2008届全国百套数学模拟试题分类汇编-083圆锥曲线解答题a - 图文
更新时间:2024-04-07 01:08:01 阅读量: 综合文库 文档下载
- 2008年全国推荐度:
- 相关推荐
http://www.beijinggaokao.com 电
话:010-62754468
2008届全国百套高考数学模拟试题分类汇
编
08圆锥曲线
三、解答题(第一部分)
1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设F1、F2分别是
x2y2椭圆+=1的左、右焦点.
54(Ⅰ)若P是该椭圆上的一个动点,求PF1?PF2的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由. 解:(Ⅰ)易知a?5,b?2,c?1,?F1?(?1,0),F2(1,0)
22设P(x,y),则PF1?PF2?(?1?x,?y)?(1?x,?y)?x?y?1
x2?4?421x?1?x2?3 55?x?[?5,5],
?当x?0,即点P为椭圆短轴端点时,PF1?PF2有最小值3;
当x??5,即点P为椭圆长轴端点时,PF1?PF2有最大值4
(Ⅱ)假设存在满足条件的直线l易知点A(5,0)在椭圆的外部,当直线l的斜率不
存在时,直线l与椭圆无交点,所在直线l斜率存在,设为k 直线l的方程为y?k(x?5)
?x2y2?1??,得(5k2?4)x2?50k2x?125k2?20?0 由方程组?54?y?k(x?5)?依题意??20(16?80k)?0,得?255?k? 55更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 1
http://www.beijinggaokao.com 电
话:010-62754468
当?55时,设交点C(x1,y1)、D(x2,y2),CD的中点为R(x0,y0), ?k?55x1?x250k225k2则x1?x2? ,x0??225k2?45k?425k2?20k?y0?k(x0?5)?k(2?5)?2.
5k?45k?4又|F2C|=|F2D|?F2R?l?k?kF2R??1
?k?kF2R20k)220k25k?4?k????1
25k24?20k21?25k?40?(?2
2
2
∴20k=20k-4,而20k=20k-4不成立, 所以不存在直线l,使得|F2C|=|F2D| 综上所述,不存在直线l,使得|F2C|=|F2D|
2、(江苏省启东中学高三综合测试二)已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
2
(2)设过点P,且斜率为?3 的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由 (ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.
解:(1)依题意,曲线M是以点P为焦点,直线l为准线的抛物线,所以曲线M的方程为y2=4x.
?(2)(i)由题意得,直线AB的方程为:y??3(x?1)由?y2??3(x?1) 消去 y 得:?y?4x1123163x2?10x?3?0,解得x1?,x2?3.所以A(,),B(3,?23),|AB|?x1?x2?2?.3333
假设存在点C(-1,y),使△ABC为正三角形,则|BC|=|AB|且|AC|=|AB|,即
162?22(3?1)?(y?23)?(),?3相减得:42?(y?23)2?(4)2?(y?23)2,解得y??143(不符,舍)?1221622339)?()?(?1)?(y?33?3
因此,直线l上不存在点C,使得△ABC是正三角形. (ii)解法一:设C(-1,y)使△ABC成钝角三角形,
?由?y??3(x?1) 得 y?23,此时A,B,C三点共线,故y?23.?x??1,
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 2
http://www.beijinggaokao.com 电
话:010-62754468
12322843y16256又|AC|2?(?1?)2?(y?)???y2,|AB|2?()2?339339, 当|BC|2?|AC|2?|AB|2,即28?43y?y2?∠CAB为钝角.
28432562?y?y2?,即y?3 时,9399
当|AC|2?|BC|2?|AB|2,即2843256?y?y2?28?43y?y2?939
103 时?CBA为钝角.3
2562843y又|AB|2?|AC|2?|BC|2,即???y2?28?43y?y2993 y??即:y2?44223y??0,(y?)?0333.
该不等式无解,所以∠ACB不可能为钝角.
因此,当△ABC为钝角三角形时,点C的纵坐标y的取值范围是:
y??10323或y?(y?23)39.
解法二: 以AB为直径的圆的方程为:
528528(x?)2?(y?3)2?()2圆心(,?3)到直线L:x??1 的距离为333333. 23).3
当直线l上的C点与G重合时,∠ACB为直角,当C与G 点不重合,且A, B,C三点不共线时, ∠ACB为锐角,即△ABC中∠ACB不可能是钝角. 因此,要使△ABC为钝角三角形,只可能是∠CAB或∠CBA为钝角. 所以,以AB为直径的圆与直线L相切于点G(?1,?过点A且与AB垂直的直线为:y?233123?(x?).令x??1得y?3339.
310(x?3),令x??1得y??333.
过点B且与AB垂直的直线为:y?23??又由?y??3(x?1)解得y?23,所以,当点C的坐标为(?1,23)时,?x??1 A,B,C三点共 线,不构成三角形.
因此,当△ABC为钝角三角形时,点C的纵坐标y的取值范围是:
y??10323或y?(y?23).39
3、(江苏省启东中学高三综合测试三)(1)在双曲线xy=1上任取不同三点A、B、C,证明:
⊿ABC的垂心H也在该双曲线上;
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
3
http://www.beijinggaokao.com 电
话:010-62754468
(2)若正三角形ABC的一个顶点为C(―1,―1),另两个顶点A、B在双曲线xy=1另一支上,求顶点A、B的坐标。
解:(1)略;(2)A(2+3,2-3), B(2-3,2+3)或A(2-3,2+3), B(2+3,2-3)
4、(江苏省启东中学高三综合测试四)已知以向量v=(1,
1)为方向向量的直线l过点(0, 252),抛物线C:y?2px(p>0)的顶点关于直线l的对称点在该抛物线上. 4(Ⅰ)求抛物线C的方程;
(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若OA?OB?p?0(O为原点,A、B异于原点),试求点N的轨迹方程. 解:(Ⅰ)由题意可得直线l:y?215x? ① 24过原点垂直于l的直线方程为 y??2x ② 解①②得x??1. 2∵抛物线的顶点关于直线l的对称点在该抛物线的准线上. ∴?p1???2,p?2 222∴抛物线C的方程为y?4x.
