ······································································ 11分

y 33

A O C M G B x

过点F作FG?y轴于点G,则OB∥FG,BC∥FH.

??BOC??FGH?90?,?BCO??FHG

??HFG??CBO

同方法一可求得B(3,0).

在Rt△BOC中,tan?OBC?33,??OBC?30?,可求得GH?GC?, 33?GF为线段CH的垂直平分线,可证得△CFH为等边三角形,

?AC垂直平分FH.

?53?ACFH即点为点关于的对称点.?H?0,······················································ 12分

??3?? ·??设直线BH的解析式为y?kx?b,由题意得

5?k?3?0?3k?b???9 解得? 5?5b??3?b???33??3??y?553?3 ··············································································································· 13分 933?55x???3x?3?3107??y?93? 解得? ?M?,???77??y??103?y??3x?3??7?3??? ??3103???在直线AC上存在点M,使得△MBF的周长最小,此时M???7,?. 7??1

18. 解:(1)点E在y轴上 ···································································································· 1分 理由如下:

连接AO,如图所示,在Rt△ABO中,?AB?1,BO?3,?AO?2

?sin?AOB?1?,??AOB?30 2?由题意可知:?AOE?60

??BOE??AOB??AOE?30??60??90?

················································································· 3分 ?点B在x轴上,?点E在y轴上. ·

34

(2)过点D作DM?x轴于点M

?OD?1,?DOM?30?

?在Rt△DOM中,DM??点D在第一象限,

13,OM? 22?31? ····································································································· 5分 ?点D的坐标为???2,?2??由(1)知EO?AO?2,点E在y轴的正半轴上

2) ?点E的坐标为(0,······································································································ 6分 ?点A的坐标为(?31), ·

?抛物线y?ax2?bx?c经过点E,

?c?2

由题意,将A(?31,),D??31?代入y?ax2?bx?2中得 ,??22???8??3a?3b?2?1a???9?? 解得 ?3?31b?2??a??b??53?422?9?853······························································· 9分 x?2 ·?所求抛物线表达式为:y??x2?99(3)存在符合条件的点P,点Q. ··················································································· 10分 理由如下:?矩形ABOC的面积?AB?BO?3 ?以O,B,P,Q为顶点的平行四边形面积为23.

由题意可知OB为此平行四边形一边, 又?OB?3

?OB边上的高为2 ·············································································································· 11分

依题意设点P的坐标为(m,2)

853x?2上 ?点P在抛物线y??x2?99

35

853??m2?m?2?2

99解得,m1?0,m2??53 8?53?,P2??P(0,2)2?1??8,?

???以O,B,P,Q为顶点的四边形是平行四边形, ?PQ∥OB,PQ?OB?3,

y E A B F C D x O M 2)时, ?当点P1的坐标为(0,点Q的坐标分别为Q1(?3,2),Q2(3,2);

?53?当点P2?2的坐标为???8,?时,

??点Q的坐标分别为Q3???133??33?,. ······················································· 14分 ,2Q,2??4?????8???8?(以上答案仅供参考,如有其它做法,可参照给分) 19. 解:(1)在y??32x?3中,令y?0 43??x2?3?0

4?x1?2,x2??2

························································· 1分 ?A(?2,0),B(2,0) ·又?点B在y??C E y 3x?b上 4A N 3?0???b

23b?

2M D O P B x 33?BC的解析式为y??x? ··························································································· 2分

4232?y??x?3?x1??1x?2??2??4(2)由?,得? ································································ 4分 9?y1??y2?0?y??3x?3??4??42

36

9??0) ?C??1,?,B(2,4??9 ·············································································································· 5分 4199?S△ABC??4?? ······································································································· 6分

242(3)过点N作NP?MB于点P ?EO?MB ?NP∥EO

?△BNP∽△BEO ·············································································································· 7分 BNNP?? ·························································································································· 8分 BEEO?AB?4,CD?由直线y??33?3?x?可得:E?0,? 42?2?35,则BE? 22?在△BEO中,BO?2,EO?62tNP,?NP?t ····································································································· 9分 ?5352216?S??t?(4?t)

25312S??t2?t(0?t?4) ·································································································· 10分

55312S??(t?2)2? ············································································································ 11分

5512?此抛物线开口向下,?当t?2时,S最大?

