机械英文翻译及其原文-小齿轮和锥齿轮的失效分析
更新时间:2023-03-11 10:30:01 阅读量: 教育文库 文档下载
- 机械英文翻译中文推荐度:
- 相关推荐
河 北 科 技 大 学
毕业设计(论文)外文资料翻译
学 院: 机械电子工程学院 专 业: 机械设计制造及其自动化 姓 名: 周 亮 学 号: 030501222
(用外文写)
外文出处: Engineering Failure Analysis
Volume 13,issue 8,December 2006,Pages 1285-1292 附 件: 1.外文资料翻译译文;2.外文原文。
指导教师评语: 本外文资料翻译通顺,格式和字数符合要求。 签名: 2007年 月 日
外文翻译
附件1:外文资料翻译译文
小齿轮和锥齿轮的失效分析
A. Benselya, S. Stephen Jayakumara, D. Mohan Lala, G. Nagarajana and A. Rajaduraib
安娜大学机械工程学院和印度大学的教授Tamil NaduA. Benselya, S. Stephen Jayakumara, D. Mohan Lala, G. Nagarajana 和 A. Rajaduraib的这篇论文 在2005年9月14日发表,2005年10月31日被收录,并于2006年二月9日可在线使用。 摘要
锥齿轮和小齿轮是汽车传动装置的重要组成部件。这些部件的失效对车辆运动有着强烈的影响。并将逐步导致修理时间的增加。除了他的功能受到影响外,这些部件也会增加危险性。用标准的材料力学去分析齿轮断裂,以此来研究齿轮失效的原因。分析得出的结论表明制造材料的组成成分是失效的原因,在材料中可以明显的发现含有大量锰而没有镍和钼。这导致材料核心的硬度很高,高硬度却会使车辆传递系统中的重要部件产生早期的失效。
关键字:渗碳;锥齿轮;齿轮齿的失效;金属断面的显微镜研究法来研究失效;奥氏体; 文章概要 1.介绍 2.加工工序 3.试验研究 4.检测 5.点蚀 6.化学分析 7.微硬度分析 8.微观结构 9.齿轮齿接触的研究 10.结论
共12页 第1页
外文翻译
感言 参考目录 1.介绍
机械系统的平均寿命总是依赖系统的最重要部分[1]。 在动力传动系统中通常是齿轮。齿轮设计通常按高速重载的的条件来设计最小的尺寸和重量。被用于重型车辆的一个典型锥齿轮和小齿轮如图1
图1 图形的整体尺寸展示
他们是车辆的最重要的部分,因此要求抗磨损性好和抗接触疲劳强度高。理想的锥齿轮和小齿轮应该符合美国齿轮制造业协会(AGMA)的11项质量标准,即均匀和适宜的金属质地,极好的抗扭矩变形,极大的抗冲击力,耐磨性,最佳的传动效率,比较小的噪声,小的自由震动和齿轮几何学。气体深碳是达到这些标准的一个工序。他使得齿轮耐磨损性和韧性增大[2]。制造者应该通过一些制造业标准选择适当的材料和正确的热处理参数来使重要的部件持久和高效。En353(15Ni Cr 1 Mo 12)和En207(20 Mn Cr 1)是用于制造这些重要部件比较多的细密纹理的钢材。当En207被广泛的用于按规定尺寸制作齿轮和轴时,En353却用于重型齿轮,轴,小齿轮,凸轮轴,连接销,重型车辆的传动部件的制造[3]。这篇文章将介绍锥齿轮和小齿轮的失效研究。 2.加工工序
共12页 第2页
外文翻译
锥齿轮和小齿轮是在热处理后从850℃--880℃等温条件下获得的均质材料制造的。锻造是计算机数字控制齿轮的外形几何尺寸的精密制造。它在900 - 930℃下进行渗碳处理来得到均匀的表面薄膜。渗碳能达到1.524到1.905毫米的深度。淬火是在780 - 820℃下进行的,为了避免扭曲变形,淬火后要在油中冷却。对小齿轮来说,选择淬火是尽力提高齿轮的抗磨损性。小齿轮的曲线被特别的处理,这是为了得到能抵抗更高的冲击力和由固定产生的扭转力矩。淬火后,锥齿轮和小齿轮还要降温到150 - 200℃以此来消除内应力。最后,锥齿轮和小齿轮要做全面的检测以防止早期的失效,同时保证无噪音的产生。齿轮隙被保证在0.2 – 0.3 毫米内以使噪音和震动最小[4]。 3.试验研究
