人教A版数学选修1-1全套教案
更新时间:2024-05-20 12:27:01 阅读量: 综合文库 文档下载
- 新课标人教b版数学选修一推荐度:
- 相关推荐
第一课时 1.1.1 命题及其关系(一)
教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式. 教学重点:命题的改写. 教学难点:命题概念的理解. 教学过程:
一、复习准备:
阅读下列语句,你能判断它们的真假吗? (1)矩形的对角线相等; (2)3?12; (3)3?12吗?
(4)8是24的约数;
(5)两条直线相交,有且只有一个交点; (6)他是个高个子. 二、讲授新课:
1. 教学命题的概念:
①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件. 上述6个语句中,(1)(2)(4)(5)(6)是命题.
②真命题:判断为真的语句叫做真命题(true proposition); 假命题:判断为假的语句叫做假命题(false proposition). 上述5个命题中,(2)是假命题,其它4个都是真命题.
③例1:判断下列语句中哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集;
(2)若整数a是素数,则a是奇数; (3)2小于或等于2;
(4)对数函数是增函数吗? (5)2x?15;
(6)平面内不相交的两条直线一定平行; (7)明天下雨.
(学生自练?个别回答?教师点评)
④探究:学生自我举出一些命题,并判断它们的真假. 2. 将一个命题改写成“若p,则q”的形式:
①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.
②试将例1中的命题(6)改写成“若p,则q”的形式. ③例2:将下列命题改写成“若p,则q”的形式.
(1)两条直线相交有且只有一个交点; (2)对顶角相等;
(3)全等的两个三角形面积也相等. (学生自练?个别回答?教师点评)
3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式. 三、巩固练习:
1. 练习:教材 P4 1、2、3 2. 作业:教材P9 第1题
第1页(共57页)
第二课时 1.1.2 命题及其关系(二)
教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.
教学重点:四种命题的概念及相互关系. 教学难点:四种命题的相互关系. 教学过程:
一、复习准备:
指出下列命题中的条件与结论,并判断真假: (1)矩形的对角线互相垂直且平分; (2)函数y?x2?3x?2有两个零点.
[来源:Zxxk.Com]二、讲授新课:
1. 教学四种命题的概念:
原命题 逆命题 若p,则q 若q,则p
否命题
若?p,则?q 逆否命题 若?q,则?p[来源:Zxxk.Com]
①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假. (师生共析?学生说出答案?教师点评)
②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数;
(3)线段垂直平分线上的点与这条线段两个端点的距离相等. (学生自练?个别回答?教师点评) 2. 教学四种命题的相互关系:
①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系. ②四种命题的相互关系图:
互逆原命题逆命题
若p则q若q则p互
[来源:Z。xx。k.Com][来源:学*科*网Z*X*X*K]
为
[来源:学,科,网Z,X,X,K]互否否命题若┐p则┐q逆否互否逆否命题若┐q则┐p为互逆否 互逆
③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系. ④结论一:原命题与它的逆否命题同真假;
结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.
⑤例2 若p2?q2?2,则p?q?2.(利用结论一来证明)(教师引导?学生板书?教师点评) 3. 小结:四种命题的概念及相互关系. 三、巩固练习:
1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假. (1)函数y?x2?3x?2有两个零点;(2)若a?b,则a?c?b?c; (3)若x2?y2?0,则x,y全为0;(4)全等三角形一定是相似三角形; (5)相切两圆的连心线经过切点.
2. 作业:教材P9页 第2(2)题 P10页 第3(1)题
第2页(共57页)
1.2 充分条件和必要条件(1)
【教学目标】
1.从不同角度帮助学生理解充分条件、必要条件与充要条件的意义; 2.结合具体命题,初步认识命题条件的充分性、必要性的判断方法; 3.培养学生的抽象概括和逻辑推理的意识. 【教学重点】构建充分条件、必要条件的数学意义; 【教学难点】命题条件的充分性、必要性的判断. 【教学过程】 一、复习回顾
1.命题:可以判断真假的语句,可写成:若p则q. 2.四种命题及相互关系: 3.请判断下列命题的真假:
(1)若x?y,则x?y; (2)若x?y,则x?y; (3)若x?1,则x2?1; (4)若x?1,则x?122222[来源:学.科.网]
二、讲授新课
1.推断符号“?”的含义:
一般地,如果“若p,则q”为真, 即如果p成立,那么q一定成立,记作:“p?q”; 如果“若p,则q”为假, 即如果p成立,那么q不一定成立,记作:“p??q”. 用推断符号“?和??”写出下列命题:⑴若a?b,则ac?bc;⑵若a?b,则a?c?b?c; 2.充分条件与必要条件
一般地,如果p?q,那么称p是q的充分条件;同时称q是p的必要条件.
如何理解充分条件与必要条件中的“充分”和“必要”呢?
由上述定义知“p?q”表示有p必有q,所以p是q的充分条件,这点容易理解.但同时说q是p的必要条件是为什么呢?q是p的必要条件说明没有q就没有p,q是p成立的必不可少的条件,但有q未必一定有p.
充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.它符合上述
的“若p则q”为真(即p?q)的形式.“有之必成立,无之未必不成立”.
必要性:必要就是必须,必不可少.它满足上述的“若非q则非p”为真(即?q??p)的形式.“有之未必成立,无之必不成立”.
命题按条件和结论的充分性、必要性可分为四类: (1)充分必要条件(充要条件),即 p?q且q?p; (2)充分不必要条件,即p?q且q??p; (3)必要不充分条件,即p??q且q?p; (4)既不充分又不必要条件,即p??q且q??p. 3.从不同角度理解充分条件、必要条件的意义
(1)借助“子集概念”理解充分条件与必要条件。设A,B为两个集合,集合A?B是指
x?A?x?B。这就是说,“x?A”是“x?B”的充分条件,“x?B”是“ x?A”的必要条
件。对于真命题“若p则q”,即p?q,若把p看做集合A,把q看做集合B,“p?q”相当于“A?B”。
(2)借助“电路图”理解充分条件与必要条件。设“开关A闭合”为条件A,“灯泡B亮”
第3页(共57页)
为结论B,可用图1、图2来表示A是B的充分条件,A是B的必要条件。
A BA C B
C
A 图2 图1 B C A B
图3 图4
(3)回答下列问题中的条件与结论之间的关系: ⑴若a?b,则a?c?b?c; ⑵若x?0,则x2?0;
⑶若两三角形全等,则两三角形的面积相等. 三、例题
例1:指出下列命题中,p是q的什么条件.
⑴p:x?1?0,q:?x?1??x?2??0;
⑵p:两直线平行,q:内错角相等; ⑶p:a?b,q:a2?b2;
⑷p:四边形的四条边相等,q:四边形是正方形. 四、课堂练习
课本P8 练习1、2、3 五、课堂小结
1.充分条件的意义; 2.必要条件的意义. 六、课后作业:
1.2 充分条件和必要条件(2)
[教学目标]:
1.进一步理解并掌握充分条件、必要条件、充要条件的概念; 2.掌握判断命题的条件的充要性的方法; [教学重点、难点]:
理解充要条件的意义,掌握命题条件的充要性判断. [教学过程]: 一、复习回顾
一般地,如果已知p?q,那么我们就说p是q成立的充分条件,q是p的必要条件
[来源:学科网ZXXK][来源:学。科。网]⑴“a?b?c”是“?a?b??b?c??c?a??0”的 充分不必要 条件.
⑵若a、b都是实数,从①ab?0;②a?b?0;③ab?0;④a?b?0;⑤a2?b2?0;⑥a2?b2?0中选出使a、b都不为0的充分条件是 ①②⑤ . 二、例题分析
条件充要性的判定结果有四种,判定的方法很多,但针对各种具体情况,应采取不同的策略,灵活判断.下面我们来看几个充要性的判断及其证明的例题.
第4页(共57页)
1.要注意转换命题判定,培养思维的灵活性
例1:已知p:x?y??2;q:x、y不都是?1,p是q的什么条件?
分析:要考虑p是q的什么条件,就是判断“若p则q”及“若q则p”的真假性 从正面很难判断是,我们从它们的逆否命题来判断其真假性
“若p则q”的逆否命题是“若x、y都是?1,则x?y??2”真的 “若q则p”的逆否命题是“若x?y??2,则x、y都是?1”假的
故p是q的充分不必要条件
注:当一个命题很难判断其真假性时,我们可以从其逆否命题来着手.
