高一数学 知识要点 苏教版必修4
更新时间:2024-03-17 11:40:01 阅读量: 综合文库 文档下载
- 高一数学人教版电子书推荐度:
- 相关推荐
高一数学必修四知识要点
第1章:三角函数
一、①任意角:按逆时针方向旋转所成角叫做正角;按顺时针方向旋转所成角叫做负角; 按逆时针方向旋转角度增大;按顺时针方向旋转角度减小。
②与角?终边相同的角:2k???,k?Z
③象限角:如第二象限角:2k??念的联系与区别。
?2???2k???,k?Z;注意象限角与锐角、钝角概
④终边落在x轴上的角的集合:?????,??z;终边落在y轴上的角的集合:
???????????????,??z?;终边落在坐标轴上的角的集合:?????,??z?
22????二、弧度制:
180???弧度1弧度?180 ???度?57.3l?l??r r11S?lr?? r222?
三、任意角的三角函数:
yxy①sin???y?rsin?;cos???x?rcos?;tan??
rrx②各象限的三角函数符号由x,y的正负决定,记忆口诀:“一全,二正,三切,四余” ③几个特殊角的三角函数值: ????3?? 0 26432123 sin? 0 1 0 -1 222132cos? 1 0 -1 0 222tan? 3 31 3 0 不存在 0 不存在 四、同角三角函数关系:
①Sin2??Cos2??1?Sin2??1?Cos2??Cos2??1?Sin2?
Sin?②tan???Sin??tan?Cos?
Cos?2???1?cos?,cos???1?sin2?求得cos③已知sin?,cos?可由sin?,si?n,由
Sin?求得正切(注意要由角度范围确定符号) tan??Cos??sin??tan??④已知tan?,可由?cos?得sin?,cos?(注意要由角度范围确定符号)
22??sin??cos??1⑤在三角运算中,切化弦是一种重要的方法
五、诱导公式:终边相同的角的三角函数值相等
Sin??????Sin?Sin???2k???Sin? , k?z① ②角?与角??关于x轴对称Cos?????Cos?
Cos???2k???Cos? , k?ztan??????tan?tan???2k???tan? , k?zSin??????Sin?③角???与角?关于y轴对称
Cos???????Cos?tan???????tan?1
Sin???????Sin?Cos???????Cos?tan??????tan?④角???与角?关于原点对称
???Sin?????Cos??2?⑤角?2??与角?关于y?x对称 ⑥ ??????Cos?????Sin?Cos??????Sin??2??2????tan?????cot??2????tan??????cot??2????Sin?????Cos??2?上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”
六、三角函数的图象和性质: 性 质 y?Sin x y?Cos x 定义域 值 域 周期性 奇偶性 单调性 R R y?tan x ???xx????,??z?? 2??R ? 奇函数 ?????k??,k???,k?z,增函数22????1,1? 2? 奇函数 ?????2k??2,2k??2?,k?z,增函数???3????2k??2,2k??2?,k?z,减函数????1,1? 2? 偶函数 ?2k???,2k??,k?z,增函数?2k?,2k????,k?z,减函数 对称中心 对称轴 ?k?,0?,k?z x?k?????k??,0?,k?z ?2??x?k?,k?z ?k?,0?,k?z 无 ?2,k?z 10 图 像 yx-15-10-5π /2-8π /2O-1-3π /2π π /2Oπ /2π 3π /21015-8-2π -6-3π /2-4π -2π /2π π -2π -6-3π /2-4π -2π /2Oπ /2π π /2π -2-1-4-2-2-6-3-3-4-4-8-5-6 -5 -10 周期问题: ①周期函数定义:一般地,对于函数f(x),如果存在一个非零的常数T,使得定义域内的每一个x值,都满足f(x?T)?f(x),那么函数就叫做周期函数,非零常数T叫做这个函数的周期。
2
2?y?ASin??x??? , A?0 , ? ? 0 , T?②
yyyyy?2??ACos??x??? , A?0 , ? ? 0 , T?? ??Atan??x??? , A?0 , ? ? 0 , T????ASin??x??? , A?0 , ? ? 0 , T????ACos??x??? , A?0 , ? ? 0 , T????|Atan??x??? | , A?0 , ? ? 0 , T??七、函数y?ASin(?x??)的图象
①怎样由y?Sinx变化为y?ASin??x????k ?