图2显示的是目前被采用的研究方法轮。
图2 失效研究的方法
4.检测
被研究的失效锥齿轮和小齿轮来自于一辆中等类型的商业汽车。这辆车有一个120千瓦引擎,并能够负载13000千克。它是一辆比较稳定和理想的建筑工程
共12页 第3页
外文翻译
用车。如果一个锥齿轮或小齿轮失效,那么通常要换一对这样的齿轮;否则整个的寿命将会降低。锥齿轮的齿数是变化的,从客车到重型汽车都不同。重型汽车齿轮的齿数比客车的少些,但是齿的厚度要比客车的厚些。从检测上发现锥齿轮和小齿轮的齿数分别是45和7。他们的预期寿命大概在150000和200000公里路程之间。失效的锥齿轮和小齿轮的表面断裂显露出在齿边缘处存在烧伤痕迹(冷焊),8个齿的齿根断裂,在齿外部边缘处齿的碎屑到处都有。更进一步研究发现齿轮齿中没有磨损的表面在前面或者在后面,这使得锥齿轮和小齿轮看上去相对较新。(见图3)
图3 失效的锥齿轮
啮合的齿轮(也就是小齿轮)显示齿轮表面的疲劳断裂是由一个微小的裂纹引起的。大的碎片也远离了齿。疲劳纹理标志能在图4中看到。表面的疲劳是由表面的比较硬的组织在压应力下造成的。然而,破裂形成的裂纹深度要比点蚀所形成的深,并且它的内力的作用与交替变化的应力有关系。这经常被当成至关重要的,但因为它导致了表面低碳部分的疲劳断裂,先前的命名将被经常使用。 5.点蚀
通常,齿轮失效是由几个机械装置失效引起,但是大多数是由齿轮的齿面点蚀导致。实际上,齿面点蚀是机械装置失效的主要原因。这些失效都是由滚动接触磨损和部件表面寿命在应用的负荷下的磨损造成[5]。因此,我们用一个立体显微镜来对失效的部件进行大量的研究以次来探索齿面磨损齿轮的齿面磨损的特点是由齿轮接触面上的凹坑的出现。如图4
共12页 第4页
外文翻译
图4 失效的小齿轮
表面磨损的过程可以看作是表面破损或裂缝,他们都是在长期的接触负载下产生。当裂缝变的足够大时不稳定的生长就发生,而这则会导致一部分表层材料的崩落。导致这些发生的就是凹坑。在两个部件中凹坑有效性很少。相对来说,在小齿轮上的凹坑数目要比差动齿轮的多,并且齿轮变形量也要比差动齿轮的高。这说明事实上失效是因为齿轮的工艺不够而不是点蚀。 6.化学分析
因为没有关于齿轮的化学组成和热处理条件可用信息,下面的任务就是对材料进行鉴定。如图3所示,一件小的样品是用磨削轮在差动轮的A点处进行切割,并用发光摄谱仪和显微照片来进行研究与分析。化学分析在两个不同的部分进行,一个是在部件表面,另一个在部件的核心部分。化学分析有助于确定那些选来准备加工成部件的原材料的基本成分,在炭化处理过程中的含碳量以及基本组成在由制造者加工过程中的中和 。EN353和EN207的成分分析的结果在表1中列出
共12页 第5页
外文翻译
表1 化学成分 元素 化学成分 (wt%) En 353 En 207 失效的组成 表面 核心 碳 0.12–0.18 0.17–0.22 0.91 0.24 铬 0.75–1.25 1.0–1.3 1.46 1.44 锰 0.6–1.0 1.1–1.4 1.44 1.43 镍 1.0–1.5 – 0.01 0.01 钼 0.08–0.15 – 0.01 0.01 硅 0.1–0.35 0.4 (最大) 0.24 0.26 我们可以发现那些选来准备做齿轮的材料和EN353或EN207都不符合,但是它们和EN207在某些组成元素的变化上更接近。En 353 和EN207比起来更适合与重载的场合应用不过也是比较昂贵的。碳元素和锰元素的含量都超标。碳,锰,珞,镍和钼能够增加材料的可淬性,但是和其他的合金成分比较起来锰和镍起的作用更大[3]。