2练习:已知p:x?2或x?;q:x?2或x??1,则?p是?q的什么条件?
32 ?x?2 ?q:?1?x?23显然?p是?q的的充分不必要条件
方法二:要考虑?p是?q的什么条件,就是判断“若?p则?q”及“若?q则?p”的真假性 “若?p则?q”等价于“若q则p”真的 “若?q则?p”等价于“若p则q”假的 故?p是?q的的充分不必要条件
方法一:?p:[来源:Zxxk.Com]2.要注意充要条件的传递性,培养思维的敏捷性
例2:若M是N的充分不必要条件,N是P的充要条件,Q是P的必要不充分条件,则M是Q的什么条件?
分析:命题的充分必要性具有传递性M?N?P?Q 显然M是Q的充分不必要条件 3.充要性的求解是一种等价的转化
例3:求关于x的一元二次不等式ax2?1?ax于一切实数x都成立的充要条件 分析:求一个问题的充要条件,就是把这个问题进行等价转化 ?a?0?由题可知等价于a?0或?a?0?a?0或0?a?4?0?a?4
???0?4.充要性的证明,关键是理清题意,特别要认清条件与结论分别是什么
例4:证明:对于x、y?R,xy?0是x2?y2?0的必要不充分条件.
分析:要证明必要不充分条件,就是要证明两个,一个是必要条件,另一个是不充分条件 必要性:对于x、y?R,如果x2?y2?0
则x?0,y?0 即xy?0 故xy?0是x2?y2?0的必要条件
不充分性:对于x、y?R,如果xy?0,如x?0,y?1,此时x2?y2?0
故xy?0是x2?y2?0的不充分条件
综上所述:对于x、y?R,xy?0是x2?y2?0的必要不充分条件.
[来源:Zxxk.Com]例5:p:?2?x?10;q:1?m?x?1?m?m?0?.若?p是?q的必要不充分条件,求实数m的
第5页(共57页)
取值范围.
解:由于?p是?q的必要不充分条件,则p是q的充分不必要条件
?1?m??2于是有??m?9
10?1?m?三、练习:
1.若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,那么:命题丁是命题甲的什么条件.(必要不充分的条件)
2.对于实数x、y,判断“x+y≠8”是“x≠2或y≠6”的什么条件.(充分不必要条件) 3.已知ab?0,求证:a?b?1的充要条件是:a3?b3?ab?a2?b2?0.
简单的逻辑联结词(二)复合命题
教学目标:加深对“或”“且”“非”的含义的理解,能利用真值表判断含有复合命题的真假; 教学重点:判断复合命题真假的方法;
教学难点:对“p或q”复合命题真假判断的方法 课 型:新授课
教学手段:多媒体
一、创设情境
1.什么叫做命题?(可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题)
2.逻辑联结词是什么?(“或”的符号是“∨”、“且”的符号是“∧”、“非”的符号是“┑”,这些词叫做逻辑联结词)
3.什么叫做简单命题和复合命题?(不含有逻辑联结词的命题是简单命题由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题) 4.复合命题的构成形式是什么?
p或q(记作“p∨q” ); p且q(记作“p∨q” );非p(记作“┑q” ) 二、活动尝试 问题1: 判断下列复合命题的真假 (1)8≥7
(2)2是偶数且2是质数; (3)?不是整数;
解:(1)真;(2)真;(3)真;
命题的真假结果与命题的结构中的p和q的真假有什么联系吗?这中间是否存在规律? 三、师生探究
1.“非p”形式的复合命题真假:
例1:写出下列命题的非,并判断真假:
2
(1)p:方程x+1=0有实数根
2
(2)p:存在一个实数x,使得x-9=0.
2
(3)p:对任意实数x,均有x-2x+1≥0;
(4)p:等腰三角形两底角相等
显然,当p为真时,非p为假; 当p为假时,非p为真. 2.“p且q”形式的复合命题真假:
例2:判断下列命题的真假:(1)正方形ABCD是矩形,且是菱形; (2)5是10的约数且是15的约数 (3)5是10的约数且是8的约数 (4)x2-5x=0的根是自然数
所以得:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假。 3.“p或q”形式的复合命题真假:
第6页(共57页)
例3:判断下列命题的真假:(1)5是10的约数或是15的约数; (2)5是12的约数或是8的约数; (3)5是12的约数或是15的约数;
(4)方程x2-3x-4=0的判别式大于或等于零
当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。 四、数学理论
1.“非p”形式的复合命题真假:
当p为真时,非p为假; 当p为假时,非p为真.
[来源:Zxxk.Com](真假相反)
p 真 假 非p 假 真 2.“p且q”形式的复合命题真假:
当p、q为真时,p且q为真; 当p、q中至少有一个为假时,p且q为假。
(一假必假)
p 真 真 假 假 q 真 假 真 假 p且q 真 假 假 假 3.“p或q”形式的复合命题真假:
当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。
(一真必真)
p 真 真 假 假 q 真 假 真 假 P或q[来源:Zxxk.Com] 真 真 真 假 注:1°像上面表示命题真假的表叫真值表;
2°由真值表得:
“非p”形式复合命题的真假与p的真假相反;
“p且q”形式复合命题当p与q同为真时为真,其他情况为假; “p或q”形式复合命题当p与q同为假时为假,其他情况为真; 3°真值表是根据简单命题的真假,判断由这些简单命题构成的
复合命题的真假,而不涉及简单命题的具体内容。如:p表示“圆周率π是无理数”,q表示“△ABC是直角三角形”,尽管p与q的内容毫无关系,但并不妨碍我们利用真值表判断其命题p或q 的真假。
4°介绍“或门电路”“与门电路”。
或门电路(或) 与门电路(且)
第7页(共57页)
五、巩固运用
例4:判断下列命题的真假:
(1)4≥3 (2)4≥4 (3)4≥5 (4)对一切实数x,x2?x?1?0 分析:(4)为例:
第一步:把命题写成“对一切实数x,x2?x?1?0或x2?x?1?0”是p或q形式
第二步:其中p是“对一切实数x,x2?x?1?0”为真命题;q是“对一切实数x,x2?x?1?0”是假命题。
第三步:因为p真q假,
由真值表得:“对一切实数x,x2?x?1?0”是真命题。
例5:分别指出由下列各组命题构成的p或q、p且q、非p形式的复合命题的真假: (1)p:2+2=5; q:3>2 (2)p:9是质数; q:8是12的约数; (3)p:1∈{1,2}; q:{1}?{1,2} (4)p:??{0}; q:??{0}
解:①p或q:2+2=5或3>2 ;p且q:2+2=5且3>2 ;非p:2+2?5. ∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真.
②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数. ∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真.
③p或q:1∈{1,2}或{1}?{1,2};p且q:1∈{1,2}且{1}?{1,2};非p:1?{1,2}. ∵p真q真,∴“p或q”为真,“p且q”为真,“非p”为假.
④p或q:φ?{0}或φ={0};p且q:φ?{0}且φ={0} ;非p:φ?{0}. ∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假. 七、课后练习
1.命题“正方形的两条对角线互相垂直平分”是( )
A.简单命题 B.非p形式的命题 C.p或q形式的命题 D.p且q的命题 2.如果命题p是假命题,命题q是真命题,则下列错误的是( ) A.“p且q”是假命题 B.“p或q”是真命题 C.“非p”是真命题 D.“非q”是真命题
3.(1)如果命题“p或q”和“非p”都是真命题,则命题q的真假是_________。 (2)如果命题“p且q”和“非p”都是假命题,则命题q的真假是_________。 4.分别指出下列复合命题的形式及构成它的简单命题,并指出复合命题的真假. (1)5和7是30的约数.
(2)菱形的对角线互相垂直平分. (3)8x-5<2无自然数解. 5.判断下列命题真假:
(1)10≤8; (2)π为无理数且为实数;
(3)2+2=5或3>2. (4)若A∩B=?,则A=?或B=?.