(Ⅱ)设A(x1,y1),B(x2,y2),N(x,y), 由OA?OB?p?0,得x1x2?y1y2?4?0. 又y1?4x1,y2?4x2. 解得 y1y2??8 ③ 直线ON:y?222y24x,即y?x ④ x2y2由③、④及y?y1得,
点N的轨迹方程为x??2(y?0).
5、(安徽省皖南八校2008届高三第一次联考)已知线段AB过y轴上一点P(0,m),斜率为k,
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 4
http://www.beijinggaokao.com 电
话:010-62754468
两端点A,B到y轴距离之差为4k(k?0),
(1)求以O为顶点,y轴为对称轴,且过A,B两点的抛物线方程;
(2)设Q为抛物线准线上任意一点,过Q作抛物线的两条切线,切点分别为M,N,求
证:直线MN过一定点; 解:(1)设抛物线方程为x?2py(p?0),AB的方程为y?kx?m, 联立消y整理,得x?2pkx?2pm?0;∴x1?x2?2pk, 又依题有|x1?x2|?4k?2pk,∴p?2,∴抛物线方程为x?4y;
2x12x2x),N(x2,),Q(x0,?1),∵kMQ?1, (2)设M(x1,442222x12x1?(x?x1)?x12?2x1x?4y?0; ∴MQ的方程为y?42∵MQ过Q,∴x1?2x1x0?4?0,同理x2?2x2x0?4?0 ∴x1,x2为方程x?2x0x?4?0的两个根;∴x1x2??4; 又kMN222x12x1?x2x1?x2,∴MN的方程为y??(x?x1) ?444∴y?x1?x2x?1,显然直线MN过点(0,1) 4江西省五校
2008
届高三开学联考
)已知圆
6、(
M:(x?5)2?y2?36,定点N(5,0),点P为圆M上的动点,点Q在NP上,点G在
MP上,且满足NP?2NQ,GQ?NP?0. (I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设OS?OA?OB,
是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,
求出直线l的方程;若不存在,试说明理由.
NP?2NQ??解:(1)??Q为PN的中点且GQ⊥PN
GQ?PN?0?? ?GQ为PN的中垂线?|PG|=|GN|
∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a?3,半
5
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
http://www.beijinggaokao.com 电
话:010-62754468
x2y2焦距c?5,∴短半轴长b=2,∴点G的轨迹方程是??1 ???5分
94 (2)因为OS?OA?OB,所以四边形OASB为平行四边形
若存在l使得|OS|=|AB|,则四边形OASB为矩形?OA?OB?0 ?x?2?x?2??若l的斜率不存在,直线l的方程为x=2,由?2 得?xy225?1?y????4?93?
?OA?OB?16?0,与OA?OB?0矛盾,故l的斜率存在. ???7分 9设l的方程为y?k(x?2),A(x1,y1),B(x2,y2)
?y?k(x?2)?由?x2y2?(9k2?4)x2?36k2x?36(k2?1)?0
?1??4?9
36k236(k2?1)?x1?x2?2,x1x2? ① 29k?49k?4
y1y2?[k(x1?2)][k(x2?2)]
20k2?k[x1x2?2(x1?x2)?4]??2 ② ?????9分
9k?42
把①、②代入x1x2?y1y2?0得k??3 2∴存在直线l:3x?2y?6?0或3x?2y?6?0使得四边形OASB的对角线相等.
7、(安徽省淮南市2008届高三第一次模拟考试)已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y=
12
x的焦点,离心率等于25. 45(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若MA=λ1AF,
MB=λ2BF,求证λ1+λ2为定值.
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 6
http://www.beijinggaokao.com 电
话:010-62754468
x2y2解:(I)设椭圆C的方程为2?2?1(a?b?0),则由题意知b = 1.
aba2?b2251252??.即1??.?a?5. 2255aax2∴椭圆C的方程为 ?y2?1. ???????????????????5分
5 (II)方法一:设A、B、M点的坐标分别为A(x1,y1),B(x2,y2),M(0,y0).
易知F点的坐标为(2,0).
?MA??1AF,?(x1,y1?y0)??1(2?x1,?y1).y02?1?x1?,y1?.1??11??1??????????8分
将A点坐标代入到椭圆方程中,得(y12?12)?(0)2?1.
51??11??1去分母整理得?1?10?1?5?5y0?0. ????????????????10分
222同理,由MB??2BF可得:?22?10?2?5?5y0?0.??1,?2是方程x?10x?5?5y?0的两个根,220
??1??2??10. ??????????????????????12分
方法二:设A、B、M点的坐标分别为A(x1,y1),B(x2,y2),M(0,y0).又易知F点的坐标为(2,0).
显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是y?k(x?2).
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 7
http://www.beijinggaokao.com 电
话:010-62754468
将直线l的方程代入到椭圆C的方程中,消去y并整理得
(1?5k2)x2?20k2x?20k2?5?0. ??????????????7分
20k220k2?5?x1?x2?,x1x2?. ??????????????8分 221?5k1?5kx1x2,?2?. 2?x12?x2又?MA??1AF,MB??2BF,将各点坐标代入得?1???1??2?x1x22(x1?x2)?2x1x2??????10. 2?x12?x24?2(x1?x2)?x1x28、(安徽省巢湖市2008届高三第二次教学质量检测)已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上 ,且满足2PM?3MQ?0,RP?PM?0.
