2.2等腰三角形的性质
更新时间:2024-05-24 22:39:01 阅读量: 综合文库 文档下载
等腰三角形的性质
上蔡一中:别慧纳
〖教学目标〗
◆1、经历利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.
◆2、掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一. ◆3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图. 〖教学重点与难点〗
◆教学重点:本节教学的重点是理解并掌握等腰三角形的性质:等边对等角;三线合一. ◆教学难点:等腰三角形三线合一性质的运用,在解题思路上需要作一些转换,例如例2,是本节教学的难点.
〖教学方法〗可采用学生在任务驱动下的自主学习与教师辅导相结合 〖课前准备〗学生:准备一些等腰三角形,预习本节内容
教师:教学活动材料,多媒体课件
〖教学过程〗
一.创设情境,自然引入
1.温故检测: 叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是 。
[两边相等的三角形叫做等腰三角形。特殊情况是正三角形。对称轴是等腰三角形顶角平分线所在的直线。] 2.悬念、引子、思考
将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗?
说明:首先这个三角形必须是等腰三角形,要不然 三角形就放不平.对于“为什么”学生可能会回答 “不知道”,那就进入下一环节“合作学习,探究 等腰三角形的性质”;也有可能会回答“等腰三角 形三线合一”,因为不能排除有部分学生“预习过” 什么的.那就可以追问“等腰三角形三线为什么会 合一”,学生会说,就让他说,但不管会说,还是不会说,都要进入下一环节“合作学习,探究等腰三角形的性质”;这是考虑到大多数学生的利益. 二.交流互动,探求新知 1.等腰三角形的性质
合作学习:分三组教学活动材料
教学活动材料1:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D, (1)把这个等腰三角形剪下来,然后沿着顶角平分线对折,仔细观察重合的部分,并写出A所发现的结论。
(2)你发现了等腰三角形的哪些性质?
CB
D 图2-5教学活动材料2:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D, (1)根据我们已经获得的等腰三角形是轴对称图形,图2-5中等腰三角形ABC的对称轴是
什么?△ABD各个顶点的对称点分别是什么?由此可见,将△ABD作关于直线AD的轴对称变换,所得的像是什么? (2)根据轴对称变换的性质:轴对称变换不改变图形的形状和大小.找出图中的全等三角形,以及所有相等的线段和相等的角.
(3)你有什么发现?能得出等腰三角形的哪些性质?
教学活动材料3:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D, (1)根据学过的全等三角形判定方法找出图中的全等三角形,根据全等三角形的性质找出所有相等的线段和角
(2)你发现了等腰三角形的哪些性质? (发给学生活动材料,四人一组先合作学习,再交流讨论,经历等腰三角形性质的发现过程,教师应给学生一定的时间和机会,来清晰地、充分地讲出自己的发现,并加以引导,用规范的数学语言进行归纳,最后得出等腰三角形的性质.)
结论:等腰三角形性质定理1:等腰三角形的两个底角相等。或“在一个三角形中,等边对等角”
等腰三角形性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合.简称等腰三角形三线合一.
2.多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质. 3.解决节前图中的悬念,如果重锤经过三角尺斜边的中点,那么可以判定梁是水平的.你能说明理由吗?
(当重锤线经过三角尺斜边的中点时,重锤线与斜边上的高线叠合(等腰三角形三线合一),即斜边与重锤线垂直,所以斜边与梁是水平的.及时地解决问题,使学生懂得学习的价值.) 4.应用定理时的推理格式:
A用几何语言表述为:
12在△ABC中,如图,∵AB=AC ∴∠B=∠C(在一个三角形中等边对等角)
在△ABC中,如图
(1)∵AB=AC ,∠1=∠2
∴AD⊥BC,BD=DC (等腰三角形三线合一) (2)∵AB=AC,BD=DC BCD∴AD⊥BC,∠1=∠2
(3)∵AB=AC,AD⊥BC
A ∴BD=DC,∠1=∠2 5.例题学习
例1 如图2-6,在△ABC中,AB=AC, ∠A=50°,求∠B,∠C的度数. 解:在△ABC中, ∵AB=AC ,
BC∴∠B=∠C(在一个三角形中等边对等角)
图2-6∵∠A+∠B+∠C=180°,∠A=50°,
180°-∠A180°-50°
∴∠B=∠C= = =65°.
22
练习1P36课内练习2
(例1和练习1是巩固“等腰三角形的两个底角相等”这条性质而配置的,比较简单,可以让学生自己去探索,并完成解题过程,然后师生突出评述推理过程.)
