初一数学上册知识点总结及练习

更新时间:2024-07-12 03:45:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

荣升教育----------初中数学一对一辅导中心

初一数学(上)知识点

代数初步知识

1. 代数式:用运算符号+ - 3 ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)

2.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;

三个连续整数是: n-1、n、n+1 ; 有理数 1.有理数:

(1)凡能写成(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;

???正整数?正整数?整数?零?正有理数?正分数?????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数 ???负整数?正分数负有理数?分数???负分数??负分数??qp(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;

a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

- 1 -

荣升教育----------初中数学一对一辅导中心

(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

?a(a?0)(a?0)?a(2) 绝对值可表示为:a???0(a?0)或a???a(a?0) ;绝对值的问题经常分类讨论;

????a(a?0)(3)

aa?1?a?0 ;

aa??1?a?0;

(4) |a|是重要的非负数,即|a|≥0;注意:|a|2|b|=|a2b|,

ab?a. b5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0

小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的倒数是;倒数是本身的数是±1;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数. 7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

- 2 -

1a荣升教育----------初中数学一对一辅导中心

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数

决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .

即无意义. 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,

a013.有理数乘方的法则: (1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a

-b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;

15.科学记数法:把一个大于10的数记成a310n的形式,其中a是整数数位只有一位的数,

这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

- 3 -

荣升教育----------初中数学一对一辅导中心

整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

?单项式整式分类为:整式? .

?多项式6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 一元一次方程 1.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 2.方程:含未知数的等式,叫方程.

- 4 -

荣升教育----------初中数学一对一辅导中心

3.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 4.一元一次方程:只含有一个未知数,且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程一般步骤:整理方程 。。去分母 ?去括号 ?移项 ? 合并同类项 ? 系数化为1 ? (检验方程的解). 10.列方程解应用题的常用公式:

周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,

S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h. 习题:

1、若x?1?2,则x? ;若x?2?(y?3)2?0,则x? y131112.比较?1,?1,1的大小: ;? ?0.3,?0.2 ?0.3; ?。

3232342311531116?(?4)??1;?2?24?(??);3.计算:(1) (2)? (3) ?2?(?1)2008;

4126822

1(4)?27?27?(?)2?(?9); (5)15?15?(?5)2?(?5)2;

3

(5)(6)?10?(?10)?

- 5 -

11??(?10); 22

荣升教育----------初中数学一对一辅导中心

(7)?1?1?32?

1317.(本题10分)计算(1)(1??)?(?48) (2)(?1)10?2?(?2)3?4

6411299?2(?3)?(?2)?(?1)?; (8) 223解: 解:

18.(本题10分)解方程(1)3x?7?32?2x (2) 1?解: 解:

23.(本题10分)关于x的方程x?2m??3x?4与2?m?x的解互为相反数.

(1)求m的值;(6分) (2)求这两个方程的解.(4分) 解:

11x?3?x 26

- 6 -

荣升教育----------初中数学一对一辅导中心

相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

- 7 -

荣升教育----------初中数学一对一辅导中心

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

- 8 -

荣升教育----------初中数学一对一辅导中心

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

- 9 -

荣升教育----------初中数学一对一辅导中心

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

- 10 -

本文来源:https://www.bwwdw.com/article/2sw.html

Top