价键理论
更新时间:2024-04-09 03:18:01 阅读量:1 综合文库 文档下载
价键理论
价键理论 valence-bond theory,一种获得分子薛定谔方程近似解的处理方法。又称电子配对法。历史上最早发展起来的化学键理论。主要描述分子中的共价键和共价结合,其核心思想是电子配对形成定域化学键。 1产生
1927年W.H.海特勒和F.W.伦敦首次完成了氢分子中电子对键的量子力学近似处理,这是近代价键理论的基础。L.C.鲍林等加以发展,引入杂化轨道概念,综合成价键理论 ,成功地应用于双原子分子和多原子分子的结构。
价键理论与化学家所熟悉的经典电子对键概念相吻合 ,一出现就得到迅速发展。但价键理论计算比较复杂,使得后来发展缓慢。随着计算技术日益提高,该理论还会有新发展。 1927年,Heitler 和 London 用量子力学处理氢气分子H2,解决了两个氢原子之间化学键的本质问题,使共价键理论从典型的Lewis理论发展到今天的现代共价键理论。 海特勒-伦敦方法处理氢分子 氢分子的哈密顿算符是:
式中rA1、rB1为核A、B与电子1之间的距离;r12为两个电子之间的距离;RAB为两个原子核之间的距离……(图1);1/RAB表示两个原子核之间的势能(氢核和电子电荷皆为 1基本电荷单位);1/rA1、1/rB1、…也是势能;墷是拉普拉斯算符。
海特勒-伦敦方法的要点在于如何恰当地选取基态H2的近似波函数Ψ(1,2)(或称尝试波函数),然后用变分公式使氢分子能量E为最低(假定Ψ是归一化的):
式中*表示复数共轭。考虑两个氢原子组成的体系,若两个氢原子A(有电子1)和B(有电子2)的基态波函数为: φA⑴=πexp(-rA1) φB⑵=πexp(-rB2)
假如两个氢原子相距很远,那么体系波函数是: Φ1(1,2)=φA⑴φB⑵
实际上两个电子是不可区分的。同样合适的函数是: Φ2(1,2)=φB⑴φA⑵
两个函数Φ1和Φ2都对应相同的能量。海特勒和伦敦就取两个函数的等权线性组合作为H2的变分函数:
Ψ(1,2)=c1Φ1+c2Φ2 解久期方程得c1=±c2,波函数和能量是: 式中
s称原子轨道的重叠积分。算出能量公式中各项,积分得:
式中Q、J、s都是R的函数。若用ΔE±表示分子能量与两个分离原子能量之差(图2): ΔE±就是分子相对于分离原子能量为零时的能量。因为H11和H12都是负量,Ψ+态比Ψ-态能量更低,图2 中ΔE+曲线总处于ΔE-曲线的下面。图中虚线表示实验势能曲线。ΔE+曲线有极小值,表示形成了稳定的 H2。在平衡核间距 Re=0.87埃,计算得到离解能De=3.14电子伏(或称结合能)。与实验值Re=0.742埃,De=4.75电子伏略有差异,这反映了海特勒-伦敦法的近似程度。ΔE-在R 减小时一直升高。Ψ+称海特勒-伦敦函数,描述H2基态,Ψ-描述排斥态。
若考虑自旋,按照泡利原理,必须使分子波函数对电子交换是反对称的。则Ψ+必须乘以反对称自旋函数而给出自旋单重态:
Ψ-必须与对称自旋函数相乘得到自旋三重态:
Ψ+态描述了H2的共价键,其中电子自旋是配对的,故称共价键为电子对键。 电子密度分布 可以帮助理解共价键的本质。从波函数Ψ±出发可以计算总电子密度为两个
单电子几率密度P±⑴和P±⑵的和乘以电子电量(a,u)。点(x,y,z)处的总电子密度为: = ⑴
若φA、φB为氢原子的1s轨道,则:
式中rA、rB分别表示从点(x,y,z)到核A和B的距离。总电子电荷密度沿核间轴分布如图3。由ρ+曲线可见,电子电荷从核外区移向两核之间的区域,相当于电子同时吸引两核,因而降低了势能。由式⑴可知,两原子核愈接近,重叠积分愈大,电荷在核间区愈密集,也即共价键愈牢固(最大重叠原则)。但原子核愈接近,核排斥能和电子排斥能也同时增加,所以氢分子有一稳定的平衡核间距。Ψ-态的电子电荷从核间区移向核外区,使得核间屏蔽减少,能量升高,形成排斥态。
电子电荷在两核间密集,影响分子的平均动能〈T〉和平均势能〈V〉。为深入理解共价键的本质,按双原子分子的维里定理计算出2的〈T〉和〈V〉: 又分子总能量E=〈T〉+〈V〉。如已知E 随R 的改变的(dE/dR),则得:
计算得到的H2基态E、
当核间距减少时,电子同核吸引的平均势能降低,但电子的排斥能的平均值增加,核的排斥能也增加。核间距达到某一值(1.401a0,a0为玻尔半径)时,平均总势能达到极小值,电子将在此势阱中运动,此时,dE/dR=0,平均动能等于平均总势能的负值的一半,氢分子的总能量则为势能平均值的一半。 处理氢分子的方法