例2 已知线段a,h(如图2-7)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的
高线为h.
h
a
图2-7
教学中可作如下启发:
(1)假设图形已经作出,如课本图2-8,BC长已知,可以先作出BC边,要作等腰三角形ABC,关键是要作出哪一个点?
(2)已知BC边上的高线的长度为h,你能作出BC边上的高线吗?等腰三角形底边上的高线与中线有什么关系?由此能确定顶点A的位置吗?
(例2是运用尺规作等腰三角形,作法思路需要作一些分析转换,是本节教学的难点,在操作过程中要让学生体验等腰三角形三线合一的性质) 练习2填空:
(1)在△ABC中,AB=AC,若∠A=40°则∠C= ;若∠B=72°,则∠A= . (2)在△ABC中,AB=AC,∠BAC=40°,M是BC的中点,那么∠AMC= ,∠BAM= . (3)如图,在△ABC中,AB=AC,∠DAC是△ABC的外角。 D1
∠BAC=180°- ∠B,∠B= ( )
2
AA∠DAC= ∠C
CB
B(4)如图,在△ABC中,AB=AC,外角∠DCA=100°,则∠B= 度. DC(以此来巩固等腰三角形的性质,同时培养学生的观察分析的能力) 三.合作探究,强化能力.
探究1:已知在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点但不与A重合,且OB=OC,试猜想AE与BC的关系,并说明你的猜想的理由. 猜想:AE⊥BC,BD=CD A∵AB=AC(已知) OB=OC(已知) AO=AO(公共边)
BCD∴△ABO≌△ACO(SSS) ∴∠BAO=∠CAO OE∴AE⊥BC,BD=CD(等腰三角形底边上中线,底边上高线与顶角平分线互相重合)
探究2:等腰三角形两底角的平分线大小关系。 A已知:如图,在△ABC中,AB=AC,BD、CE分别是两底角的平分线。 猜想:BD=CE.
ED解:∵AB=AC(已知),
∴∠ABC=∠ACB (在一个三角形中等边对等角) ∵BD、CE分别是两底角的平分线(已知) B11
∴∠DBC= ∠ABC,∠DCB= ∠ACB (角平分线的定义)
22∴∠DBC=∠DCB,
C在△DBC和△ECB中∠DBC=∠DCB,BC=CB(公共边),∠ABC=∠ACB , ∴△DBC≌△ECB(ASA)
∴BD=CE(全等三角形对应边相等)
(探究1需要学生根据数学语言画出几何图形,然后进行归纳、猜想、推理;探究2需要学生把文字转化为数学语言和几何图形,再进行归纳、猜想、推理,要求更高些;初衷有一个,那就是培养学生归纳、猜想、推理的自主学习的能力,以上两例都有一定的难度,教师可以根据班级的实际情况选用) 四.归纳小结,强化思想
1.在本节课的学习中,你有哪些收获?和我们共享. 2.你还有什么不理解的地方,需要老师或同学帮助.
(采用谈话式小结,沟通师生之间的情感,给学生一个梳理知识的空间,培养学生的知识整理能力与语言表达能力) 五.作业 1.作业本
正在阅读:
2.2等腰三角形的性质05-24
事业单位 doc法理学宪法专题11-14
运用现代教学媒体应注意几个问题05-01
读书节目停播读书请别停下2015.1.605-17
自考供应链物流学试卷第一套10-18
公共基础部分练习题03-11
品雪作文450字06-19
(跑跑卡丁车)技术心得 -- 跑跑卡丁车03-29
16春《现代远程学习概论》作业答案11-08
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 等腰三角形
- 性质
- 2.2
- 原位固化法管道修复方案
- 上市公司采购专项审计方案
- 内科学(第七版)循环系统疾病第二章 心力衰竭
- 考研数学历年真题(1987-2011)年数学一
- 中北大学 算法与数据结构实验报告
- 南京地铁电客车轮缘综合值(qR)测量问题初析
- 上海卫生专业技术职务任职资格条件,高级职称申报评审要求
- 钢铁工业主要产品产量统计指标解释
- 秘书要不断为自己“充电”每日一练(6月19日)
- 2019届高三数学理一轮复习课时跟踪检测二十三 正弦定理和余弦定
- 东外侨办党〔2009〕15号
- 华中科技大学 微积分 极限习题课及答案
- 关于组织语文骨干教师暑期集中培训的通知
- 七年级语文下册第六单元第23课带上她的眼睛学案设计新人教版
- 不良反应监测员职责
- 市场营销 调研报告
- 湖南省株洲市2018届高三年级教学质量统一检测(二)文综地理试题+W
- 森田疗法
- 模板施工方案
- DIEBOLD PM操作技术规范_050118