吉林省东北师大附中2011届高三上学期第三次模底考试(数学理)

更新时间:2023-10-17 19:47:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

东北师大附中

2010—2011学年度上学期高三年级第三次摸底考试

数学试题(理科)

高考资源网yjw

说明:

本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.总分150分,考试时间120分钟. 注意事项:

1.答第Ⅰ卷前,考生务必将自己姓名、考号、考试科目用2B铅笔涂写在答题卡上.

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干

净后,再选涂其它答案.

3.将第Ⅰ卷选择题的答案涂在答题卡上,第Ⅱ卷每题的答案写在答题纸的指定位置. 4.考试结束,将答题纸和答题卡一并交回,答案写在试卷上视为无效答案. 参考公式:圆锥表面积公式:S??r?r?l?(r是圆锥底面半径,l是母线) 圆锥体积公式:V??rh(r是圆锥底面半径,h是高)

1324?R3 球体积公式:V?(R是球的半径)高考资源网yjw

3第Ⅰ卷(选择题 共60分)

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有

一项是符合题目要求的). 1.已知集合M?xy?

2.命题“存在x0?R,2

x0??x2?3x,N??x||x|?2?,则M?N?

B.?x|0?x?3? 高考资源网yjw D.x2?x?3

?( )

A.?x|1?x?3? C.?x|2?x?3?

???0”的否定是

xx0( )

A.不存在x0?R, 20>0 B.存在x0?R,2x?0

xC.对任意的x?R,2?0 D.对任意的x?R, 2>0

0.93.已知:a?log0.70.9,b?log1.10.7,c?1.1,则a,b,c的大小关系为

( )

A.a?b?c C.b?a?c

4.有一个几何体的三视图及其尺寸如下

(单位cm),则该几何体的表面积 及体积为: ( )

A.24?cm2,12?cm3 B.15?cm2,12?cm3

C.24?cm2,36?cm3 D.以上都不正确

B.a?c?b D.c?a?b 56正视图5 56侧视图56 俯视图5.已知函数f(x)?sin(?x??4)(x?R,??0)的最小正周期为?,为了得到函数

( )

g(x)?cos?x的图象,只要将y?f(x)的图象

?个单位长度 8?C. 向左平移个单位长度

4A. 向左平移?个单位长度 8?D. 向右平移个单位长度

4B. 向右平移

6.关于两条不同的直线m、n与两个不同的平面?、?,下列命题正确的是: ( )

A.m//?,n//?且?//?,则m//n; B.m??,n??且???,则m//n; C.m??,n//?且?//?,则m?n; D.m//?,n??且???,则m//n.

27.若实数a满足a?y?1?y?2?y?R?恒成立,则函数f?x??logax?5x?6的单调

??减区间为

A.?,???

( )

?5?2??B.?3,???

C.???,?

??5?2?D.???,2?

8.正四面体ABCD中,E、F分别是棱BC、AD的中点,则直线DE与平面BCF所成角

的正弦值为 ( )

22362 B. C. D. 3332?????????sin75?,b??cos15,sin15?,那么|a?b|的值是 ( ) 9.已知向量a??cos75,

A.

A.

1 2B.

2 2C.

3 2D.1

( )

10.已知数列?an?是正项等比数列,?bn?是等差数列,且a6?b8,则一定有

A.a3?a9?b9?b7 C.a3?a9?b9?b7

B.a3?a9?b9?b7 D.a3?a9?b9?b7

11.定义两种运算:a?b?a2?b2,a?b?(a?b)2,则f?x??

B.偶函数 D.非奇非偶函数

2?x

2??x?2?( )

是( )函数. A.奇函数

C.既奇又偶函数

12.已知定义在R上的函数f(x)、g(x)满足

f(x)) ?ax,且f'(x)g(x)?f(x)g'(x,

g(x)?f(n)?31f(1)f(?1)5n?N*??,若有穷数列?()的前项和等于,则n等于 n?32g(1)g(?1)2g(n)??

A.4

B.5

C.6

D. 7

( )

第Ⅱ卷 (非选择题 共90分)

二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上.) 13.函数y?3x2与x?1、x?2及x轴围成的图形的面积是 . 14.函数y?f(cosx)的定义域为?2k??域为_____________.

???6,2k??2???k?Z?,则函数y?f(x)的定义3??A ??15.a??m,,, 1?b??1?n,1?(其中m、n为正数)??12若a//b,则?的最小值是 .

mn16.已知三棱锥A?BCO,OA、OB、OC两两垂直

且长度均为6,长为2的线段MN的一个端点M 在棱OA上运动,另一个端点N在?BCO内运 动(含边界),则MN的中点P的轨迹与三棱锥

B

M O P

? N C

的面所围成的几何体的体积 为 .

三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)已知数列?an?的前n项和为Sn,且Sn? (Ⅰ)求数列?an?的通项公式;

(Ⅱ)若数列nan的前n项和为Tn,求数列?Tn?的通项公式. 18.(本题满分12分)

如图所示,在正方体ABCD?A1BC11D1中,AE?3EB. (Ⅰ)若A1F?2an?1(n?N*). 3??1FA,求证: EF∥面DD1C1C; 3 (Ⅱ) 求二面角A?EC?D1的正切值.

D1 A1 F D A E B B1 C1

C

19.(本题满分12分)?ABC的三个内角A,B,C依次成等差数列. (Ⅰ)若sinB?sinAsinC,试判断?ABC的形状;

2

(Ⅱ)若?ABC为钝角三角形,且a?c,试求代数式sin值范围.

20.(本题满分12分)已知f?x??x?ax?3x.

322CAA1?3sincos?的取2222 (1)若f?x?在?2,???上是增函数,求实数a的取值范围;

(2)若x?3是f?x?的极值点,求f?x?在?1,a?上的最小值和最大值.

21.(本题满分12分)函数f?x?对任意x?R都有f?x??f?1?x??1. (1)求f??1??的值; 2???1????n??2?f??????n??n?1?f???f?1?,求an; ?n? (2)数列?an?满足:an?f?0??f? (3)令bn?

4,Tn?b12?b22???bn2,Sn?8?,试比较Tn与Sn的大小.

2an?1n2

本文来源:https://www.bwwdw.com/article/30tf.html

Top