(Ⅰ)⑴当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)设A(x1,y1) 、B(x2,y2)为轨迹C上两点,且x1?1, y1?0,N(1,0),求实数?,使AB??AN,且?AB??????????????????????????????16. 3???????????解:(Ⅰ)设点M(x,y),由2PM?3MQ?0得P(0,?由RP?PM?0,得(3,??????????yx),Q(,0). 23y3y2)·(x,)=0,即y?4x 22又点Q在x轴的正半轴上,?x?0故点M的轨迹C的方程是
y2?4x(x?0).??6分
(Ⅱ)解法一:由题意可知N为抛物线C:y2=4x的焦点,且A、B为过焦点N的
直线与抛物线C的两个交点。
当直线AB斜率不存在时,得A(1,2),B(1,-2),|AB|?4?分
当直线AB斜率存在且不为0时,设lAB: y?k(x?1),代入y2?4x得
k2x2?2(k2?2)x?k2?0
16,不合题意;???73更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 8
http://www.beijinggaokao.com 电
话:010-62754468
2(k2?2)416则|AB|?x1?x2?2?,解得k2?3 ????????2?4??223kk10分
1 代入原方程得3x2?10x?3?0,由于x1?1,所以x1?3,x2?,
313?????????x?x3?4. ????????13 由AB??AN,得 ??21?xN?x13?13分
解法二:由题设条件得
??y12?4x1?2?y2?4x2??x2?x1??(1?x1)?y?y???y1?2116?22(x?x)?(y?y)?2121?3?(1)(2)(3) (4)(5) 再把(1)代入上式并化简得(??1)x1?1化简后可得(1?x1)??163?x2?x1??(1?x1)由(3)、(4)得??y2?(1??)y1代入(2)得(1??)2y12?4x1?4?(1?x1)(6)??9分
同样把(3)、(4)代入(5)并结合(1)(7)??11分4???4???4??由(6)、(7)解得?3或?1,又x1?1,故??.
3x1???x?33??19、(北京市朝阳区2008年高三数学一模)已知椭圆W的中心在原点,焦点在x轴上,离心率为
6,两条准线间的距离为6. 椭圆W的左焦点为F,过左准线与x轴的交点M任3作一条斜率不为零的直线l与椭圆W交于不同的两点A、B,点A关于x轴的对称点为C. (Ⅰ)求椭圆W的方程;
????????(Ⅱ)求证:CF??FB (??R);
(Ⅲ)求?MBC面积S的最大值.
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 9
http://www.beijinggaokao.com 电
话:010-62754468
x2y2解:(Ⅰ)设椭圆W的方程为2?2?1,由题意可知
ab?c6?,?a3??222?a?b?c,解得a?6,c?2,b?2, ?2a?2??6,?c?yABMFCOxx2y2所以椭圆W的方程为??1.?????????????????4分
62a2(Ⅱ)解法1:因为左准线方程为x????3,所以点M坐标为(?3,0).于是可设直线l
c的方程为y?k(x?3).
?y?k(x?3),?22222得(1?3k)x?18kx?27k?6?0. ?xy2??1?2?6由直线l与椭圆W交于A、B两点,可知
??(18k2)2?4(1?3k2)(27k2?6)?0,解得k2?设点A,B的坐标分别为(x1,y1),(x2,y2),
2. 3?18k227k2?6则x1?x2?,x1x2?,y1?k(x1?3),y2?k(x2?3). 221?3k1?3k因为F(?2,0),C(x1,?y1),
????????所以FC?(x1?2,?y1),FB?(x2?2,y2).
又因为(x1?2)y2?(x2?2)(?y1)
?(x1?2)k(x2?3)?(x2?2)k(x1?3) ?k[2x1x2?5(x1?x2)?12]
54k2?12?90k2?k[??12] 221?3k1?3k更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
10
http://www.beijinggaokao.com 电
话:010-62754468
k(54k2?12?90k2?12?36k2)??0, 21?3k????????所以CF??FB. ???????????????????????10分 a2解法2:因为左准线方程为x????3,所以点M坐标为(?3,0).
c于是可设直线l的方程为y?k(x?3),点A,B的坐标分别为(x1,y1),(x2,y2), 则点C的坐标为(x1,?y1),y1?k(x1?3),y2?k(x2?3). 由椭圆的第二定义可得
|FB|x2?3|y2|, ??|FC|x1?3|y1|????????所以B,F,C三点共线,即CF??FB.?????????????10分
(Ⅲ)由题意知
11|MF||y1|?|MF||y2| 221 ?|MF|?|y1?y2|
21 ?|k(x1?x2)?6k|
2S? ?3333|k|???, 2121?3k?3|k|23|k|2当且仅当k?1时“=”成立, 33. 2
2所以?MBC面积S的最大值为
10、(北京市崇文区2008年高三统一练习一)已知抛物线C:y?ax,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0. (I)求抛物线C的焦点坐标;
(II)若点M满足BM?MA,求点M的轨迹方程.
解:(I)将P(1,-1)代入抛物线C的方程y?ax得a=-1,
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
11
2 http://www.beijinggaokao.com 电
话:010-62754468
∴抛物线C的方程为y??x,即x??y. 焦点坐标为F(0,-
221).??????????????4分 4 (II)设直线PA的方程为y?1?k1(x?1),
?y?1?k1(x?1),2联立方程?消去y得x?k1x?k1?1?0, 2?y??x.则1?x1??k1?1,即x1??k1?1.
由??k1?4(?k1?1)?(k1?2)?0,得k1??2.??????7分 同理直线PB的方程为y?1?k2(x?1), 联立方程?22
?y?1?k2(x?1),2?y??x.消去y得x?k2x?k2?1?0,
2
则1?x2??k2?1,即x2??k2?1.且k2??2. 又?k1?k2?0,?k1?2.??????????9分 设点M的坐标为(x,y),由BM?MA,则x?
x1?x2. 2
x??k1?1?k2?1?2?(k1?k2)?.
22
又?k1?k2?0,?x??1.????????????????11分
2y1?y2?x12?x2?(k1?1)2?(?k2?1)2?(?k1?1)2?(k1?1)2y????2222??(k12?1)??1,
又k1??2,?y??5.
∴所求M的轨迹方程为:x??1(y??1且y??5).