[来源学_科_网Z_X_X_K][来源:Z。xx。k.Com][来源:学科网ZXXK]6.已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围。
第8页(共57页)
八、参考答案:
1.D 2.D 3.(1)真;(2)假
4.(1)是“p或q”的形式.其中p:5是30的约数;q:7是30的约数,为真命题. (2) “p且q”.其中p:菱形的对角线互相垂直;q:菱形的对角线互相平分;为真命题.
(3)是“┐p”的形式.其中p:8x-5<2有自然数解.∵p:8x-5<2有自然数解.如x=0,则为真命题.故“┐p”为假命题.
5.(1)假命题;(2)真命题;(3)真命题.(4)真命题. 6.由p命题可解得m>2,由q命题可解得1<m<3;
由命题p或q为真,p且q为假,所以命题p或q中有一个是真,另一个是假
?m?2(1)若命题p真而q为假则有??m?3
m?1,或m?3?(2)若命题p真而q为假,则有??m?2?1?m?2
?1?m?3所以m≥3或1<m≤2 1.4全称量词与存在量词教学案
课型:新授课 教学目标:
1.知识目标:①通过教学实例,理解全称量词和存在量词的含义;
②能够用全称量词符号表示全称命题,能用存在量词符号表述特称命题; ③会判断全称命题和特称命题的真假;
2.能力与方法:通过观察命题、科学猜想以及通过参与过程的归纳和问题的演绎,培养学生 的观察能力和概括能力;通过问题的辨析和探究,培养学生良好的学习习惯和反思意识; 3.情感、态度与价值观:通过引导学生观察、发现、合作与交流,让学生经历知识的形成过 程,增加直接经验基础,增强学生学习的成功感,激发学生学习数学的兴趣. 教学重点:理解全称量词与存在量词的意义. 教学难点:正确地判断全称命题和特称命题的真假. 教学过程: 一.情境设置:
哥德巴赫猜想是世界近代三大数学难题之一.1742年,由德国中学教师哥德巴赫在教学中首先发现的.
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:
(a)任何一个大于 6的偶数都可以表示成两个质数之和. (b)任何一个大于9的奇数都可以表示成三个质数之和.
这就是哥德巴赫猜想.
欧拉在回信中说,他相信这个猜想是正确的,但他不能证明.从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.
中国数学家陈景润于1966年证明:“任何充分大的偶数都是一个质数与两个质数的乘积的和”通
第9页(共57页)
常这个结果表示为 “1+2”这是目前这个问题的最佳结果.
科学猜想也是命题.哥德巴赫猜想它是一个迄今为止仍然是一个没有得到正面证明也没有被推翻的命题. 二.新知探究 观察以下命题:
(1)对任意x?R,x?3; (2)所有的正整数都是有理数;
(3)若函数f(x)对定义域D中的每一个x,都有f(?x)?f(x),则f(x)是偶函数; (4)所有有中国国籍的人都是黄种人. 问题1.(1)这些命题中的量词有何特点?
(2)上述4个命题,可以用同一种形式表示它们吗?
填一填:全称量词: 全称命题: 全称命题的符号表示: 你能否举出一些全称命题的例子? 试一试:判断下列全称命题的真假. (1)所有的素数都是奇数; (2)?x?R,x2?1?1;
(3)每一个无理数x,x2也是无理数.
(4)?a,b?xx?m?n2,m,n?Q,a?b?xx?m?n2,m,n?Q. 想一想:你是如何判断全称命题的真假的?
问题2.下列命题中量词有何特点?与全称量词有何区别? (1)存在一个x0?R,使2x0?1?3; (2)至少有一个x0?Z,x0能被2和3整除; (3)有些无理数的平方是无理数.类比归纳:
存在量词 特称命题
[来源:学科网ZXXK][来源:学.科.网Z.X.X.K]????
第10页(共57页)
特称命题的符号表示 特称命题真假的判断方法 练一练:判断下列特称命题的真假. (1)有一个实数x0,使x02?2x0?3?0; (2)存在两个相交平面垂直于同一平面; (3)有些整数只有两个正因数. 三.自我检测
1、用符号“?” 、“?”语言表达下列命题 (1)自然数的平方不小于零
(2)存在一个实数,使2X?X?1?0 2、判断下列命题的真假:
(1)每个指数函数都是单调函数; (2)任何实数都有算术平方根;
(3)?x?x|x是无理数,x是无理数 (4)?x0?R,x0?0; 3、下列说法正确吗?
因为对?x?M,p(x)??x?M,p(x),反之则不成立.所以说全称命题是特称命题,特称命题不一定是全称命题.
4、设函数f(x)?x2?2x?m,若对?x??2,4?,f(x)?0恒成立,求m的取值范围; 四.学习小结 五.能力提升
1.下列命题中为全称命题的是( )
(A)有些圆内接三角形是等腰三角形 ;(B)存在一个实数与它的相反数的和不为0; (C)所有矩形都有外接圆 ; (D)过直线外一点有一条直线和已知直线平行.
第11页(共57页)
2??2
2.下列全称命题中真命题的个数是( )
①末位是0的整数,可以被3整除;②对?x?Z,2x2?1为奇数. ③角平分线上的任意一点到这个角的两边的距离相等; (A) 0 (B) 1 (C) 2 (D) 3 3.下列特称命题中假命题...
的个数是( ) ①?x?R,x?0;②有的菱形是正方形;③至少有一个整数,它既不是合数,也不是素数. (A) 0 (B) 1 (C) 2 (D) 3
4.命题“存在一个三角形,内角和不等于180?”的否定为( )
(A)存在一个三角形,内角和等于180?;(B)所有三角形,内角和都等于180?; (C)所有三角形,内角和都不等于180?;(D)很多三角形,内角和不等于180?. 5.把“正弦定理”改成含有量词的命题.
6.用符号“?”与“?”表示含有量词的命题“p:已知二次函数f(x)?a(x2?1)?b(x?1),则存在实数a,b,使不等式x?f(x)?122(x?1)对任意实数x恒成立”. 7.对?x?(0,??),总?a?(0,??)使得f(x)?x?ax?2恒成立,求a的取值范围. 数学:2.1《椭圆及其标准方程》教案
一、教学目标: 知识与技能:
理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标.
过程与方法:
让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题.
情感态度与价值观:
通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度.
二、教学重点与难点 重点:椭圆的标准方程
难点:椭圆标准方程的推导 三、教学过程: (一)讲授新课 1.演示定义:
我们把 叫做椭圆,这两个定点F1、F2叫做椭圆的 ,两个焦点之间的距离叫做椭圆的 ,通常用2c(c>0)表示,而这个常数通常用2a表示,椭圆用集合表示为 。
第12页(共57页)
问题(1)定义应注意哪几点
(2)定长和两个定点之间的距离大小还有哪些情况?. 2.椭圆的标准方程
(1)回顾求圆的标准方程的的基本步骤: y [来源:Z*xx*k.Com][来源:Zxxk.Com] M
F1 0 F2 (2)椭圆标准方程的推导 x
观察:你能从中找出a,c,a?c表示的线段吗?
我们推导出焦点在X轴的椭圆的标准方程为:
思考:焦点在Y轴上椭圆的标准方程? . 小结:同学们完成下表
椭圆的定义 图 形 22 标准方程 焦点坐标 a,b,c的关系 焦点位置的判断
(二)题组训练: 题组一:
1.在椭圆25x?4y?100中,a= ,b= ,焦距是 焦点坐标是 ,______.焦点位于________轴上
22x2y2??1表示焦点在X轴的椭圆,则实数m的取值范围是 . 2.如果方程4m题组二:
求适合下列条件的椭圆的标准方程
第13页(共57页)
1.a=4,b=1,焦点在x轴上. 2.a=4,c=15,焦点在坐标轴上 题组三:
1.已知两定点(-3,0),(3,0),若点P满足PF1?PF2?10,则点P的轨迹是 ,若点P满足PF1?PF2?6,则点P的轨迹是 . x2y22.P为椭圆??1上一点,P到一个焦点的距离为4,则P到另一个焦点的距离为
2516x2y2??1,过焦点F1的直线交椭圆于A,B两点,则?ABF2的周长为 3.椭圆
169题组四:
221.如果点M(x,y)在运动过程,总满足关系式:x?(y?3)?x2?(y?3)2?10,点M的
轨迹是什么曲线?写出它的方程.