硅的出现也稍微增加硬化度但是在回火期间保有成份的坚硬。镍加强亚铁盐而且增加硬化能力,细化精粒, 用良好的延展性来增加柔性的界限和可拉长的程度。它也能改善由疲劳撞击引起的抗力。因此镍没有上面所说的特点,所以它在材料中很少。钼的较高的含量可以减少脆性,阻止晶粒边界。通常当它参与亚铁盐形成碳化物的时候,钼,镍和铬被合成。同时,它也能阻止晶粒的生长。然而, 如表 1 所见到. 钼的百分比也会引起淬火脆性和晶粒边界分离。 为了要检查材料的硬化能力,材料的碳同等物 (CE) 被评估如下:
发现在不合格的材料中碳的同等物含量是077,然而,在EN207和EN353中的含
共12页 第6页
(1)
外文翻译
量则分别是0713和077。化学分析确定了失效是由于选择了不耐蚀的材料。不仅制造业者已经在材料的基本组成上通过增加锰的比例来中和,这样就可以用锰来替换教昂贵的镍了。碳的含量还是高。这造成材料核心硬度较高但是表面却失效[6]。 7.硬度分析
作为渗碳材料的一种情况,硬度的倾向是从外至里,外部比内部的硬度大。因此,实行微硬度研究,并且结果在图 5 中显示。大体上, 为计算有效表面深度 (ECD) 所采取的表面压力值是 540 HV, 并且它的深度期望在 1.524 和 1.905 毫米之间。 在最初含炭量(硬度关于深度保持不变)所达到的深度叫做完全表面深度。因此,完全表面深度超过有效表面深度。在同一硬度中,完全表面深度和有效表面深度分别是 737 HV , 1.4 和 1.22 毫米。对于失效的部分,核心硬度在齿根的中心测量,其数值是458 HV。 通常,期望的核心硬度在 317 和 401HV 之间,最大值可达 430 HV,超过这个值零件可能会被破坏。这对重型机械的要求是非常高的,高硬度材料是因为含锰比较多。高的核心硬度造成附属表面疲累和抗挤压力的下降。这也是导致早期失效的原因。在这一项研究, ECD 只有 1.22 毫米,他不能充分确定表面深度。不够的表面深度造成了如图 4 所显示的小齿轮牙齿破碎状而且依次减少顶轮的耐久性。这是由于在渗碳期间温度过低或者由于碳供给不充足。
图5 微硬度测试 8.微观结构
虽然残留奥氏体对增加接触疲累强度有益,当奥氏体以行列的形式排列时,对空间结构和表面的硬度有益。在操作期间,亚稳定奥氏体将会在压应力和拉应
共12页 第7页
外文翻译
力下转变成马氏体,这将使体积变大。体积的增大可能产生扭曲变形,从而产生压力,这可经过欠稳定和噪音造成寿命减短。过多的残留奥氏体也将会降低材料硬度和早期的抗疲劳强度。基本上,除了避免不必要的马氏体转换产物,如调质珠光体,钢必须要有充足合适的合金元素的加入来使金属的表面光滑和核心硬度提高[7]。含碳量控制核心硬度,其他的合金元素帮助控制核心硬度和马氏体变化物的含量。马氏体的转化物如珠光体和贝氏体比马氏体的质地软,而且会使钢的抗疲劳强度降低。因此,这种情况应该被避免。添加的元素如碳,锰,镍,钼和铬会降低马氏体开始的温度,并且会增加奥氏体的含量。一个来自失效部分的小样品进一步在光学显微镜下进行微观结构的研究。 失效成份的表面和核心微观图像在图 6 被显示。
图 6. 失败成份的微细构造。 (a) 表面微观图像; (b) 核心微观图像。 表面微观图像显示含有70%的马氏体和 20-25% 残奥氏体,还有少部分的铁素体。 然而核心微观图像显示带状的贝氏体周围分布着均匀的铁素体。取代生成好的珠光体,带状贝氏体的产生可能是因为锰的含量增加导致的, 核心硬度高达458HV就能够说明这点 。这与贝氏体(410 HV)的硬度大约是相等的。
关于裂纹性质的重要信息能从裂纹表面的微观研究中获得[8]。断口金相检验使用电子显微镜扫描(SEM)。 实际表面的更深一步研究使得电子显微镜扫描成为分析失效的一个重要工具。使用电子显微镜扫描来研究断裂齿的图像在图7中。裂纹已经产生的模型是非常易碎的,这在一点是非常明显的。