2211、(北京市东城区2008年高三综合练习一)已知定圆A:(x?1)?y?16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C. (I)求曲线C的方程;
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 12
http://www.beijinggaokao.com 电
话:010-62754468
(II)若点P(x0,y0)为曲线C上一点,求证:直线l:3x0x?4y0y?12?0与曲线C有且只有一个交点.
解:(I)圆A的圆心为A(?1,0),半径r1?4,
设动圆M的圆心M(x,y),半径为r2,依题意有,r2?|MB|. 由|AB|=2,可知点B在圆A内,从而圆M内切于圆A, 故|MA|=r1—r2,即|MA|+|MB|=4,
所以,点M的轨迹是以A,B为焦点的椭圆,
x2y2设椭圆方程为22a2?b2?1,由2a?4,2c?2,可得a?4,b?3.
故曲线C的方程为x24?y23?1.
????6分
(II)当yx4200?0时,由4?y03?1,可得x0??2, 当x0?2,y0?0时,直线l的方程为x0?2,直线l与曲线C有且只有一个交点(2,0).当x0??2,y0?0时,直线l的方程为x0??2,直线l与曲线C有且只有一个交点(?2,0).当y12?3x0x0?0时,直线l的方程为y?4y,
0??y?12?3x0x联立方程组:??4y,0?x22??4?y3?1.消去y,得(4y2320?3x0)x?24x0x?48?16y20?0. ① 由点P(x0,y0)为曲线C上一点,
得x2204?y03?1.可得4y220?3x0?12.
于是方程①可以化简为x2?2x20x?x0?0. 解得x?x0,
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 13
http://www.beijinggaokao.com 电
话:010-62754468
将x?x0代入方程y?12?3x0x可得y?y0,4y0
故直线l与曲线C有且有一个交点P(x0,y0),综上,直线l与曲线C有且只有一个交点,且交点为P(x0,y0).
x2y212、(北京市东城区2008年高三综合练习二)已知双曲线2?2?1(a?0,b?0)的一条
ab渐近线方程为y?3x,两条准线的距离为l.
(1)求双曲线的方程;
(2)直线l过坐标原点O且和双曲线交于两点M、N,点P为双曲线上异于M、N的一点,
且直线PM,PN的斜率均存在,求kPM·kPN的值.
?b?a?3,?2?2a?1,?(1)解:依题意有:?c
?a2?b2?c2,??解得a2?1,b2?3.y2?1. ??????????????????6分 可得双曲线方程为x?32 (2)解:设M(x0,y0),由双曲线的对称性,可得N(?x0,?y0).
设P(xP,yP),则kPM?kPN2022yP?y0yP?y0yP?y0???2.2xP?x0xP?x0xP?x02y0又x??1,322所以y0?3x0?3,22同理yP?3xP?3,
所以kPM?kPN223xP?3?3x0?3??3. 22xP?x013、(北京市丰台区2008年4月高三统一练习一)在平面直角坐标系xOy中,已知点A(-1, 0)、
B(1, 0), 动点C满足条件:△ABC的周长为2+22.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
14
http://www.beijinggaokao.com 电
话:010-62754468
(Ⅱ)经过点(0, 2)且斜率为k的直线l与曲线W 有两个不同的交点P和Q, 求k的取值范围;
(Ⅲ)已知点M(2,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得
?????????????向量OP?OQ与MN共线?如果存在,求出k的值;如果不存在,请说明理由.
解:(Ⅰ) 设C(x, y),
∵ AC?BC+AB?2?22, AB?2, ∴ AC?BC?22?2,
∴ 由定义知,动点C的轨迹是以A、B为焦点,长轴长为22的椭圆除去与x轴的两个交点. ∴ a?2, c=1. ∴ b2?a2?c2?1.
∴ W: x?y2?1 (y?0). ????????????????? 2分
22x(Ⅱ) 设直线l的方程为y?kx?2,代入椭圆方程,得?(kx?2)2?1. 22 整理,得(1?k2)x2?22kx?1?0. ①?????????? 5分
2 因为直线l与椭圆有两个不同的交点P和Q等价于 ??8k2?4(1?k2)?4k2?2?0,解得k??2或k?2. 222(??,?∴ 满足条件的k的取值范围为 k?
22)?(,??)???? 7分 22????????(Ⅲ)设P(x1,y1),Q(x2,y2),则OP?OQ=(x1+x2,y1+y2),
由①得x1?x2??42k2. ②
1?2k 又y1?y2?k(x1?x2)?22 ③
因为M(2, 0),N(0, 1), 所以MN?(?2, 1).????????? 11分 ????????????? 所以OP?OQ与MN共线等价于x1?x2=-2(y1?y2).
????? 将②③代入上式,解得k?2. 2????????????? 所以不存在常数k,使得向量OP?OQ与MN共线.
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 15
http://www.beijinggaokao.com 电
话:010-62754468
14、(北京市海淀区2008年高三统一练习一)已知点A,B分别是射线l1:y?x?x≥0?,
l2:y??x?x≥0?上的动点,O为坐标原点,且?OAB的面积为定值2.
(I)求线段AB中点M的轨迹C的方程;
(II)过点N?0,2?作直线l,与曲线C交于不同的两点P,Q,与射线l1,l2分别交于点R,S,若点P,Q恰为线段RS的两个三等分点,求此时直线l的方程. 解:(I)由题可设A?x1,x1?,B?x2,?x2?,M?x,y?,其中x1?0,x2?0.
x1?x2?x?,??2则??y?x1?x2,??2(1) 1分
(2)∵?OAB的面积为定值2, ∴S?OAB?11OA?OB?22?2x1??2x2?x1x2?2. 2分
?(1)2?(2)2,消去x1,x2,得:x2?y2?2. 4分
由于x1?0,x2?0,∴x?0,所以点M的轨迹方程为x?y?2(x>0).
5分
(II)依题意,直线l的斜率存在,设直线l的方程为y?kx?2.