2.已知△ABC的一边长BC?6,周长为16,求顶点A的轨迹方程. (三)课堂小结:
1.椭圆的定义,应注意什么问题?
2.求椭圆的标准方程,应注意什么问题? (四)布置作业:
1.已知椭圆两个焦点F1(-2,0),F2(2,0),并且经过点P(,?),求它的标准方程. 2.椭圆的两个焦点F1(-8,0),F2(8,0),且椭圆上一点到两个焦点的距离之和是20,求此椭圆的标准方程.
3.若B(-8,0),C(8,0)为?ABC的两个顶点,AC和AB两边上的中线和是30,求的重心G的轨迹方程.
52322.2椭圆的简单几何性质
教学目标:
[来源学。科。网]
(1)通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质;
(2)能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图; (3)培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.
教学重点:椭圆的几何性质. 通过几何性质求椭圆方程并画图 教学难点:椭圆离心率的概念的理解. 教学方法:讲授法
课型:新授课 教学工具:多媒体设备
一、复习:
1.椭圆的定义,椭圆的焦点坐标,焦距. 2.椭圆的标准方程. 二、讲授新课:
第14页(共57页)
(一)通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.
[在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来研究其几何性质.]
[来源:Z,xx,k.Com]x2y2已知椭圆的标准方程为:2?2?1(a?b?0)
ab1.范围
[我们要研究椭圆在直角坐标系中的范围,就是研究椭圆在哪个区域里,只要讨论方程中x,y的范
围就知道了.]
问题1 方程中x、y的取值范围是什么?
由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式
y2x2≤1, 2≤1 a2b即 x2≤a2, y2≤b2
所以 |x|≤a, |y|≤b 即 -a≤x≤a, -b≤y≤b
这说明椭圆位于直线x=±a, y=±b所围成的矩形里。
2.对称性
复习关于x轴,y轴,原点对称的点的坐标之间的关系: 点(x,y)关于x轴对称的点的坐标为(x,-y); 点(x,y)关于y轴对称的点的坐标为(-x, y); 点(x,y)关于原点对称的点的坐标为(-x,-y);
问题2 在椭圆的标准方程中①以-y代y②以-x代x③同时以-x代x、以-y代y,你有什么发现? (1) 在曲线的方程里,如果以-y代y方程不变,那么当点P(x,y)在曲线上
时,它关于x的轴对称点P’(x,-y)也在曲线上,所以曲线关于x轴对称。
(2) 如果以-x代x方程方程不变,那么说明曲线的对称性怎样呢?[曲线关
于y轴对称。]
(3) 如果同时以-x代x、以-y代y,方程不变,这时曲线又关于什么对称
呢?[曲线关于原点对称。] 归纳提问:从上面三种情况看出,椭圆具有怎样的对称性?
椭圆关于x轴,y轴和原点都是对称的。 这时,椭圆的对称轴是什么?[坐标轴]
椭圆的对称中心是什么?[原点] 椭圆的对称中心叫做椭圆的中心。
3.顶点
[研究曲线的上的某些特殊点的位置,可以确定曲线的位置。要确定曲线在坐标系中的位置,常常需要求出曲线与x轴,y轴的交点坐标.] 问题3 怎样求曲线与x轴、y轴的交点?
在椭圆的标准方程里, 令x=0,得y=±b。这说明了B1(0,-b),B2(0,b)是椭圆与y轴的两个交点。 令y=0,得x=±a。这说明了A1(-a,0),A2(a,0)是椭圆与x轴的两个交点。 因为x轴,y轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点。
线段A1A2,B1B2分别叫做椭圆的长轴和短轴。
它们的长|A1A2|=2a,|B1B2|=2b (a和b分别叫做椭圆的长半轴长和短半轴长)
第15页(共57页)
观察图形,由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长,即 |B1F1|=|B1F2|=|B2F1|=|B2F2|= a
在Rt△OB2F2中,由勾股定理有
|OF2|2=|B2F2|2-|OB2|2 ,即c2=a2-b2 这就是在前面一节里,我们令a2-c2=b2的几何意义。
[来源:Zxxk.Com]4.离心率
定义:椭圆的焦距与长轴长的比e=
[来源:Zxxk.Com]c,叫做椭圆的离心率。 a 因为a>c>0,所以0 问题4 观察图形,说明当离心率e变化时,椭圆形状是怎样随之变化的? [调用几何画板,演示离心率变化(分越接近1和越接近0两种情况讨论)对椭圆形状的影响] 得出结论:(1)e越接近1时,则c越接近a,从而b越小,因此椭圆越扁; (2)e越接近0时,则c越接近0,从而b越接近于a,这时椭圆就越接近于圆。 当且仅当a=b时,c=0,这时两个焦点重合于椭圆的中心,图形变成圆。 当e=1时,图形变成了一条线段。[为什么?留给学生课后思考] 5.例题 例1求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形. [根据刚刚学过的椭圆的几何性质知,椭圆长轴长2a,短轴长2b,该方程中的a=?b=?c=?因为题目给出的椭圆方程不是标准方程,所以必须先把它转化为标准方程,再讨论它的几何性质] x2y2解:把已知方程化为标准方程2?2?1, 这里a=5,b=4,所以c=25?16=3 54因此,椭圆的长轴和短轴长分别是2a=10,2b=8 离心率e= c3= a5两个焦点分别是F1(-3,0),F2(3,0), 四个顶点分别是A1(-5,0) A1(5,0) A1(0,-4) F1(0,4). [提问:怎样用描点法画出椭圆的图形呢?我们可以根据椭圆的对称性,先画出第一象限内的图形。] 将已知方程变形为 y??425?x2,根据 5y?x y 0 4 1 3.9 2 425?x2 53 3.2 4 2.4 5 0 在0≤x≤5的范围内算出几个点的坐标(x,y) 3.7 先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆(如图) 说明:本题在画图时,利用了椭圆的对称性。利用图形的几何性质,可以简化画图过程,保证图形的准确性。 根据椭圆的几何性质,用下面的方法可以快捷地画出反映椭圆基本形状和大小的草图: (1) 以椭圆的长轴、短轴为邻边画矩形; (2) 由矩形四边的中点确定椭圆的四个顶点; (3) 用平滑的曲线将四个顶点连成一个椭圆。 [画图时要注意它们的对称性及顶点附近的平滑性] 第16页(共57页) (四)练习 填空:已知椭圆的方程是9x2+25y2=225, (1) 将其化为标准方程是_________________. (2) a=___,b=___,c=___. (3) 椭圆位于直线________和________所围成的________区域里. [来源学#科#网Z#X#X#K]椭圆的长轴、短轴长分别是____和____,离心率e=_____,两个焦点分别是_______、______,四个顶点分别是______、______、______、_______. 例2、求符合下列条件的椭圆的标准方程: (1)经过点(-3,0)、(0,-2); (2)长轴的长等于20,离心率等于0.6 例3 点M?x,y?与定点F?4,0?的距离和它到直线l:x?254的距离之比是常数,求点M的轨迹. 54(教师分析——示范书写) 例4、如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面) 的一部分。过对称轴的截口ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上,由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2。已知AC?F1F2,|F1A|=2.8cm,|F1F2|=4.5cm,求截口ABC所在椭圆的方程。 三、课堂练习: ①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁? x2y2x2y222??1 ⑵x?9y?36与??1(学生口答,并说明原因) ⑴9x?y?36与 161261022②求适合下列条件的椭圆的标准方程. ⑴经过点P?22,0,Q0,5 ⑵长轴长是短轴长的3倍,且经过点P?3,0? ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) 焦点在x轴、y轴上的椭圆的几何性质对比. ????四、小结 (1)理解椭圆的简单几何性质,给出方程会求椭圆的焦点、顶点和离心率; (2)了解离心率变化对椭圆形状的影响; (3)通过曲线的方程研究曲线的几何性质并画图是解析几何的基本方法. 