横截面数据、时间序列数据、面板数据

更新时间:2024-04-24 01:59:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

横截面数据、时间序列数据、面板数据

横截面数据:(时间固定)

横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。 如:

时间序列数据:(横坐标为t,纵坐标为y)

在不同时间点上收集到的数据,这类数据反映某一事物、现象等随时间的变化状态或程度。 如:

面板数据:(横坐标为t,斜坐标为y,纵坐标为z)

是截面数据与时间序列数据综合起来的一种数据类型。其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排

在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。 举例:

如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。 如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。

如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12; 上海市分别为9、10、11、12、13; 天津市分别为5、6、7、8、9;

重庆市分别为7、8、9、10、11(单位亿元)。 这就是面板数据。

关于面板数据的统计分析

在写论文时经常碰见一些即是时间序列又是截面的数据,比如分析1999-2010的公司盈余管理影响因素,而影响盈余管理的因素有6个,那么会形成如下图的数据

因素1 …… 公司1 因素6 盈余管理程度 因素1 …… 公司2 因素6 盈余管理程度 因素1 公司100 …… 因素6 盈余管理程度 1999 2000 …… 2010 如上图所示的数据即为面板数据。显然面板数据是三维的,而时间序列数据和截面数据都是二维的,把面板数据当成时间序列数据或者截面数据来处理都是不合适的。 处理面板数据的软件较多,一般使用Eviews6.0、Stata等。个人推荐使用Stata,因为Stata比较适合处理面板数据,且个性化强。以下以Stata11.0为例来讲解怎么样处理面板数据。 由于面板数据的存储结构与我们通常使用的存储结构不太一样,所在统计分析前,最好在excel中整理一下数据,形成如下图所示的数据 年份 公司名称 公司1 公司1 公司1 公司1 公司2 公司2 公司2 公司2 因素1 因素2 …… 因素6 盈余管理程度 1999 2000 …… 2010 1999 2000 …… 2010 变量定义及输入数据 启动Stata11.0,Stata界面有4个组成部分,Review(在左上角)、Variables(左下角)、输出窗口(在右上角)、Command(右下角)。首先定义变量,可以输入命令,也可以通过点击Data----Create new Variable or change variable。

特别注意,这里要定义的变量除了因素1、因素2、……因素6、盈余管理影响程度等,还要定义年份和公司名称两个变量,这两个变量的数据类型(Type)最好设置为int(整型),公司名称不要使用中文名称或者字母等,用数字代替。定义好变量之后可以输入数据了。数据可以直接导入(File-Import),也可以手工录入或者复制粘贴(Data-Data Edit(Browse)),手工录入数据和在excel中的操作一样。 以上面说的为例,定义变量 year、 company、 factor1、 factor2、 factor3、 factor4、 factor5、 factor6、 DA。

变量company 和year分别为截面变量和时间变量。显然,通过这两个变量我们可以非常清楚地确定panel data 的数据存储格式。因此,在使用STATA 估计模型之前,我们必须告诉它截面变量和时间变量分别是什么,所用的命令为tsset,命令为: tsset company year

输出窗口将输出相应结果。

由于面板数据本身兼具截面数据和时间序列二者的特性,所以对时间序列进行操作的运算同样可以应用到面板数据身上。这一点在处理某些数据时显得非常方便。如,对于上述数据,我们想产生一个新的变量Lag _factor1 ,也就是factor1 的一阶滞后,那么我们可以采用如下命令: gen Lag_factor1=L.factor1 统计描述:

在正式进行模型的估计之前,我们必须对样本的基本分布特性有一个总体的了解。对于面板数据而言,我们至少要知道我们的数据中有多少个截面(个体) ,每个截面上有多少个观察期间,整个数据结构是平行的还是非平行的。进一步地,我们还要知道主要变量的样本均值、标准差、最大值、最小值等情况。这些都可以通过以下三个命令来完成: xtdes 命令用于初步了解数据的大体分布状况,我们可以知道数据中含有多少个截面,最大和最小的时间跨度是多少。在某些要求使用平行面板数据的情况下,我们可以采用该命令来诊断处理后的数据是否为平行数据。Xtsum用来查询对组内、组间、整体计算各个变量的基本统计量(如均值、方差等)。为了方便,以下的举例都只用factor1,factor2两个自变量。 xtdes DA factor1 facto2

xtsum DA factor1 facto2 模型回归。

常用的处理面板数据的模型有混合OLS模型、固定效应模型、随机效应模型。各个模型的区别请上网查查。下面说说各个模型的命令: 混合OLS模型输入命令: regress DA factor1 facto2 固定效应模型输入命令: xtreg DA factor1 factor , fe

随机效应模型输入命令: xtreg DA factor1 factor , re 模型的选择及检验

固定效应模型要检验个体效应的显著性,这可以通过固定效应模型回归结果的最后一行的F统计量看出,F越大越好,可以得出固定效应模型优于混合OLS模型的结论。随机效应模型要检验随机效应是否显著,要输入命令: xttest0

如果检验得到的p值为0,则随机效应显著,随机效应模型也优于固定效应模型。至于固定效应模型与随机效应模型选哪一个,则要通过hausman检验来得出。 Hausman检验

Hausman检验的原假设是固定效应模型优于随机效应模型,如果hausman检验的p值为0,则接受原假设,使用固定效应模型。相关命令: qui xtreg DA factor1 factor2 ,fe est store fe

qui xtreg DA factor1 factor2 ,re est store re hausman fe 检验序列相关

固定效应模型使用xtserial命令,随机效应模型使用xttest1命令: qui xtreg DA factor1 factor2 ,re xttest1…………对于随机效应模型 xtserial DA factor1 factor2

如果没有xtserial命令即输入上面的命令后弹出no command,则输入findit xtserial.ado可以自动搜索到进行安装。 检验截面相关性及截面异方差性

由于面板数据都是针对国家或公司的,因此截面间往往会存在相关性,我们可以利用xttest2 命令来检验固定效应模型中截面间的相关性是否显著。 qui xtreg DA factor1 factor2 ,fe xttest2

检验截面异方差性输入命令 Xttest3

本文来源:https://www.bwwdw.com/article/2qrp.html

Top