22?y?kx?2,22由?2消去y得:?1?k?x?4kx?6?0, 6分 2?x?y?2,设点P、Q、R、S的横坐标分别是xP、xQ、xR、xP,
?1?k2?0,?22???16k?24?1?k??0,?4k∴由xP,xQ?0得? 8分
xP?xQ??0,2?1?k??6?xPxQ??0,2?1?k?解之得:?3?k??1.
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 16
http://www.beijinggaokao.com 电
话:010-62754468
∴xP?xQ??xP?xQ?226?2k2?4xPxQ?. 9分 2k?1由??y?kx?2,2消去y得:xR?,
y?x,1?k??y?kx?2,2由?消去y得:xS?,
y??x,?1?k?∴xR?xS?4. 10分 2k?1由于P,Q为RS的三等分点,∴xR?xS?3xP?xQ. 11分
5. 12分 35经检验,此时P,Q恰为RS的三等分点,故所求直线方程为y??x?2.
3解之得k??15、(北京市十一学校2008届高三数学练习题)如图,椭圆的中心在原点,其左焦点F1与抛物线y??4x的焦点重合,过F1的直线l与椭圆交于A、B两点,与抛物线交于C、D两点.当直线l与x轴垂直时,(Ⅰ)求椭圆的方程;
(II)求过点O、F1,并且与椭圆的左准线相切的圆的方程;
2yCACDAB?22.
F1OF2xB??????????(Ⅲ)求F2A?F2B的最大值和最小值.
解:(Ⅰ)由抛物线方程,得焦点F1(?1,0).
Dx2y2设椭圆的方程:2?2?1(a?b?0).
ab?y2??4x解方程组? 得C(-1,2),D(1,-2).
x??1?由于抛物线、椭圆都关于x轴对称, ∴
|FC||CD|221) . ????2分 ??22,|F1A|?, ∴A(1,22|F1A||AB|∴
11??1又a2?b2?c2?1, 22a2b17
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
http://www.beijinggaokao.com 电
话:010-62754468
因此,
1b2?1?12b2?1,解得b2?1并推得a2?2. x2故椭圆的方程为2?y2?1 . ????4分
(Ⅱ)?a?2,b?1,c?1,
?圆过点O、F1,
?圆心M在直线x??12上.
设M(?12,t),则圆半径,由于圆与椭圆的左准线相切,
∴r?(?1)?(?2)?322. 由OM?r,得(?1)2?t2?322,解得t??2. ?所求圆的方程为(x?192)2?(y?2)2?4.??????????8分
(Ⅲ) 由点F1(?1,0),F2(1,0)
①若AB垂直于x轴,则A(?1,22),B(?1,?22), ????F??(?2,2?????22A?2),F2B?(?2,?2),
???F?A?????F??4?1722B?2?2????????????????9分
②若AB与x轴不垂直,设直线AB的斜率为k,则直线AB的方程为
y?k(x?1)
由??y?k(x?1)(122?x2?2y2?2?0 得 ?2k2)x2?4kx?2(k?1)?0
???8k2?8?0,?方程有两个不等的实数根.
设A(x1,y1),B(x2,y2).
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 18
http://www.beijinggaokao.com 电
话:010-62754468
4k22(k2?1), x1?x2?????????????11分 x1?x2??221?2k1?2k?F2A?(x1?1,y1),F2B?(x2?1,y2)
F2A?F2B?(x1?1)(x2?1)?y1y2?(x1?1)(x2?1)?k2(x1?1)(x2?1)
?(1?k)x1x2?(k?1)(x1?x2)?1?k
2222(k2?1)4k22?(k?1)(?)?1?k2 ?(1?k)221?2k1?2k27k2?179?? =
1?2k222(1?2k2)k2?0,1?2k2?1,0?1?1 21?2k77?F2A?F2B?[?1,],所以当直线l垂于x轴时,F2A?F2B取得最大值
22当直线l与x轴重合时,F2A?F2B取得最小值?1
16、(北京市西城区2008年4月高三抽样测试)已知定点C(?1,0)及椭圆x?3y?5,过点C的动直线与椭圆相交于A,B两点.
(Ⅰ)若线段AB中点的横坐标是?221,求直线AB的方程; 2(Ⅱ)在x轴上是否存在点M,使MA?MB为常数?若存在,求出点M的坐标;若不存在,请说明理由. (Ⅰ)解:
依题意,直线AB的斜率存在,设直线AB的方程为y?k(x?1), 将
y?k(x?1)代入
x2?3y2?5, 消去
y整理得
(3k2?1)x2?6k2x?3k2?5?0. ????.. 2分
设
A(x1,y1), B(x2,y2), 则
???36k4?4(3k2?1)(3k2?5)?0, (1) ? ????.. 4分 ?6k2?x1?x2??2. (2)3k?1?更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
19
http://www.beijinggaokao.com 电
话:010-62754468
x1?x23k211由线段AB中点的横坐标是?, 得??2??,
23k?122解
得
k??33,适合
(. ????.. 5分
所
以
直
线
AB的方程为
x?3y?1?0,或
x?3y?1?0. ????.. 6分
(Ⅱ)解:
假设在x轴上存在点M(m,0),使MA?MB为常数. ①
当
直
线
AB与
x轴不垂直时,由(Ⅰ)知
6k23k2?5x1?x2??2, x1x2?2. (3)
3k?13k?1????????2所以MA?MB?(x1?m)(x2?m)?y1y2?(x1?m)(x2?m)?k(x1?1)(x2?1)
?(k2?1)x1x2?(k2?m)(x1?x2)?k2?m2. ????.. 8分
1142(2m?)(3k?1)?2m?????????(6m?1)k?533?m2 将(3)代入,整理得 MA?MB??m2?223k?13k?12 ?m?2m?216m?14?. 233(3k?1)注意到MA?MB是与k无关的常数, 从而有6m?14?0,m??????????4MA?MB?. .. 11分
9② 当直线AB与x轴垂直时,此时点A,B的坐标分别为??1,7, 此时3??2??2?、?1,????, 3??3?亦
有
当
m??????????4 ????.. 13分 M??.AMB973时,
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 20
http://www.beijinggaokao.com 电
话:010-62754468
综上,在x轴上存在定点M??,0?,使MA?MB为常数.