512?当点M运动2秒时,△MNB的面积达到最大,最大为.

5?20. 解:(1)如图,过点B作BD⊥OA于点D. 在Rt△ABD中,

∵∣AB∣=35,sin∠OAB=5, 5 ∴∣BD∣=∣AB∣·sin∠OAB =35×5=3. 52又由勾股定理,得 AD?AB?BD 2 37

?(35)2?32?6

∴∣OD∣=∣OA∣-∣AD∣=10-6=4.

∵点B在第一象限,∴点B的坐标为(4,3). ??3分 设经过O(0,0)、C(4,-3)、A(10,0)三点的抛物线的函数表达式为 y=ax2+bx(a≠0).

1?a?,??16a?4b??3?8??由?

?100a?10b?0?b??5.??4∴经过O、C、A三点的抛物线的函数表达式为y?125x?x. ??2分 84(2)假设在(1)中的抛物线上存在点P,使以P、O、C、A为顶点的四边形为梯形 ①∵点C(4,-3)不是抛物线y?125x?x的顶点, 84∴过点C做直线OA的平行线与抛物线交于点P1 .

则直线CP1的函数表达式为y=-3. 对于y?125x?x,令y=-3?x=4或x=6. 84∴??x1?4,?x2?6, ??y1??3;?y2??3.而点C(4,-3),∴P1(6,-3).

在四边形P1AOC中,CP1∥OA,显然∣CP1∣≠∣OA∣.

∴点P1(6,-3)是符合要求的点. ??1分 ②若AP2∥CO.设直线CO的函数表达式为y?k1x. 将点C(4,-3)代入,得4k1??3.?k1??. ∴直线CO的函数表达式为y??343x. 43x?b1. 4 于是可设直线AP2的函数表达式为y??将点A(10,0)代入,得?315x?. 42315∴直线AP2的函数表达式为y??x?.

42315?y??x?.??42?x2?4x?60?0,即(x-10)由?(x+6)=0.

15?y?x2?x?84? 38

∴??x1?10,?x2??6 ??y1?0;?y2?12;而点A(10,0),∴P2(-6,12).

过点P2作P2E⊥x轴于点E,则∣P2E∣=12. 在Rt△AP2E中,由勾股定理,得

AP2?P2E?AE?122?162?20.

22而∣CO∣=∣OB∣=5.

∴在四边形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.

∴点P2(-6,12)是符合要求的点. ??1分 ③若OP3∥CA,设直线CA的函数表达式为y=k2x+b2 将点A(10,0)、C(4,-3)代入,得

1?k?,?10k2?b2?0?2?2 ???4k2?b2??3?b??5.?21x?5. 21∴直线OP3的函数表达式为y?x

2∴直线CA的函数表达式为y?1?y?x??2?x2?14x?0,即x(x-14)=0. 由??y?1x2?5x?84??x1?0,?x2?14,∴? ?y?0;y?7.?1?2而点O(0,0),∴P3(14,7).

过点P3作P3E⊥x轴于点E,则∣P3E∣=7. 在Rt△OP3E中,由勾股定理,得

OP3?P3F?OF?72?142?75.

22而∣CA∣=∣AB∣=35.

∴在四边形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.

∴点P3(14,7)是符合要求的点. ??1分 综上可知,在(1)中的抛物线上存在点P1(6,-3)、P2(-6,12)、P3(14,7),

使以P、O、C、A为顶点的四边形为梯形. ??1分 (3)由题知,抛物线的开口可能向上,也可能向下.

①当抛物线开口向上时,则此抛物线与y轴的副半轴交与点N.