共12页 第8页
外文翻译
图7 失效样本的图形 9.齿接触研究
用失效的零件来进行接触研究是为了知道其中的细节和失效的顺序。用小齿轮的前齿面在锥齿轮的后锥面上进行旋转试验来研究齿的接触。锥齿轮齿的失效指数是17,18,19,27,29,30,31,32和38,然而小齿轮的失效指数是3。当传动比是6.5时,每一次试验的小齿轮的失效齿数并没有增加,而是和下次的试验一样。依次旋转下,和小齿轮的失效齿(第三齿)配对的锥齿轮失效齿可以在表2中看到。锥齿轮失效的齿依次是17,31,38,18,32,29,30和27。从图表2中可以看到小齿轮的失效齿并没有影响与他配对的锥齿轮的齿。从中也可证实失效并没有在锥齿轮的一次旋转中发生。在首次失效后再旋转七倍的时间,全部的齿就会失效。失效会逐渐的发生,最后就会发生冷焊现象。这一点表明冷焊现象发生在锥齿轮和全部的零件上,当工作时间超过失效时间的6倍时。失效的试验品部分也发生齿根断裂。
共12页 第9页
外文翻译
表2 锥齿轮和小齿轮接触的研究
锥齿轮的旋转 相同条件下,小齿轮和锥齿轮接触依次失效的齿 1 3 10 17 小的 24 31 中38 中间 35 32 大的 29 小的 间 42 45 2 7 14 21 18 中间 28 3 4 11 25 39 4 1 8 15 22 36 43 5 5 12 19 小的 26 33 40 6 2 19 16 23 30 大的 Cold 37 44 7 6 13 20 27 weld 34 41 齿根全部有裂纹的锥齿轮齿接触研究是在有标记(黄色油漆)的小齿轮帮助下完成的。然后它在锥齿轮上进行旋转。标有标记的失效样品锥齿轮将与标准样品齿轮进行比较,结果可以从图8中看到。这证明小齿轮与锥齿轮只是部分的接触,可能是由于校正的不好。这会在接触的齿上产生高的接触应力,导致更大的负载作用在非常小的面积上。在图3上可以看到这种情况导致齿的破裂发生在齿的边上。
共12页 第10页
外文翻译
图8齿接触的样品 10.结论
这个不正确的选择导致材料内部硬度高 ,致使早期失效产生。硬度分析得出的结论是有效的表面深度没有达到要求的水平是因为在渗碳时温度不够或者是碳元素不够。不正确的热处理会使奥氏体在表面残留过多(大概25%),这对工作的零件有害。失效首先发生在小齿轮上,不管失效的齿与锥齿轮是在哪接触的,这都引起锥齿轮的早期失效 。局部的倒根是锥齿轮失效的典型事件。因此,重要零件必须进行热处理,使其有最少的网状碳素体,少的含碳量,少的奥氏体,来避免在工作时发生破裂,减少齿的快速磨损,和防止工作时扭曲变形。奥氏体的存在能用常规的热处理替代低温处理的方法来减少[9]。淬火后马上低温处理,接着进行回火处理可以增强零件的耐磨损性和刚度。在将来可以生产更耐用的零件。 感言
作者对Mr. Jeyaprakash Narayanan, Ex-Ashok Leyland, Senior Manager在论文方面的指导表示衷心的感谢。同时也要对Mr. I. Jeyakrishnan, DGM Technical and Mr. K. Sevugarajan, Metallurgist of M/s. IP Rings Limited, Maraimalainagar的帮助表示感谢。
共12页 第11页
外文翻译
参考书目
1 S. Farfan, C. Rubio-González, T. Cervantes-Hernández and G. Mesmacque, High cycle fatigue, low cycle fatigue and failure modes of a carburized steel, Int J Fatigue 26 (2004), pp. 673–678.