17、(北京市西城区2008年5月高三抽样测试)已知抛物线的方程为x2?2py?p?0?,过点
P?0,p?的直线l与抛物线相交于A、B两点,分别过点A、B作抛物线的两条切线l1和l2的
?7?3??斜率之积为定值;
(Ⅰ)证明:直线l1和l2的斜率之积为定值;
(Ⅱ)求点M的轨迹方程。
解:(I)依题意,直线l的斜率存在,设直线l的方程为y=kx+p
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 21
http://www.beijinggaokao.com 电
话:010-62754468
18、(北京市宣武区2008年高三综合练习一)在面积为9的?ABC中,
4tan?BAC??,且CD?2DB。现建立以A点为坐标原点,以?BAC3的平分线所在直线为x轴的平面直角坐标系,如图所示。
(1)求AB、AC所在的直线方程;
(2)求以AB、AC所在的直线为渐近线且过点D的双曲线的方程; (3)过D分别作AB、AC所在直线的垂线DF、DE(E、F为垂足),求
AyCDE?DF的值。
解:(1)设?CAx??
xE2tan?4则由tan?BAC?tan2?? ??231?tan???为锐角, ?tan??2,
?AC所在的直线方程为y=2x
AB所在的直线方程为y= -2x?????????????????.4分 (2)设所求双曲线为4x?y??,???0?
22DFB设C?x1,y1?,B?x2,y2?,?x1?0,x2?0?, 由CD?2DB可得:D?2?x1?2x22x1?4x2?,? 33??2?x1?x2??2x1?4x2?4????????,
3?3???32x1x2?? 944由tan?BAC??,可得sin?BAC?,
35即又?AB?5x1, AC?5x2,?x1x2?0?
?S?ABC?即x1x2?114ABACsin?BAC??5?x1x2??2x1x2?9, 2259,代入(1)得??16, 2x2y2??1???????????????????9分 双曲线方程为
416(3)由题设可知,?DE,DF?????BAC,
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 22
http://www.beijinggaokao.com 电
话:010-62754468
?cos?DE,DF??cos(???BAC)?xy设点D为?x0,y0?,则0?0?1
416又点D到AB,AC所在直线距离
223 5DF?2x0?y05,DE?2x0?y05,
而DE?DF?DE?DF?cos?DE,DF?=
2x0?y05?2x0?y05?348? 525x2y219、(北京市宣武区2008年高三综合练习二)已知椭圆2?2?1ab?a?b?0?的离心率
1
为,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于2A、B两点。
(1)求椭圆的标准方程;
(2)设M为右顶点,则直线AM、BM与准线l分别交于P、Q两点,(P、Q两点不重合),
求证:FP?FQ?0
?c1???a?2?a2解:(1)由题意有?2 解得?
ac?1???c?3??cx2y2 ∴椭圆的标准方程为 ??1??????????????5分
43(2)①若直线AB与x轴垂直,则直线AB的方程是x?1
∵该椭圆的准线方程为x?4,
∴P(4,?3),Q(4,3), ∴FP?(3,?3),FQ?(3,3) ∴FP?FQ?0 ∴当直线AB与x轴垂直时,命题成立。 ②若直线AB与x轴不垂直,则设直线AB的斜率为k, ∴直线AB的方程为y?k(x?1),k?0 又设A(x1,y1),B(x2,y2),P(x3,y3),Q(x4,y4)
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 23
http://www.beijinggaokao.com 电
话:010-62754468
?y?k(x?1)?2222联立?x2y2 消y得 (3?4k)x?8kx?4k?12?0
??1?3?48k24k2?12?9k22∴x1?x2? ∴y1y2?k(x1?1)(x2?1)? ,x1x2?2223?4k3?4k3?4k又∵A、M、P三点共线,∴y3?2y12y2 同理y4? x1?2x2?2∴FP?(3,2y22y1),FQ?(3,)
x2?2x1?24y1y2?0
x1x2?2(x1?x2)?4∴FP?FQ?9?综上所述:FP?FQ?0
x2?y2?1的左、右20、(四川省成都市2008届高中毕业班摸底测试)设双曲线C:2顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q。 (Ⅰ)若直线m与x轴正半轴的交点为T,且A1P?A2Q?1,求点T的坐标; (Ⅱ)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(Ⅲ)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设FA??FB,
若??[?2,?1],求|TA?TB|(T为(Ⅰ)中的点)的取值范围。
解:(Ⅰ)由题,得A1(?2,0),A2(2,0),设P(x0,y0),Q(x0,?y0)
则A1P?(x0?2,y0),A2Q?(x0?2,?y0).
2222由A1P?A2Q?1?x0?y0?2?1,即x0?y0?3. ????①
2x02?y0?1. ????② 又P(x0,y0)在双曲线上,则2联立①、②,解得 x0??2 由题意, x0?0, ?x0?2.
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
24
http://www.beijinggaokao.com 电
话:010-62754468
∴点T的坐标为(2,0) ????3分
(Ⅱ)设直线A1P与直线A2Q的交点M的坐标为(x,y) 由A1、P、M三点共线,得
(x0?2)y?y0(x?2) ????③ ????1分
由A2、Q、M三点共线,得
(x0?2)y??y0(x?2) ????④ ????1分
联立③、④,解得 x20?,y2yx0?x. ????1分 ∵P(x0,y0)在双曲线上, 2∴(x)22?(2yx)2?1.
∴轨迹E的方程为x22?y2?1 (x?0,y?0). ????1分 (Ⅲ)容易验证直线l的斜率不为0。
故可设直线l的方程为 x?ky?1x2,代入?y22?1中,得 (k2?2)y2?4ky?2?0.