39

可设抛物线的函数表达式为y?a(x?2k)(x?5k)即y?ax2?3akx?10ak2

?a(x?3492k)2?4ak2.

如图,过点M作MG⊥x轴于点G. ∵Q(-2k,0)、R(5k,0)、G(??3??2k,0??、

N(0,-10ak2)、??3?2k,?494ak2???, ∴QO?2k,QR?7k,OG?32k,QG?72k,ON?10ak2,MG?4924ak. ?S11?QNR?2?QR?ON?2?7k?10ak2?35ak3.

?12?QO?ON?12(ON?GM)?OG?12?QG?GM?12?2k?10ak2?12?(10ak2?4923174924ak)?2k?2?2k?4a k ?12(29?15??3498??74938ak) .∴S2133?QNM:S?QNR?(4ak):(35ak)?3:20. ??2分②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N,

同理,可得S?QNM:S?QNR?3:20. ??1分 综上所知,S?QNM:S?QNR的值为3:20. ??1分 21.解:

(1)m=-5,n=-3 (2)y=

43x+2 (3)是定值.

因为点D为∠ACB的平分线,所以可设点D到边AC,BC的距离均为h, 设△ABC AB边上的高为H, 则利用面积法可得:

CM?hCN?h2?MN?H2?2 (CM+CN)h=MN﹒H

CM?CNH?MNh

40

(a>0).

M

又 H=

CM?CN

MNMN1?

CM?CNh化简可得 (CM+CN)﹒故

22. 解:( 1)由已知得:c=3,b=2

111?? CMCNh?c?3解得 ???1?b?c?0∴抛物线的线的解析式为y??x2?2x?3 (2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F

所以四边形ABDE的面积=S?ABO?S梯形BOFD?S?DFE

111AO?BO?(BO?DF)?OF?EF?DF 222111=?1?3?(3?4)?1??2?4 222=

=9

(3)相似

如图,BD=BG?DG?1?1?2 BE=BO?OE?3?3?32 DE=DF?EF?2?4?25 222所以BD?BE?20, DE?20即: BD?BE?DE,所以?BDE是直角三角形

222222222222222所以?AOB??DBE?90?,且所以?AOB??DBE.

AOBO2, ??BDBE223. 解(Ⅰ)当a?b?1,c??1时,抛物线为y?3x2?2x?1, 方程3x2?2x?1?0的两个根为x1??1,x2?1. 3∴该抛物线与x轴公共点的坐标是??1······················································ 2分 ,0?和?,0?. (Ⅱ)当a?b?1时,抛物线为y?3x2?2x?c,且与x轴有公共点.

41

?1?3??

1对于方程3x2?2x?c?0,判别式??4?12c≥0,有c≤. ············································ 3分

3①当c?111时,由方程3x2?2x??0,解得x1?x2??. 333此时抛物线为y?3x2?2x?1时, 3?1?1与x轴只有一个公共点??,··································· 4分 0?. ·33??②当c?x1??1时,y1?3?2?c?1?c, x2?1时,y2?3?2?c?5?c.

1由已知?1?x?1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x??,

3应有??y1≤0,?1?c≤0, 即?

y?0.?2?5?c?0.解得?5?c≤?1.

1综上,c?或?5?c≤?1. ························································································· 6分

3(Ⅲ)对于二次函数y?3ax2?2bx?c,

由已知x1?0时,y1?c?0;x2?1时,y2?3a?2b?c?0, 又a?b?c?0,∴3a?2b?c?(a?b?c)?2a?b?2a?b. 于是2a?b?0.而b??a?c,∴2a?a?c?0,即a?c?0.