第17页(共57页) 五、布置作业 课本习题2.1 的6、7、8题 课后思考: 1、椭圆上到焦点和中心距离最大和最小的点在什么地方? 2、点M(x,y)与定点F(c,0)的距离和它到定直线l:x= 的距离的比是常数 (a>c>0),求点M轨迹,并判断曲线的形状。 3、接本学案例3,问题2,若过焦点F2作直线与AB垂直且与该椭圆相交于M、N两点,当△F1MN的面积为70时,求该椭圆的方程。 2.2.2双曲线的几何性质(一) 课型:新授课 时间: 月 日 学习札记 ◇预习目标◇ 1、掌握双曲线标准方程中a、b、c、e之间的关系; 2、了解双曲线的渐近线的概念和证明; 3、尝试用对比的方法分析双曲线的范围、对称性、顶点等几何性质。 ◇问题引导,自我探究◇ x2y2以双曲线标准方程2?2?1为例进行说明。 ab1.范围:观察双曲线的草图,可以直观看出曲线在坐标系中的范围:双曲线在两条直线x??a 的外侧。 注意:从双曲线的方程如何验证? x2y22.对称性: 是双曲线的对称轴, 是双曲线2?2?1 的ab对称中心,双曲线的对称中心叫做 。 3.顶点:双曲线和x轴有两个交点是 ,他们是双曲线x2y2??1的顶点。 a2b2 4.渐近线:他们是如何确立的? ◇自学测试◇ 1、 叫做等轴双曲线;等轴第18页(共57页) 双曲线的渐近线是 。 2、双曲线的离心率是 3、求双曲线9y?16x?144的实半轴和虚半轴长、焦点坐标、渐近线方程。 22课题: 2.2.2双曲线的几何性质(一) 课型:新授课 时间: 月 日 学习札记 〖学习目标及要求〗: 1、学习目标:(1)能用对比的方法分析双曲线的范围、对称性、顶点等几何性质,并熟记之;; (2)掌握双曲线的渐近线的概念和证明; (3)能根据双曲线的几何性质,确定双曲线的方程并解决简单问题。 2、重点难点:双曲线的范围、对称性、顶点和渐近线。 3、高考要求:双曲线的几何性质在解题中的灵活运用。 4、体现的思想方法:类比、设想。 5、知识体系的建构:圆锥曲线体系的建构。 〖讲学过程〗: 一、预习反馈: 二、探究精讲: x2y2以双曲线标准方程2?2?1为例进行说明双曲线的顶点、渐近ab线和离心率。 感悟一: x2y21、顶点:在双曲线2?2?1的方程里,对称轴是x,y轴,所ab以令y?0得x??a,因此双曲线和x轴有两个交点A(?a,0)A2(a,0),他们是双曲线xy??1的顶点。 22ab22第19页(共57页) 令x?0,没有实根,因此双曲线和y轴没有交点。 1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点), 双曲线的顶点分别是实轴的两个端点。 2)实轴:线段AA2叫做双曲线的实轴,它的长等于2a,a叫做双曲线的实半轴长。 虚轴:线段BB2叫做双曲线的虚轴,它的长等于2b,b叫做双曲线的虚半轴长。 在作图时,我们常常把虚轴的两个端点画上(为要确定渐进线),但要注意他们并非是双曲线的顶点。 2、渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线, x2y2这两条直线即称为双曲线的渐近线。从图上看,双曲线2?2?1ab的各支向外延伸时,与这两条直线逐渐接近。 在初中学习反比例函数y?k时提到x轴y轴都是它的渐近线。高中 x三角函数y?tanx,渐近线是x?k??所谓渐近,既是无限接近但永不相交。 3、离心率: ?2(k?Z)。 感悟二: c双曲线的焦距与实轴长的比e=,叫双曲线的离心率. a说明:①由c>a>0可得e>1; ②双曲线的离心率越大,它的开口越阔. 探究二: 课本51页例3 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面(见课本),它的最小半径为12m,上口半径为13m,下口半径为25m,高55m,选择适当的坐标系,求出此双曲线的方程(精确到1m) 探究三: 第20页(共57页) 22例3.求与双曲线4x?y?4有共同渐近线,且过点M(2,2)的双曲 线的方程。 双 曲 线 不 同 点 感悟三: 三、感悟方法练习: 1、双曲线的性质: 标准方程 图 象 范 围 对 称 性 顶 点 渐 近 线 椭 圆 1、 课本P58练习第1,2题 〖备选习题〗: A 组 1、求与双曲线4x?y?4有共同渐近线,且过点M(2,2)的双曲线的方程。 B组 22 x2y2x2y21. 双曲线2?2?1的离心率为e1,双曲线2?2??1的离abab心率为e2,则e1?e2的最小值是( ) A.2 B.2 C. 22 D.4 x2y2x2y22. 求证:双曲线2?2??(??0)与双曲线2?2?1有abab共同的渐近线。 课题: 2.2.2双曲线的几何性质(一) [来源:Z。xx。k.Com] ☆要点强化☆ 班级 姓名 1.双曲线的范围、对称性、顶点和渐近线; 2.双曲线的渐近线的概念。 第21页(共57页) ☆当堂检测☆ 1. 07宁夏理 已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . 2. 求双曲线的标准方程: ⑴实轴的长是10,虚轴长是8,焦点在x轴上; ⑵焦距是10,虚轴长是8,焦点在y轴上; [来源学科网ZXXK] ⑶离心率e?2,经过点M??5,3?; 2?9?⑷两条渐近线的方程是y??x,经过点M?,?1?。 3?2?(选作题) 已知双曲线的中心在坐标原点,焦点F1,F2在坐标轴上,离心率为2,且过点(4,?10), (1)求双曲线方程; (2)若点M(3,m)在双曲线上,求证:MF1?MF2; [来源:学。科。网Z。X。X。K] (3)求?F1MF2的面积。 ●教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. ●教学重点 双曲线的几何性质 ●教学难点 双曲线的渐近线 ●教学方法 学导式 ●教具准备 幻灯片、三角板 ●教学过程 I.复习回顾: 师:上一节,我们学习了双曲线的标准方程,这一节,我们要根据它来研究双曲线的几何性质.同学们可以按照研究椭圆几何性质的方法和步骤,自己推出双曲线的几何性质,然后与课文对照,所以,我们来回顾一下研究椭圆的几何性质的方法与步骤.(略) II.讲授新课: 1.范围: 双曲线在不等式x≥a与x≤-a所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫双曲线中心. [来源:Zxxk.Com][来源学科网ZXXK]第22页(共57页) 3.顶点: 双曲线和它的对称轴有两个交点A1(-a,0)、A2(a,0),它们叫做双曲线的顶点. 线段A1A2叫双曲线的实轴,它的长等于2a,a叫做双曲线的实半轴长;线段B1B2叫双曲线的虚轴,它的长等于2b,b叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=± bx叫做双曲线的渐近线; ax2y2②从图8—16可以看出,双曲线2?2?1的各支向外延伸时,与直线 aby=± bx逐渐接近. a③“渐近”的证明: 先取双曲线在第一象限内的部分进行证明.这一部分的方程可写为 y= bx2?a2(x>a). a设M(x,y)是它上面的点,N(x,y)是直线y= bbx上与M有相同横坐标的点,则Y=x. aa∵y= bbabx2?a2?x1?()2?x?Y aaxaba(x?x2?a2) ∴MN?Y?y?b(x?x2?a2)(x?x2?a2)?? 22ax?x?a?abx?x?a22 设MQ是点M到直线y= bx的距离,则MQ 在其他象限内,也可证明类似的情况. (上述内容用幻灯片给出). ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 5.离心率: [来源学科网]第23页(共57页) 双曲线的焦距与实轴长的比e= c,叫双曲线的离心率. a说明:①由c>a>0可得e>1; ②双曲线的离心率越大,它的开口越阔. 师:为使大家进一步熟悉双曲线的几何性质,我们来看下面的例题. 例1 求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程. 解:把方程化为标准方程. y2x2?2?1. 243由此可知,实半轴长a=4,虚半轴长b=3. c?a2?b2?42?32?5. 焦点的坐标是(0,-5),(0,5). 离心率e?c5?. a4渐近线方程为 x??34y,即y??x. 43说明:此题要求学生认识到第二种形式的标准方程所对应的双曲线性质与课本性质的相同点与不 同点.可让学生比较得出(作为练习). III.课堂练习: (1)写出第二种形式的标准方程所对应的双曲线性质. (2)课本P113练习1. ●课堂小结 师:通过本节学习,要求大家熟悉并掌握双曲线的几何性质,尤其是双曲线的渐近线方程及其“渐近”性质的证明,并能简单应用双曲线的几何性质. ●课后作业 习题8.4 1、5、6. ●板书设计 §8.4.1 ?? 1.范围 4.渐近线 5.离心率 练习1 ①? ? (1)? 2.