设 A(x1,y1),B(x2,y2),y1?0且y2?0
则由根与系数的关系,得y1?y2??2kk2?2 ??⑤
y21y2??k2?2. ??⑥ ????2分 ∵FA??FB, ∴有y1y??,且??0. 2将⑤式平方除以⑥式,得
y1y24k214k2y?y?2??2?2????2??k2?2 ????1分
22k?由??[?2,?1]??52???1???2???1??2?0 ??12??4k2k?2?0?k2?27?0?k2?227. ????1分
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
25
http://www.beijinggaokao.com 电
话:010-62754468
∵TA?(x1?2,y1),TB?(x2?2,y2),?TA?TB?(x1?x2?4,y1?y2).
2k4(k2?1)又y1?y2??2,?x1?x2?4?k(y1?y2)?2??2.
k?2k?2故|TA?TB|?(x1?x2?4)?(y1?y2)
22215(k2?1)24k216(k2?2)2?28(k2?2)?8??2? 22222(k?2)(k?2)(k?2)?16?令t?288?
k2?2(k2?2)212711712 ∴,即 .?0?k???t?[,]. 716k2?22162k2?2717∴|TA?TB|2?f(t)?8t2?28t?16?8(t?)2?.
4271169而 t?[,], ∴f(t)?[4,].
16232∴|TA?TB|?[2,132]. 821、(东北区三省四市2008年第一次联合考试)已知中心在原点,左、右顶点A1、A2在x轴上,离心率为
21的双曲线C经过点P(6,6),动直线l经过△A1PA2的重心G与双曲线C3交于不同两点M、N,Q为线段MN的中点。
(1)求双曲线C的标准方程
(2)当直线l的斜率为何值时,QA2?PA2?0。
本小题考查双曲线标准议程中各量之间关系,以及直线与双曲线的位置关系。
x2y2解(1)设双曲线C的方程为2?2?1?a?0,b?0?
ab217a2?b272?e?,?e?,即?,333a2
2b4?2?,① 3a又P(6,6)在双曲线C上,?3636?2?1 2ab②
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 26
http://www.beijinggaokao.com 电
话:010-62754468
由①、②解得a?9,b?12.
22x2y2所以双曲线C的方程为??1。
912(2)由双曲线C的方程可得A1??3,0?,A2?3,0?,又P?6,6? 所以△A1PA2的重点G(2,2)
设直线l的方程为y?k?x?2??2代入C的方程,整理得
?4?3k?x22?12k?k?1?x?12?k2?2k?4??0③
又设M?x1,y1?,N?x2,y2?,Q?x0,y0?x0?kPA2x1?x26k?k?1?8?k?1????;y?kx?2?2?.0023k2?43k2?4y08?1?k? ?2,kQA2??2.x0?33k?6k?1216?1?k???123k?6k?12?QA2?PA2?0,?kPA2?kQA2??1,?整理得3k?10k?4?0 解得k?25?13 3④
2??4?3k?0由③,可得? 2????48?5k?8k?16?0??解得?46?446?423?k?,且k?? 5535?13 3⑤
由④、⑤,得k?x2y222、(东北三校2008年高三第一次联考)设椭圆C:2?2?1(a?b?0)的左焦点为F,
ab上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且
AP?8PQ 5y (1)求椭圆C的离心率;
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站A 27 P http://www.beijinggaokao.com 电
话:010-62754468
(2)若过A、Q、F三点的圆恰好与直线l:
x?3y?5?0相切,求椭圆C的方程.
解:⑴设Q(x0,0),由F(-c,0) A(0,b)知FA?(c,b),AQ?(x0,?b)
b2?2分 ?FA?AQ,?cx0?b?0,x0?c288b25设P(x1,y1),由AP?PQ,得x1?,y1?b???4分
13c1358b225()(b)213因为点P在椭圆上,所以13c??1???6分 22ab1222
整理得2b=3ac,即2(a-c)=3ac,2e2?3e?2?0,故椭圆的离心率e=???8
2分
b23⑵由⑴知2b?3ac,得?a;c22又c11?,得c?a, a2213于是F(-a,0), Q(a,0)
22△AQF的外接圆圆心为(
11a,0),半径r=|FQ|=a????10分
221a?5|所以2?a,解得a=2,∴c=1,b=3,
2|x2y2所求椭圆方程为??1
4323、(东北师大附中高2008届第四次摸底考试)已知双曲线C的中心在原点,对称轴为坐标
轴,其一条渐近线方程是x?y?0,且双曲线C过点P(?2,1). (1)求此双曲线C的方程;
(2)设直线l过点A(0,1),其方向向量为e?(1,k)(k?0),令向量n满足n?e?0.双曲线C的右支上是否存在唯一一点B,使得n?AB?n. 若存在,求出对应的k值和B的坐标;若不存在,说明理由.
解:(1)设双曲线C的方程为x?y??(??0),将点P(?2,1)代入可得??1, ?双曲线C的方程为x?y?1.
2222 (2)依题意,直线 l的方程为y?kx?1 (k?0).设B(x0,y0)是双曲线右支上满足
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 28
http://www.beijinggaokao.com 电
话:010-62754468
n?AB?n 的点,结合 n?e?0,得kx0?y0?1?k2?1, 即点B(x0,y0)到直线l的距离 d?kx0?y0?1k?12?1
①若0?k?1,则直线l与双曲线C的右支相交,此时双曲线C的右支上有两个点到
直线l的距离为1,与题意矛盾;
②若k?1,则直线l在双曲线C右支的上方,故y0?kx0?1,从而
22y0?kx0?1?k2?1. 又因为 x0?y0?1,所以 2(k2?1)x0?2k(1?k2?1)x0?k2?3?2k2?1?0.
当k?1时,方程有唯一解 x0?当k?1时,由??0得 k?2,则B(2,1);
5,此时方程有唯一解 x0?5,则B(5,2) 25综上所述,符合条件的k值有两个:k?1,此时B(2,1);k?,此时B(5,2).
21x2y2324、(本小题满分12分) 已知椭圆C:2?2?1(a?b?0)过点(1,),且离心率e=.