∴a?c?0. ······················································································································· 7分 ∵关于x的一元二次方程3ax2?2bx?c?0的判别式

??4b2?12ac?4(a?c)2?12ac?4[(a?c)2?ac]?0,

∴抛物线y?3ax2?2bx?c与x轴有两个公共点,顶点在x轴下方. ································· 8分 又该抛物线的对称轴x??b, 3ay 由a?b?c?0,c?0,2a?b?0, 得?2a?b??a, 1b2∴???. 33a3O 1 x 又由已知x1?0时,y1?0;x2?1时,y2?0,观察图象,

42

可知在0?x?1范围内,该抛物线与x轴有两个公共点. ················································ 10分

24. 解:(1)∵点F在AD上, ∴AF?2a, ∴DF?b?2a,

1112DFAB?×(b?2a)×b?b2?ab. 2222(2)连结AF, 由题意易知AF∥BD,

∴S△DBF?∴S△DBF?S△ABD?b2.

(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆.

第一种情况:当b>2a时,存在最大值及最小值;

因为△BFD的边BD?122b,故当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值.

如图②所示CF2?BD时,

S△BFD的最大值=S△BF2D?2b?b2?2ab1?2b???2a??,

??22?2??2b?b2?2ab1?2b??,

?2?2a???22??S△BFD的最小值=S△BF2D第二种情况:当b=2a时,存在最大值,不存在最小值;

b2?2ab.(如果答案为4a2或b2也可) S△BFD的最大值=

2 D C

O F E F1 B G A F2 25. 解:(1)取AB中点H,联结MH,

?M为DE的中点,?MH∥BE,MH?1(BE?AD). ···································· (1分) 2又?AB?BE,?MH?AB. ·················································································· (1分)

?S△ABM?11AB?MH,得y?x?2(x?0); ············································ (2分)(1分) 22(x?4)2?22. ········································································ (1分)

(2)由已知得DE??以线段AB为直径的圆与以线段DE为直径的圆外切,

43

1111AB?DE,即(x?4)??2?(4?x)2?22?.····························· (2分)

?2222?44解得x?,即线段BE的长为; ············································································· (1分)

33(3)由已知,以A,N,D为顶点的三角形与△BME相似, 又易证得?DAM??EBM. ······················································································ (1分) 由此可知,另一对对应角相等有两种情况:①?ADN??BEM;②?ADB??BME. ①当?ADN??BEM时,?AD∥BE,??ADN??DBE.??DBE??BEM. ?DB?DE,易得BE?2AD.得BE?8;···························································· (2分) ②当?ADB??BME时,?AD∥BE,??ADB??DBE. ??DBE??BME.又?BED??MEB,?△BED∽△MEB. DEBE1222??2?(x?4)2?22?(x?4)2. ,即BE?EM?DE,得x?BEEM2?MH?解得x1?2,x2??10(舍去).即线段BE的长为2. ············································· (2分) 综上所述,所求线段BE的长为8或2.

26. 解:方案一:由题意可得:MB?OB,

············································································ (1分) ?点M到甲村的最短距离为MB. ·

?点M到乙村的最短距离为MD.

?将供水站建在点M处时,管道沿MD,MB铁路建设的长度之和最小.

即最小值为MB?MD?3?23. ·············································································· (3分)

方案二:如图①,作点M关于射线OE的对称点M?,则MM??2ME,连接AM?交OE于点P,则

1AM. 2?AM?2BM?6,?PE?3. ················································································ (4分) 在Rt△DME中,

∥PE ?DE?DM?sin60??23?113?3,ME?DM??23?3,

222?PE?DE,?P,D两点重合.即AM?过D点. ················································· (6分)

在线段CD上任取一点P?,连接P?A,P?M,P?M?,则P?M?P?M?. ?AP??P?M??AM?,

?把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小.

即最小值为AD?DM?AM?? O

AM2?MM?2?62?(23)2?43. ············ (7分)

北 东 M? F B 甲村 A F G B G?M

A O N H M E 30? C P?P D E

30? 44 C N? D M?

(第25题答案图①)

(第25题答案图②)

方案三:作点M关于射线OF的对称点M?,连接GM,则GM??GM.

