第04讲 整式的乘法与因式分解
更新时间:2023-07-29 22:42:01 阅读量: 实用文档 文档下载
第四讲 整式的乘法与因式分解
点击进入相应模块
1.了解:因式分解的定义,提公因式法. 2.掌握:幂的运算性质,整式乘法法则,乘法公式,因式分解 的方法. 3.能:运用整式乘法法则和乘法公式进行整式的乘法运算以及 用两种方法分解因式.
一、幂的运算性质
am+n 1.am·an=____(m,n都是正整数).amn 2.(am)n=___(m,n都是正整数). a nb n 3.(ab)n=____(n为正整数).
【即时应用】a7 1.计算:a4·a3=__. a6 2.计算:(a2)3=__.
-a3b6 3.计算:(-ab2)3= _____.
二、整式的乘法 相乘 相加 1.单项式与单项式相乘:把系数_____,同底数幂的指数_____. 分配律 2.单项式与多项式相乘:利用乘法对加法的_______进行计算, ma+mb+mc 即m(a+b+c)=_________. 每一项 3.多项式与多项式相乘:先用一个多项式的_______乘以另一 每一项 相加 个多项式的_______,再把所得的积_____. am bn 即(a+b)(m+n)=___+an+bm+___.
4.乘法公式 (1)平方差公式 两个数的和与这两个数的差的积等于这两个数的平方差,即 a2-b2 (a+b)(a-b)=_____. (2)完全平方公式 两个数和(或差)的平方,等于它们平方和加上(或减去)它们积 a2±2ab+b2 的2倍,即:(a±b)2=__________.
【即时应用】1 a 3 b 5 c3 3 1.计算: 2a 2 b3 1 ab 2c3 _________ . 6
3x3-6x2-3x 2.计算:3x(x2-2x-1)=___________.
x2+xy-2y2 3.计算:(x-y)(x+2y)=__________.x2-4y2 4.计算:(x+2y)(x-2y)=_______. x2-4xy+4y2 5.计算:(x-2y)2=___________.
三、因式分解 因式分解的基本方法 m(a+b+c) (1)提公因式法:ma+mb+mc=_________. (2)运用公式法: (a+b)(a-b) ①平方差公式:a2-b2= ___________. (a±b)2 ②完全平方公式:a2±2ab+b2= _______.
【即时应用】1 1 (3x )(3x ) 1.因式分解: 2 1 _____________ . 9x 2 2 4
(x-2)2 2.因式分解:x2-4x+4=_______. x(x+y)2 3.因式分解:x3+2x2y+xy2=_______.
【核心点拨】
1.在运用幂的运算性质时,一定要分清属于什么运算,以便套用相应的法则,同时,幂的这三条运算性质要会逆用.
2.在因式分解时,要先考虑是否有公因式,然后根据项数选择公式,若有两项,考虑平方差公式;若有三项,则考虑完全平 方公式.
整式的乘法 ◆中考指数:★★★★★整式乘法注意的四个方面: 1.单项式相乘时,积的系数等于各因式系数的积,单项式乘 以单项式的结果仍是一个单项式. 2.单项式与多项式相乘,积的项数与所乘多项式的项数相 等. 3.同底数幂相乘和幂的乘方均是底数不变,指数分别为相 加和相乘,而积的乘方则把积的每一个因式分别乘方. 4.多项式与多项式相乘,在合并同类项之前,积的项数应等 于两个多项式项数的积.
知 识 点 睛
特 别 单项式相乘时,只在一个单项式里出现的字母,要连同它的 提 指数写在积里,一定不能把这个因式漏掉. 醒
【
例1】(2011·温州中考)化简:a(3+a)-3(a+2).
【教你解题】去括号 3a+a2-3a-6
合并同类项
(3-3)a+a2-6
结果
a2-6
【对点训练】1.(2012·安徽中考)计算(-2x2)3的结果是( (A)-2x5 (B)-8x6 (C)-2x6 (D)-8x5 )
【解析】选B.(-2x2)3=(-2)3(x2)3=-8x6.
2.(2012·郴州中考)下列计算正确的是( (A)a2·a3=a6 (C)(a2)3=a6 (B)a+a=a2 (D)a8÷a2=a4
)
【解析】选C.A选项,同底数幂相乘,底数不变,指数相加, ∴a2·a3=a5,故A选项错误;B选项,同类项合并只要系数相加 减即可,∴a+a=2a,故B选项错误;C选项,根据幂的乘方法则 有(a2)3=a2×3=a6,故C选项正确;D选项,同底数幂相除,底数不 变,指数相减,∴a8÷a2=a6,故D选项错误.
3.(2012·苏州中考)若3×9m×27m=321,则m的值是(
)
(A)3
(B)4
(C)5
(D)6
【解析】选B.3×9m×27m=3×32m×33m=31+2m+3m=31+5m,
∴1+5m=21,m=4.
4.(2012·怀化中考)当x=1,y 1 时,3x(2x+y)-2x(x-y)=_____.5
【解析】3x(2x+y)-2x(x-y)=6x2+3xy-2x2+2xy=4x2+5xy,当x=1,y 时,原式 4x 2 5xy 4 12 5 1 1 4 1 5.5
1 5
答案:5
乘法公式与化简求值 ◆中考指数:★★★★★ 1.平方差公式的两个特点 (1)左边是两个数的平方差; (2)右边是两数和乘以这两个数的差. 2.完全平方公式的两个特点 (1)左边是两数和(或差)的平方; (2)右边首平方,尾平方,乘积2倍在中央.
知 识 点 睛
特 1.有时逆向应用乘法公式,可简化运算. 别 2.有些题目不能直接利用乘法公式,需要对原题目进行适 提 当变形,使之具备公式的结构特点后,再利用公式来解. 醒
正在阅读:
第04讲 整式的乘法与因式分解07-29
上海的变化作文800字02-04
高一年级军训日记集锦.doc04-08
和同学发生的一件事作文300字02-05
宪法期末考试试题答案12-16
我的动物世界作文400字06-26
波谱分析知识全书总结11-22
湖北省2011年普通高校招生网上填报志愿草表(一) - 图文01-02
坏账计提和票据贴现习题答案11-11
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 整式
- 因式分解
- 乘法
- 2012年广东省自主招生《人文社会科学测评》考试复习指导
- 容易被忽视的身体提示
- 最全最新的事业单位考试计算机基础知识试题+答案
- 构建我国财务会计概念框架的思考
- 水射流技术的研究进展和展望
- 独立光伏系统设计
- 2020年超市客服个人工作述职报告
- 2014-2015学年北京市房山区初三上学期期末数学试题(含答案)
- 定点药店年度考核自评表
- 江苏省苏州市吴江区平望中学2020-2021学年高三上学期阶段性测试(一)数学试题
- 2013二年级语文寒假作业检测卷
- 安徽省安庆市十六校2013-2014学年七年级上学期语文期中联考试题 (word版含答案)
- 德国农业机械化发展对中国借鉴意义的思考(上)
- 临床资料对儿童慢性咳嗽病因的诊断价值
- 云南跨境民族问题与国家安全研究
- 先成家后立业辩论
- 数学思维训练导引 电子版 (三年级)
- 2017-2018年人教版八年级下册(2017部编版)历史复习提纲
- 防护服装结构设计对着装舒适性的影响
- 假日营销之转介绍