对称性 ②? ③? 例1? (2)?④ 3.顶点 ⑤ (3)? ●教学后记 ●教学目标 1.掌握双曲线的准线方程. 2.能应用双曲线的几何性质求双曲线方程; 3.应用双曲线知识解决生产中的实际问题. ●教学重点 双曲线的准线与几何性质的应用 ●教学难点 第24页(共57页) [来源学科网ZXXK] 双曲线离心率、准线方程与双曲线关系. ●教学方法 启发式 ●教具准备 三角板 ●教学过程 I.复习回顾: 师:上一节,我们利用双曲线的标准方程推导了双曲线的几何性质,下面我们作一简要的回顾(略),这一节我们将继续研究双曲线的几何性质及其应用. II.讲授新课: 例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m,上口半径为13 m,下口半径为25 m,高55 m.选择适当的坐标系,求出此双曲线的方程(精确到1m). 解:如图8—17,建立直角坐标系xOy,使A圆的直径AA′在x轴上,圆心与原点重合.这时上、下口的直径CC′、BB′平行于x轴,且CC?=13×2 (m),BB?=25×2 (m). 设双曲线的方程为 x2y2?2?1 (a>0,b>0) 2ab令点C的坐标为(13,y),则点B的坐标为(25,y-55).因为点B、C在双曲线上,所以 252(y?55)2??1,2212b132y2?2?1. 212b [来源:Zxxk.Com][来源学。科。网]?252(y?55)2??1 (1)??122b2解方程组? 22?13?y?1 (2)??122b2由方程(2)得 y?代入方程(1)得 5b (负值舍去). 125b?55)2225?122?1, 212b(化简得 19b2+275b-18150=0 (3) 解方程(3)得 b≈25 (m). 所以所求双曲线方程为: 第25页(共57页) x2y2??1. 144625说明:这是一个有实际意义的题目.解这类题目时,首先要解决以下两个问题;(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来. a2c例3 点M(x,y)与定点F(c,o)的距离和它到定直线l:x=的距离的比是常数(c?a?0),求点 caM的轨迹. 解:设d是点M到直线l的距离.根据题意,所求轨迹是集合p=?M????MFdc????, a??c.a由此得 (x?c)2?y2x?ac2?[来源学&科&网] 化简得 (c2-a2)x2-a2y2=a2(c2-a2). 设c2-a2=b2,就可化为: [来源学科网]x2y2??1 (a?0,b?0). a2b2这是双曲线的标准方程,所以点M的轨迹是实轴长、虚轴长分别为2a、2b的双曲线.(图8—18) 说明:此例题要求学生进一步熟悉并熟练掌握求解曲线轨迹方程的一般步骤. 6.双曲线的准线: 由例3可知,当点M到一个定点的距离和它到一条定直线的距离的比是常数e= c(e>1)时,这个a点的轨迹是双曲线.定点是双曲线的焦点,定直线叫双曲线的准线,常数e是双曲线的离心率. a2. 准线方程:x=?ca2a2x2y2其中x=相应于双曲线2?2?1的右焦点F(c,0);x=-相应于左焦点F′(-c,0). ccab师:下面我们通过练习来进一步熟悉双曲线几何性质的应用. III.课堂练习: 课本P113 2、3、4、5. 要求学生注意离心率、准线方程与双曲线的关系的应用. ●课堂小结 师:通过本节学习,要求大家熟练掌握双曲线几何性质的应用,并注意利用离心率、准线方程与双曲线的关系确定双曲线方程的方法,并了解双曲线在实际中的应用问题. ●课后作业 习题8.4 2,3,4,7 ●板书设计 [来源学科网Z,X,X,K]第26页(共57页) §8.4.2? 例2? 例3? 6.双曲线的 学生 准线 练习 课题: 2.3.2抛物线的几何性质 1、记住抛物线的几何性质,会根据抛物线的几何性质确定抛物线的位置及基本量p; 2.会简单应用抛物线的几何性质 ◇问题引导,自我探究◇ 抛物线的几何性质列表如下 [来源:Zxxk.Com] 标准方程 y2?2px(p?0) y2??2px(p?0) x2?2py(p?0) x2??2py(p?0) 图形 焦点坐标 准线方程 范围 对称性 顶点 [来源:学科网][来源:学|科|网Z|X|X|K] 离心率 ◇自学测试◇ 1、___抛物线上的点M到焦点的距离和他到准线的距离之比________叫做抛物线的离心率抛物线的离心率是 1 2 求适合下列条件的抛物线的标准方程 (1)顶点在原点,关于x轴对称,并且经过点M(5,-4) (2) 顶点在原点,焦点是F(0,5) (3)焦点是F(0,-8),准线是y=8 (选做题) 第27页(共57页) ????????????3 、设F为抛物线y?4x的焦点,A,B,C为该抛物线上三点,若FA?FB?FC?0,则 2????????????FA?FB?FC?( ) A.9 2B.6 C.4 D.3 ,y1),P2(x2,y2),P3(x3,y3)在抛物线上,4、已知抛物线y?2px(p?0)的焦点为F,点P1(x1且2x2?x1?x3, 则有( ) A.FP1?FP2?FP3 B.FP1?FP2D.FP2222?FP3 2C.2FP2?FP1?FP3 ?FP·FP3 1 课题: 2.4.2抛物线的几何性质 〖学习目标及要求〗: 1、学习目标:(1)能用对比的方法分析抛物线的范围、对称性、顶点等几何性质,并熟记之;; (2)能根据抛物线的几何性质,确定抛物线的方程并解决简单问题。 2、重点难点:抛物线的范围、对称性、顶点和准线。3、高考要求:定义性质在解题中的灵活运用。 4、体现的思想方法:抛物线的几何性质在解题中的灵活运用。 5、知识体系的建构:圆锥曲线体系的建构。 〖讲学过程〗: 一、预习反馈: 二、探究精讲: 探究一: 探究一: 1、 范围 当x的值增大时,y也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支的区别,无渐近线). 2.对称性 抛物线关于x轴对称.我们把抛物线的对称轴叫抛物线的轴. 3.顶点 抛物线和它的轴的交点叫抛物线的顶点.即坐标原点. 4.离心率 抛物线上的点M与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e表示.由抛物线定义可知,e=1. 说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径。 第28页(共57页) (2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线。 探究二: 课本68页例3 已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,?22),求 它的标准方程,并用描点法画出图形. 探究三: 例3.若抛物线的通径长为7,顶点在坐标原点,且关于坐标轴对称,求抛物线的方程. 三、感悟方法练习: 1、课本P72练习第1,2题 〖备选习题〗: A 组 1.在抛物线y2=12x上,求和焦点的距离等于9的点的坐标 B组 1. 过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求|AB|的值. 〖备选习题〗: A 组 1.根据下列条件,求抛物线的方程,并描点画出图形: (1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6; (2)顶点在原点,对称轴是y轴,并经过点p(?6,?3). 2.求焦点在直线3x?4y?12=0上的抛物线的标准方程. B组 x2y2??1(mn?0)的离心率为2,有一个焦点与抛物线y2?4x的焦点重合,则mn的1、双曲线mn值为 A. B. ( ) 3 163 8C. 16 3D. 8 3〖归纳小结〗 ☆要点强化☆ 班级 姓名 能根据抛物线的几何性质,确定抛物线的方程并解决简单问题。 ☆当堂检测☆ 1. 对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|?|a|,则a的取值范围是( ) A、(??,0)B、(??,2]C、?0,2?D、(0,2) 第29页(共57页) 2、抛物线y=ax的准线方程是y=2,则a的值为( ) A、 2 11 B、? C、8 D、-8 882 3、抛物线y=4x上的一点M到焦点的距离为1,则点M的纵坐标是( ) A、 17157 B、 C、 D、0 161681 B、1 C、2 D、424、在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则P的值为( ) A、 [来源:Z.xx.k.Com] (选作题) 5、对于焦点在原点的抛物线,给出下列条件: ①焦点在y轴上; ②焦点在x轴上; ③抛物线上横坐标为1的点带焦点的距离为6 ④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线做垂线,垂足坐标为(2,1) 能使这抛物线方程为y2=10x的条件____________ 抛物线和简单几何性质 一、教学目标 (一)知识教学点 使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质. (二)能力训练点 从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题. 