N?OE于点N,交OF于点G,交AM于点H, 作M??M?N为点M?到OE的最短距离,即M?N?GM?GN.

HM中,?MM?N?30?,MM??6, 在Rt△M??MH?3.?NE?MH?3.

?DE?3,?N,D两点重合,即M?N过D点.

DM中,DM?23,?M?在Rt△M?················································ (10分) D?43.·

在线段AB上任取一点G?,过G?作G?N??OE于点N?,连接G?M?,G?M.

D. 显然G?M?G?N??G?M??G?N??M??把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小.

即最小值为GM?GD?M?···································································· (11分) D?43. ·综上,?3?23?43,?供水站建在M处,所需铺设的管道长度最短. ········ (12分)

27. 解:(1)由题意:BP=tcm,AQ=2tcm,则CQ=(4-2t)cm, ∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm ∴AP=(5-t)cm,

∵PQ∥BC,∴△APQ∽△ABC,

∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=∴当t为

10 710秒时,PQ∥BC 7??????2分

(2)过点Q作QD⊥AB于点D,则易证△AQD∽△ABC ∴AQ∶QD=AB∶BC ∴2t∶DQ=5∶3,∴DQ=∴△APQ的面积:

6t 5116×AP×QD=(5-t)×t 22532∴y与t之间的函数关系式为:y=3t?t

5??????5分

(3)由题意:

2 当面积被平分时有:3t?t=

35115?5××3×4,解得:t= 222 45

当周长被平分时:(5-t)+2t=t+(4-2t)+3,解得:t=1 ∴不存在这样t的值

??????8分

(4)过点P作PE⊥BC于E

1QC时,△PQC为等腰三角形,此时△QCP′为菱形 易证:△PAE∽△ABC,当PE=

2∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=45t

∵QC=4-2t,∴2×45t=4-2t,解得:t=109

∴当t=109时,四边形PQP′C为菱形

此时,PE=8279,BE=3,∴CE=3

在Rt△CPE中,根据勾股定理可知:PC=PE2?CE2=(8)2?(7250593)=9∴此菱形的边长为5059cm ??????12分

28. 解:(1)∵D(-8,0),∴B点的横坐标为-8,代入y?14x中,得y=-2. ∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2) 从而k=8×2=16 (2)∵N(0,-n),B是CD的中点,A,B,M,E四点均在双曲线上, ∴mn=k,B(-2m,-

n2),C(-2m,-n),E(-m,-n) S,S1111矩形DCNO=2mn=2k△DBO=2mn=2k,S△OEN=2mn=2k.

∴S矩形OBCE=S矩形DCNO―S△DBO―S△OEN=k.∴k=4. 由直线y?14x及双曲线y?4

x

,得A(4,1),B(-4,-1) ∴C(-4,-2),M(2,2)

设直线CM的解析式是y?ax?b,由C、M两点在这条直线上,得

???4a?b??2,解得a=b=2?2a?b?23 ∴直线CM的解析式是y=

23x+23. 46

10分

??????

(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1,M1

设A点的横坐标为a,则B点的横坐标为-a.于是p?

MAA1M1a?m, ??MPM1Om同理q?MBm?a? MQma?mm?a

-=-2 mm

∴p-q=

29. 解:(1)将图1中的正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角

302?152?31,每个转发装置都能完全覆盖一个小线的交点处,此时,每个小正方形的对角线长为?正方形区域,故安装4个这种装置可以达到预设的要求.

························· (3分)(图案设计不唯一)

(2)将原正方形分割成如图2中的3个矩形,使得BE?DG?CG.将每个装置安装在这些矩形的对角线交点处,设AE?x,则ED?30?x,DH?15.

2222由BE?DG,得x?30?15?(30?x),

21222515?15??x??,?BE????302?30.2?31,

604?4?即如此安装3个这种转发装置,也能达到预设要求. ·················································· (6分)

或:将原正方形分割成如图2中的3个矩形,使得BE?31,H是CD的中点,将每个装置安装在这些矩形

线

AE?312?302?61,

DE?30?61,

?DE?(30?61)2?152≈26.8?31,即如此安装三个这个转发装置,能达到预设要求.