2ab2(Ⅰ)求椭圆方程;
(Ⅱ)若直线l:y?kx?m(k?0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(,0),求k的取值范围。
由题意椭圆的离心率
18c1? ?a?2c ?b2?a2?c2?3c2 a2x2y2∴椭圆方程为2?2?1??2分
4c3c3()2312又点(1,)在椭圆上 ?2?22?1 ?c?1
24c3cx2y2??1??4分 ∴椭圆的方程为43?x2y2?1??(Ⅱ)设M(x1,y1),N(x2,y2) 由?4 3?y?kx?m??e?消去y并整理得(3?4k)x?8kmx?4m?12?0??6分 ∵直线y?kx?m与椭圆有两个交点
222??(8km)2?4(3?4k2)(4m2?12)?0,即m2?4k2?3??8分
8km4km3m又x1?x2?? 中点的坐标为(?,)??9分 ?MNP3?4k23?4k23?4k2更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站
29
http://www.beijinggaokao.com 电
话:010-62754468
11(x?) k83m14km12 即4k?8km?3?0 ??(??)?p在l'上 ?223?4kk3?4k81?m??(4k2?3)??11分
8k(4k2?3)2122将上式代入得 ?4k?3?k?264k20设MN的垂直平分线l'方程:y??即k?5555或k?? ?k的取值范围为(??,?)?(,??)
1010101025、(福建省莆田一中2007~2008学年上学期期末考试卷)在平面直角坐标系xOy中,过定
点C(0,p)作直线与抛物线x?2py(p?0)相交于A,B两点. (I)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(II)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.
解法1:(Ⅰ)依题意,点N的坐标为N(0,?p),可设A(x1,y1),B(x2,y2), 直线AB的方程为y?k?x2?x2?2p,y,与x?2py联立得?消去y得py?k?x.p?2x2?2pkx?2p2?0.
由韦达定理得x1?x2?2pk,x1x2??2p. 于是S△ABN?S△BCN?S△ACN?·2px1?x2.
212y ?px1?x2?p(x1?x2)2?4x1x2 ?p4pk?8p?2p2222B C A O N x k?2,
2∴当k?0时,(S△ABN)min?22p2.
(Ⅱ)假设满足条件的直线l存在,其方程为y?a,
AC的中点为O?,l与AC为直径的圆相交于点P,Q,PQ的中点为H,
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 30
http://www.beijinggaokao.com 电
话:010-62754468
则O?H?PQ,Q?点的坐标为??x1y1?p?,?.
2??2y ∵O?P?11212AC?x1?(y1?p)2?y1?p2, 222y1?p1?2a?y1?p, 2222B l A O?H?a?2O?C O N ∴PH?O?P?O?H11?(y12?p2)?(2a?y1?p)2 44x p????a??y1?a(p?a),
2????p??2∴PQ?(2PH)2?4??a??y1?a(p?a)?.
2????令a?ppp得a?,此时PQ?p为定值,故满足条件的直线l存在,其方程为y?, ?0,
222即抛物线的通径所在的直线.
解法2:(Ⅰ)前同解法1,再由弦长公式得
AB?1?k2x1?x2?1?k2·(x1?x2)2?4x1x2?1?k2·4p2k2?8p2
?2p1?k2·k2?2,
又由点到直线的距离公式得d?2p1?k22.
·AB?·2p1?k·k?2·从而S△ABN?·d121222p1?k2?2p2k2?2,
∴当k?0时,(S△ABN)min?22p2.
(Ⅱ)假设满足条件的直线l存在,其方程为y?a,则以AC为直径的圆的方程为
(x?0)(x?x1)?(y?p)(y?y1)?0,
将直线方程y?a代入得x?x1x?(a?p)(a?y1)?0, 则△?x1?4(a?p)(a?y1)?4??a?22????p??y?a(p?a)?1?. 2??更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 31
http://www.beijinggaokao.com 电
话:010-62754468
设直线l与以AC为直径的圆的交点为P(x3,y3),Q(x4,y4), 则有PQ?x3?x4?令a???p??p??4??a??y1?a(p?a)??2?a??y1?a(p?a).
2?2?????ppp得a?,此时PQ?p为定值,故满足条件的直线l存在,其方程为y?, ?0,
22即抛物线的通径所在的直线.
更多更全的权威试卷 请访问 http://www.beijinggaokao.com 北京高考网-北达教育旗下网站 232
正在阅读:
2008届全国百套数学模拟试题分类汇编-083圆锥曲线解答题a - 图文04-07
调研报告个人总结(精选多篇)09-28
2015年加油站安全知识竞赛试题及答案05-09
高二语文选修《项脊轩志》05-12
实验楼计算书06-11
建模 3~804-18
万科员工手册精编版03-18
89c52的单片机自动往返电动小汽车设计报告 - 图文01-09
杨老师在线小学语文02-17
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 圆锥曲线
- 模拟试题
- 答题
- 汇编
- 数学
- 图文
- 全国
- 分类
- 2008
- 083
- 中国石油大学(华东)会计硕士(MPAcc)复试名单
- 霍尔位置传感器的定标和杨氏模量的测定 - 图文
- 岸边集装箱起重机总体设计
- 廉政语录
- 各种花的英文名
- 2015吉林省四平市事业单位考试面试备考资料:哲理类题目中的因果
- 企业安全管理制度汇编(原稿)
- 城市表层土壤重金属污染分析
- 大学生电子商务竞赛三创比赛总结
- 国网集中器培训资料
- 立体几何基础题题库一B
- 国家公务员考试行测答题技巧:年龄问题解题技巧
- (长锦监CIII右会002号)大坝右岸工程首次工地例会纪要
- 对客观世界的主观表达教学设计
- neo4j批量创建关系
- 6.3 美洲学案第2课时(湘教版七年级下)
- 生化检查项目及临床意义
- 安庆师范学院2012—2013学年学生评奖评优结果公示
- WLAN网络分场景方案汇编 - 图文
- 功率、重力势能、弹性势能习题