二、教材分析 1.重点:抛物线的几何性质及初步运用. (解决办法:引导学生类比椭圆、双曲线的几何性质得出.) 第30页(共57页) 2.难点:抛物线的几何性质的应用. (解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用.) 3.疑点:抛物线的焦半径和焦点弦长公式.(解决办法:引导学生证明并加以记忆.)三、活动设计 提问、填表、讲解、演板、口答. [来源:学#科#网][来源学科网] 教学过程 【情境设置】 由一名学生回答,教师板书. 问题 抛物线的标准方程是怎样的?答为:抛物线的标准方程是 与椭圆、双曲线一样,通过抛物线的标准方程可以研究它的几何性质. 下面我们根据抛物线的标准方程: 【探索研究】 1.抛物线的几何性质 (1)范围 因为 ,由方程可知 ,所以抛物线在 轴的右侧,当 的值增大时, 也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性 以 代 ,方程不变,所以抛物线关于 轴对称.我们把抛物线的对称轴叫做抛物线的轴. (3)顶点 抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当线的顶点就是坐标原点. (4)离心率 时 ,因此抛物 来研究它的几何性质. . 第31页(共57页) 抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知 其他三种标准方程抛物线的几何性质可类似地求得,教师用小黑板给出来表让学生填写. 再向学生提出问题:与椭圆、双曲线的几何性质比较,抛物线的几何性质有什么特点? 学生和教师共同小结: (1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线; (2)抛物线只有一条对称轴,没有对称中心; (3)抛物线只有一个顶点、一个焦点、一条准线; (4)抛物线的离心率是确定的,为1. 【例题分析】 例1已知抛物线关于 轴对称,它的顶点在坐标原点,并且经过点它的标准方程,并用描点法画出图形. ,求 求标准方程,请一名学生演板,教师予以纠正.画图可由教师讲解,步骤如下: 第32页(共57页) 由求出的标准方程范围内几个点的坐标,得 0 0 ,变形为 ,根据 计算抛物线在 的 1 1 2 2.8 3 3.5 4 4 ?? ?? [来源:Zxxk.Com] 描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分(如图 ). 然后说明利用抛物线的通性,能够方便地画出反映抛物线基本特征的草图. 例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处.已知灯口圆的直径为 ,灯深 ,求抛物线的标准方程和焦点位置. 解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合, 轴垂直于灯口直径. 抛物线的标准方程为在抛物线上,代入方程得: ,由已知条件可得点 , 的坐标是(40,30)且 所以所求抛物线的标准方程为 ,焦点坐标是 . (三)随堂练习 1.求适合下列条件的抛物线方程 第33页(共57页) ①顶点在原点,关于 轴对称,并且经过点 ②顶点在原点,焦点是 ③顶点在原点,准线是 ④焦点是 ,准线是 [来源:Z.xx.k.Com] 2.一条隧道的顶部是抛物拱形,拱高是 m,跨度是 m,求拱形的抛物线方程 答案:1.① 2. (四)总结提炼 ② ③ ④ (要选建立坐标系) 抛物线的性质和椭圆、双曲线比较起来,差别较大.它的离心率等于1;它只有一个焦点、一个顶点、一条对称轴、一条准线;它没有中心,也没有渐近线. (五)布置作业 1.顶点在原点、焦点在 轴上,且过点 A. B. C. D. 的抛物线方程是( ) 2.若抛物线距离为( ) 上横坐标为6的点到焦点的距离为8,则焦点到准线的 A.1 B.2 C.4 D.6 3.若垂直于 轴的直线交抛物线的方程为__________. 4.抛物线形拱桥,当水面宽面宽为___________. 5.抛物线的顶点是双曲线抛物线方程. 6.若抛物线 的横坐标及抛物线方程. 上一点 于点 ,且 ,则直线 时,水面离拱顶为 ,若水下降 ,则此时水 的中心,而焦点是双曲线的左顶点,求 到准线及对称轴的距离分别是10和6,求 第34页(共57页) 答案:1.B 2.C 3. (六)板书设计 4. 5. 6.9, 教案点评: 本节课首先设置情境,让学生利用类比的思想,探索、归纳、总结出与椭圆、双曲线类似的性质,并与椭圆、双曲线的性质比较,便于学生掌握这三种曲线的性质。通过两道例题和练习进一步让学生掌握性质的运用。 §3.1.2导数的概念 【学习目标】了解瞬时速度的定义。能够区分平均速度和瞬时速度. 理解 导数(瞬时变化率)的概念 【重点】导数概念的形成,导数内涵的理解 【难点】在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵 通过逼近的方法,引导学生观察来突破难点 【自学点拨】 [问题1] 我们把物体在某一时刻的速度称为________。一般地,若物体的运动规律为 s?f(t),则物体在时刻t的瞬时速度v 就是物体在t到t??t这段时间内,当 ?s_________时平均速度的极限,即v?lim=___________________ ?x?0?th?t???4.9t2?6.5t?10 ?t?0时,在?2??t,2?这段时间内 [来源学*科*网]?t?0时,在?2,2??t?这段时间内 [问题2]函数y=f(x)在x=x0处的瞬时变化率是: ?x?0limf(x0??x)?f(x0)?f ?lim?x?0?x?x函数y?f(x)在x?x0处的______,记作f(x0)或________,即 第35页(共57页) '我们称它为 ________________________ 附注: ①导数即为函数y=f(x)在x=x0处的瞬时变化率; ②定义的变化形式:f'?x?=?yf(x0)?f(x0??x)?limx?0(?x)?x; ?limx?0? f'?x?=?yxlim?limf(x)?f(x0);f'?x?=limf(x0??x)?f(x0); ?x0(?x)x?x0x?x0??x?0??x?x?x?x?f(x0)0,当?x?0时,x?x0,所以f?(xf(x)0)??limx?0x?x 0 ③求函数y?f?x?在x?x0处的导数步骤:“一差;二比;三极限”。 [问题3]求导数三步法 (1)求增量?y?f(x0??x)?f(x0); (2)算比值?y? x? f(x0??x)?f(x0)?x;(即___变化率) (3)求y??yx?x0?例2.(课本例1) ?x(在.?x?0时) 【课前练习】 1、自变量x从x0变到x1时,函数值的增量与相应自变量的增量之比是函数(A、在区间[x0,x1]上的平均变化率 B、在x0处的变化率 C、在x1处的变化量 D、在区间[x0,x1]上的导数 2、求y?x2?2在点x=1处的导数. 3、求函数y?x在x?1处的导数 [来源学_科_网Z_X_X_K 【课后练习】 1、已知函数y?f(x),下列说法错误的是( ) A、?y?f(x0??x)?f(x0)叫函数增量 B、 ?yf(x0??x)?f(x0)?x??x叫函数在[x0,x0??x]上的平均变化率 C、f(x)在点x0处的导数记为y? D、f(x)在点x0处的导数记为f?(x0) 第36页(共57页) ) 2、若质点A按规律s?2t运动,则在t?3秒的瞬时速度为( ) A、6 B、18 C、54 D、81 3、设函数f(x)可导,则limA、f?(1) B、4、函数y?x??x?02f(1??x)?f(1)=( ) 3?x[来源:Z。xx。k.Com]1f?(1) C、不存在 D、以上都不对3 1在x?1处的导数是______________ x125、已知自由下落物体的运动方程是s?gt,(s的单位是m,t的单位是s),求: 2(1)物体在t0到t0??t这段时间内的平均速度; (2)物体在t0时的瞬时速度; (3)物体在t0=2s到t1?2.1s这段时间内的平均速度; (4)物体在t?2s时的瞬时速度。导数的概念 [来源:学_科_网] [教学目的] 1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义; 2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法 3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。 [教学重点和难点]导数的概念是本节的重点和难点 [教学方法]讲授启发,自学演练。 [授课类型]:新授课 [课时安排]:1课时 [教 具]:多媒体、实物投影仪 [教学过程] 一、复习提问(导数定义的引入) 1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度) 2.怎样求非匀速直线运动在某一时刻t0的速度? 在高台跳水运动中,如果我们知道运动员相对于水面的高度h(单位:m)与起跳后的时间t(单 [来源:Z§xx§k.Com]位:s)存在关系h?t???4.9t?6.5t?10,那么我们就会计算任意一段的平均速度v,通过平均速 2度v来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少? (2)新课 第37页(共57页) 我们现在会算任意一段的平均速度,先来观察一下2秒附近的情况。先计算2秒之前的?t时间段内的平均速度v,请同学们完成表格1左边部分,(事先准备好的),再完成表格的右边部分〉 [来源学科网] 表格1 表格2 ?t?0时,在?2??t,2?这段时间内 h?2??h?2??t?4.9?t2?13.1?tv?? 2??2??t???t??4.9?t?13.1当?t??0.01时,v??13.051; 当?t??0.001时,v??13.095 1; 当?t??0.000 1时,v??13.099 51; 当?t??0.000 01时,v??13.099 951; ?t?0时,在?2,2??t?这段时间内 h?2??t??h?2??4.9?t2?13.1?tv?? ?2??t??2?t??4.9?t?13.1当?t?0.01时,v??13.149; 当?t?0.001时,v??13.104 9; 当?t?0.000 1时,v??13.100 49; 当?t?0.000 01时,v??13.100 049; 当?t??0.000 001时,v??13.099 995 1; 当?t?0.000 001时,v??13.100 004 9; 。。。。。。 。。。。。。 问题:1你能描述一下你算得的这些数据的变化规律吗?(表格2) 关于这些数据,下面的判断对吗? 2.当?t趋近于0时,即无论t从小于2的一边,还是t从大于2的一边趋近于2时,平均速度都趋近于一个确定的值-13.1m/s。 3. 靠近-13.1且比-13.1大的任何一个数都可以是某一段?2??t,2?上的平均速度; 4. 靠近-13.1且比-13.1小的任何一个数都可以是某一段?2,2??t?上的平均速度; 5. -13.1表示在2秒附近,运动员的速度大约是-13.1m/s。 分析:t?2秒时有一个确定的速度,2秒附近的任何一段上的平均速度都不等于瞬时速度,所以比-13.1大的数作为2秒的瞬时速度不合理,比-13.1小的数作为2秒的瞬时速度也不合理,因此,运动员在2秒时的瞬时速度是-13.1m/s。 第38页(共57页) 这样,我们就得到了2秒时的瞬时速度是-13.1m/s,现在我们一起回忆一下是如何得到的:首先,算出?2,2??t?上的平均速度 [来源:Zxxk.Com]h?2??t??h?2?=?4.9?t?13.1,接着观察当?t趋近于0时, ?t 上式趋近于一个确定的值-13.1,这个值就是运动员在2秒时的瞬时速度。为了表述方便,我们用 lim?t?0h?2??t??h?2???13.1 ?t表示“当t?2,?t趋近于0时,平均速度v趋近于确定值-13.1”。 思考:当?t趋近于0时,平均速度v有什么样的变化趋势? 结论:当?t趋近于0时,即无论t从小于2的一边,还是从大于2的一边趋近于2时,平均速度v都趋近于一个确定的值?13.1. 从物理的角度看,时间?t间隔无限变小时,平均速度v就无限趋近于史的瞬时速度,因此,运动员在t?2时的瞬时速度是?13.1m/s 为了表述方便,我们用limh(2??t)?h(2)??13.1 ?t?0?t表示“当t?2,?t趋近于0时,平均速度v趋近于定值?13.1” 小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡 到瞬时速度的精确值。 3.函数y?f?x?在x?x0处的瞬时变化率如何表示? 导数的定义(板书) 函数y?f?x?在x?x0处的瞬时变化率是limf(x0??x)?f(x0)?f, ?lim?x?0?x?x?0?x'我们称它为函数y?f?x?在x?x0处的导数,记作f?x0?或y'|x?x0, 即f?x0?=lim'f(x0??x)?f(x0)?f'。例如:2秒时的瞬时速度可以表示为h?2???13.1或?lim?x?0?x?x?0?x[来源学科网]y'|t?2??13.1。 附注:①导数即为函数y=f(x)在x=x0处的瞬时变化率; ②定义的变化形式:f'?x?=?limx?0f(x0)?f(x0??x)?y?lim; ?x?0(?x)?x f'?x?=xlim?xf(x)?f(x0)f(x0??x)?f(x0)?y'?lim;f?x?=lim; x?x0??x?00(?x)x?x0??x第39页(共57页) ?x?x?x0,当?x?0时,x?x0,所以f?(x0)?lim?x?0f(x)?f(x0) x?x0 ③求函数y?f?x?在x?x0处的导数步骤:“一差;二比;三极限”。 三.典例分析 2 例1.(1)求函数y=3x在x=1处的导数. ?f?f2 分析:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx), 再求?6??x再求lim?6 ?x?x?0?x3x2?3?123(x2?12)解:法一(略); 法二:y?|x?1?lim?lim?lim3(x?1)?6 x?1x?1x?1x?1x?1(2)求函数f(x)=?x?x在x??1附近的平均变化率,并求出在该点处的导数. 2?y?(?1??x)2?(?1??x)?2解:??3??x ?x?x?y?(?1??x)2?(?1??x)?2 f?(?1)?lim??lim(3??x)?3 ?x?0?x?x?0?x例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh时,原油的温度(单位:C)为f(x)?x?7x?15(0?x?8),计算第2h时和第6h时,原油温度的瞬时变化率,并说明它们的意义. 解:在第2h时和第6h时,原油温度的瞬时变化率就是f(2)和f(6) 根据导数定义, ''?2f(2??x)?f(x0)?f ??x?x(2??x)2?7(2??x)?15?(22?7?2?15)???x?3 ?x所以f?(2)?lim?f?lim(?x?3)??3;同理可得:f?(6)?5 ?x?0?x?x?0?在第2h时和第6h时,原油温度的瞬时变化率分别为?3和5,说明在2h附近,原油温度大约以3C/h的速率下降,在第6h附近,原油温度大约以5C/h的速率上升. 注:一般地,f(x0)反映了原油温度在时刻x0附近的变化情况. 17世纪,力学、航海、天文等方面取得了突飞猛进的发展,这些发展对数学提出了新的要求, 它们突出地表现为四类问题,其中的两类问题直接导致了导数的产生:一是根据物体的路程关于时间的函数求速度和加速度;二是求已知曲线的切线。 由导数的定义,我们知道,高度h关于时间t的导数是运动员的瞬时速度;气球半径r关于体积V第40页(共57页) '?
正在阅读:
人教A版数学选修1-1全套教案05-20
游野生动物园作文500字06-29
统计学复习题10-01
计量经济学实验报告09-16
小学一年级英语课外学习资料03-08
辽宁省丹东市事业单位历年真题及解析10-17
泵与风机课后习题参考答案(完整版)10-07
4324孤岛工作面矿压观测报告 - 图文06-11
如何办理建设项目环境影响评价审批手续06-05
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 选修
- 人教
- 全套
- 教案
- 数学
- 1月20日市场营销速录稿(全部)
- 2012最新事业单位综合基础知识复习资料
- 人教版小学数学五年级上册单元测试卷全套
- 伟盈(昆山)灯饰有限公司千灯莎芬娜国际灯饰城项目
- 湘教版八年级地理下册教案
- (太管用了)公文写作经典小标题字典
- 2011上《管理审计》123章课件
- 2012最新事业单位综合基础知识复习资料
- 公务员考试百科知识精选练习题
- 自然地理学名词解释1
- (太管用了)公文写作经典小标题字典
- 毕业论文--浅谈高层建筑结构发展现状及前沿发展方向
- 自然地理学名词解释1
- 高级英语课后练习答案-完全版
- 2009年《半月谈》评论全集
- 党课
- 2011上《管理审计》123章课件
- 中国橱柜行业市场研究与预测报告 - 图文
- SAP CRM 功能全面概述
- 最新苏教版小学二年级数学下册全册教案 第二学期全套教学设计