法1:y?Sinx y?ASinx y?ASin?x y?ASin(?x??) y?ASin(?x??)?k 法2:
y?Sinx y?ASinx y?ASin(?x??) y?ASin(x??) y?ASin(?x??)?k
1②振幅:A;周期:T;频率:;相位:?x??;初相:?
f最大值?最小值③A?;?由函数的周期确定;?由曲线上的点确定
2第2章:平面向量
一、向量的概念及表示:
①向量两要素:方向、大小(模);单位向量:长度为1的向量;零向量:长度为0的向量。 ②共线向量(平行向量)方向相同或相反的非零向量。(零向量与任何向量共线) ③相等向量:长度相等且方向相同的向量;相反向量:长度相等且方向相反的向量; 二、向量的线性运算: ①加法:
????Ⅰ三角形法则:(a,b首尾相接) Ⅱ平行四边形法则:(a,b共起点)
aa+bbbaa+b ??②减法:(a,b共起点)
ba③数乘:
a-b
?Ⅰ实数与向量的积是一个向量,记作?a,它的长度和方向规定如下:
??(1)|?a|?|?||a|
????????(2)当??0时?a与a方向相同;当??0时, 当a?0或??0时?a?0 ?a与a方向相反,
Ⅱ面向量共线定理:一般地,对于两个向量 a,a?0,b,如果有
一个实数?,使得b??a,a?0,则b与a是共线向量;反之如果b与a是共线向量
3
????
?????????|b|那么有且只有一个实数?,使得b??a.即:b??a(a?0)?a?b,(|?|??)
|a|④若P1P??PP2:
P1
P
P2??1时 ??1时
.
三、向量的坐标表示:
O?????①平面向量基本定理:如果是同一平面内两个不共线的向量e,e12,那么对于这一平面内的...
???????任一向量一对实数?1,?2,使a??1e1??2e2 ....a,有且只有....
??????②a?(x1,y1),b?(x2,y2)则a?b?(x1?x2,y1?y2),?a?(?x1,?y1),|a|?x12?y12 ????????③A?(x1,y1),B?(x2,y2)则AB?(x2?x1,y2?y1),|AB|?(x1?x2)2?(y2?y1)2 ????????????④a||b(a?0)?x1y2?x2y1;a?b(a?0,b?0)?a?b?0?x1x2?y1y2?0 四、向量的数量积:
??????x1x2?y1y2a?b①a?b?|a|?|b|cos??x1x2?y1y2?cos?????cos??
2222|a|?|b|x1?y1x2?y2????????????②a,b同向?a?b?|a|?|b|;a,b反向?a?b??|a|?|b|; ????????a?b(a?0,b?0)?a?b?0?x1x2?y1y2?0
③a?a?a?a 或者 a?22a?a
④平面向量的三种基本应用:求模、证垂直、求夹角 第3章:三角恒等变换 ①两角的和与差公式:
Cos??????Cos?Cos??Sin?Sin?,Sin??????Sin?Cos??Cos?Sin?
tan??tan? , T(???)1?tan?tan? 变形: tan??tan??tan??????1?tan?tan??
tan??tan??tan??????1?tan?tan??tan??tan?tan?????? , T(???)1?tan?tan?tan??????1Sin2?2②二倍角公式:
Cos2??Cos2??Sin2??2Cos2??1?1?2Sin2?Sin2??2Sin?Cos??Sin?Cos??tan2??2tan?1?tan2?
③降幂扩角公式:Cos2??1?Cos2? , Sin2??1?Cos2?
22④半角公式:
Sin?2??1?Cos?2?1?Co?s, tan???21?Co?s1?Cos?Cos??22?Si?n1?Co?s
?1?Co?sSi?n⑤化一公式: y?aSin??bCos??a2?b2Sin????? 其中 , tan??4
b a
正在阅读:
高一数学 知识要点 苏教版必修403-17
(人教版全册)2014届九年级中考英语专题复习:否定的几种表示方法01-14
政府和社会资本合作(PPP)-建高标准基本农田“投建管服一体化”精03-17
1-1财务管理制度08-17
《醒来之爱的呼唤》观后感04-02
3土力学选择题03-30
客户异议处理五步法12-16
环境工程专业实验教程05-03
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 必修
- 高一
- 要点
- 数学
- 知识
- 苏教版
- 人教版九年级思品第一单元测试卷
- 园林绿化苗木害虫的综合防治技术解析
- 小学比较典型的工程问题
- 年公共部门人力资源管理形成性考核册答案
- 建议经济类专业大学生考的证书
- 锡澄运河大桥施工图总说明
- 投资公司与资本公司战略合作框架协议
- 行测语言理解技巧:歧义句辨析
- 货币金融学习题(第11-13讲;第23-25章)
- MBA《绩效管理》案例集2010最新版
- 三年级阅读 片段部分
- 分销渠道复习(试卷整理)
- 西南最新版《认知疗法》网上作业及课程考试复习资料(有答
- 2014年公司登记(备案)申请书(最新)
- 物理化学 表面张力 动力学习题附答案
- 疾病预防控制机构知识竞赛题库
- 保税加工货物备案流程
- 广东省2010年中考化学试卷及答案
- 2012年高考语文试卷解析版重庆卷
- 关于鼓励员工在职学习的奖励办法