价键理论是海特勒伦敦处理氢分子方法的推广,要点如下:①若两原子轨道互相重叠,两个轨道上各有一个电子 ,且电子自旋方向相反,则电子配对给出单重态,形成一个电子对键。②两个电子相互配对后,不能再与第三个电子配对,这就是共价键的饱和性。③遵循最大重叠原则,共价键沿着原子轨道重叠最大的方向成键[1]。共价键具有方向性。原子轨道通常在某个特定方向上有最大值,只有在此方向上轨道间才有最大重叠而形成共价键。不同原子轨道有不同成键能力。原子轨道的最大值作为原子轨道成键能力的度量,鲍林给出s、p、d、f等原子轨道成键能力依次为 1、6、10、14。在主量子数相同时,成键能力大的轨道形成的共价键较牢固。 氢分子中的化学键
量子力学计算表明,两个具有 电子构型的 H 彼此靠近,两个 1s 电子以自旋相反的方式形成电子对,使体系的能量降低. 吸热,即破坏 H2 的键要吸热(吸收能量),此热量 D 的大小与 H2 分子中的键能有关. 计算还表明,若两个 1s 电子保持以相同自旋的方式,则 r 越小,V 越大. 此时,不形成化学键. 如图中上方红色曲线所示,能量不降低. H2 中的化学键可以认为是电子自旋相反成对,使体系的能量降低. 从电子云角度考虑,可认为 H 的 1s轨道在两核间重叠,使电子在两核间出现的几率大,形成负电区,两核吸引核间负电区,使 H 结合在一起。 2相关理论
将对 H2 的处理结果推广到其它分子中,形成了以量子力学为基础的价键理论(V. B. 法)。 共价键的形成
A,B 两原子各有一个成单电子,当 A,B 相互接近时,两电子以自旋相反的方式结成电子对,即两个电子所在的原子轨道能相互重叠,则体系能量降低,形成化学键,亦即一对电子则形成一个共价键。
形成的共价键越多,则体系能量越低,形成的分子越稳定. 因此,各原子中的未成对电子尽可能多地形成共价键. 配位键形成条件:一种原子中有孤对电子,而另一原子中有可与对电
子所在轨道相互重叠的空轨道. 在配位化合物中,经常见到配位键. 在形成共价键时,单电子也可以由对电子分开而得到。 方向性和饱和性
共价键的数目由原子中单电子数决定(包括原有的和激发而生成的. 例如: O 有两个单电子,H 有一个单电子,所以结合成水分子,只能形成2个共价键; C 最多能与 H 形成 4 个共价键.原子中单电子数决定了共价键的数目. 即为共价键的饱和性。
各原子轨道在空间分布是固定的,为了满足轨道的最大重叠,原子间成共价键时,当然要具有方向性。共价键的键型 共价键的键型分类
成键的两个原子间的连线称为键轴. 按成键与键轴之间的关系,共价键的键型主要为两种: a) 键
键特点: 将成键轨道,沿着键轴旋转任意角度,图形及符号均保持不变. 即键轨道对键轴呈圆柱型对称,或键轴是 n 重轴。 b) 键
键特点: 成键轨道围绕键轴旋转180°时,图形重合,但符号相反.
键参数:化学键的形成情况,完全可由量子力学的计算得出,进行定量描述. 但通常用几个物理量加以描述,这些物理量称为键参数。 a) 键能
AB(g) —— A(g) + B(g) H = EAB = DAB
对于双原子分子, 解离能DAB等于键能EAB,但对于多原子分子, 则要注意解离能与键能的区别与联系。另外,相同的键,在不同化合物中,键长和键能不相等. 例如,CH3OH中和C2H6 中均有C-H键,而它们的键长和键能不同。 c) 键角
是分子中键与键之间的夹角(在多原子分子中才涉及键角)。 如,H2S 分子,H-S-H 的键角为 92°,决定了H2S 分子的构型为“V”字形。 又如: CO2中,O-C-O的键角为180°,则CO2分子为直线形。 因而,是决定分子几何构型的重要因素
正在阅读:
价键理论04-09
个性签名大全伤感(3篇)02-14
中国饭店协会职业经理人年会06-18
试述市场的含义及其要素之间的关系09-23
河南工程学院-社联-关于电脑手机使用的调研报告 - 图文01-29
关于不忘初心牢记使命主题教育心得体会合集08-05
现代诗歌:保护环境03-21
公司管理论文.doc07-28
论文致谢词范文(英文版)03-08
谈中俄贸易中的“灰色清关”问题07-23
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 理论