(6分)

要用两个圆覆盖一个正方形,则一个圆至少要经过正方形相邻两个顶点.如图3,用一个直径为31的?O去

覆盖边长为30的正方形ABCD,设?O经过A,B,?O与AD交于E,连BE,则

AE?312?302?61?15?1AD,这说明用两个直径都为31的圆不能完全覆盖正方形ABCD. 2所以,至少要安装3个这种转发装置,才能达到预设要求. ······································ (8分) 评分说明:示意图(图1、图2、图3)每个图1分.

E A D A E D A D

O B

图1

C

B

F 图2

H

47

O B F 图3

C

30解:(1)OH?1;k?

323,b?. 33(2)设存在实数a,使抛物线y?a(x?1)(x?5)上有一点E,满足以D,N,E为顶点的三角形与等腰直角△AOB相似.

?以D,N,E为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以DN为直角边的等腰直角三角形,另一类是以DN为斜边的等腰直角三角形. ①若DN为等腰直角三角形的直角边,则ED?DN. 由抛物线y?a(x?1)(x?5)得:M(?1,0),N(5,0).

?D(2,0),?ED?DN?3.?E的坐标为(2,3).

把E(2,3)代入抛物线解析式,得a??.

13y 1?抛物线解析式为y??(x?1)(x?5).

31245即y??x?x?.

333②若DN为等腰直角三角形的斜边, 则DE?EN,DE?EN.

?E的坐标为(3.51.5),.

把E(3.51.5),代入抛物线解析式,得a??P A C H M O B ?2D N x

2. 922810?抛物线解析式为y??(x?1)(x?5),即y??x2?x?

999911245当a??时,在抛物线y??x?x?上存在一点E(2,3)满足条件,如果此抛物线上还有满足条件的

3333E点,不妨设为E?点,那么只有可能△DE?N是以DN为斜边的等腰直角三角形,由此得E?(3.5,1.5),显

1245145x?x?上,因此抛物线y??x2?x?上没有符合条件的其他的E点. 333333222810当a??时,同理可得抛物线y??x?x?上没有符合条件的其他的E点.

9999145当E的坐标为(2,3),对应的抛物线解析式为y??x2?x?时,

333然E?不在抛物线y??

48

?△EDN和△ABO都是等腰直角三角形,??GNP??PBO?45?.

又??NPG??BPO,?△NPG∽△BPO.

?PGPN?,?PB?PG?PO?PN?2?7?14,?总满足PB?PG?102. POPB2810当E的坐标为(3.51.5),,对应的抛物线解析式为y??x2?x?时,

999同理可证得:PB?PG?PO?PN?2?7?14,?总满足PB?PG?102

31. 解:(1)如图所示: ········································································································ 4分 A A

??10080

B C B C

(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分) (2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; ············································ 6分

若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. ················································································································································· 8分 (3)此中转站应建在△EFH的外接圆圆心处(线段EF的垂直平分线与线段EH的垂直平分线的交点处). ····························································································· 10分 M G 理由如下:

由?HEF??HEG??GEF?47.8?35.1?82.9,

???H ?EHF?50.0?,?EFH?47.1?,

故△EFH是锐角三角形,

所以其最小覆盖圆为△EFH的外接圆,

设此外接圆为?O,直线EG与?O交于点E,M,

??则?EMF??EHF?50.0?53.8??EGF.

?49.8 ?32.4 53.8? 50.0? 44.0? 47.1? ?47.8?35.1 F

E

故点G在?O内,从而?O也是四边形EFGH的最小覆盖圆. 所以中转站建在△EFH的外接圆圆心处,能够符合题中要求.

································································································ 12分

49

50

本文来源:https://www.bwwdw.com/article/34ko.html

Top