2 H.S. Avner, Introduction to physical metallurgy, Tata McGraw-Hill Publishing Company Limited (2002).
3 S.N. Bagchi and P. Kuldip, Industrial steel reference book, Wiley Eastern Limited (1986).
4 COMET 4X4. Ashok leyland service manual, 1969.
5 K.J. Abhay and V. Diwakar, Metallurgical analysis of failed gear, Eng Fail Anal 9 (2002), pp. 359–365.
6 K.H. Prabhudev, Handbook of heat treatment of steels, Tata McGraw-Hill Publishing Company Limited (2000).
7 Fatigue and failures. ASM handbook, vol. 19, 2002. p. 698–700. 8 Failure analysis and prevention. ASM handbook, vol. 11, 2002. p. 700–27.
9 R.F. Barron, Effect of cryogenic treatment on lathe tool wear, Prog Refrigeration Sci Technol 1 (1973), pp. 529–533.
附件2:外文原文(复印件)
Failure investigation of crown wheel and pinion
A. Benselya,
,
, S. Stephen Jayakumara, D. Mohan Lala, G. Nagarajana and
A. Rajaduraib
Received 14 September 2005; accepted 31 October 2005. Available online 9 February 2006. Abstract
共12页 第12页
外文翻译
The crown wheel and pinion are the critical components in the transmission system of an automobile. Failure of these components has drastic effect on the vehicular movement. This in turn leads to increased downtime for repairs. The cost of these components adds to the criticality in addition to its function. A fractured gear was subjected to detailed analysis using standard metallurgical techniques to identify the cause for failure. The study concludes that the failure is due to the compromise made in raw material composition by the manufacturer, which is evident by the presence of high manganese content and non-existence of nickel and molybdenum. This resulted in high core hardness (458 HV) leading to premature failure of the vital component of transmission system in a vehicle.
Keywords: Carburization; Crown wheel; Gear-tooth failures; Failure investigation fractography; Retained austenite
Article Outline 1. Introduction
2. Manufacturing process 3. Experimental investigation 4. Visual examination 5. Pitting
6. Chemical analysis 7. Microhardness survey 8. Microstructure 9. Tooth contact studies 10. Conclusions
共12页 第13页
外文翻译
Acknowledgements References
1. Introduction
Life expectancy of mechanical systems is always dependent on the most critical component of the system [1]. In power transmission system this is usually the gear. Gear design is commonly bounded by the requirements that gear should carry high loads at high speeds with minimal size and weight. A typical crown wheel and pinion used in heavy vehicles is shown in Fig. 1.
Display Full Size version of this image (54K)
Fig. 1. Crown wheel and pinion.
They are the most stress prone parts of a vehicle and demands high wear resistance, high contact fatigue strength. An ideal crown wheel and pinion should have uniform and optimum metallurgical quality, excellent heat distortion control, maximum impact strength, stiff wear resistance, optimal transmission efficiency, less noise, vibration-free operation and gear geometry in accordance with American Gear Manufacturers Association (AGMA) – 11 qualities. Gas carburizing is a process employed to achieve some of these properties. It produces a very high wear resistant
共12页 第14页
外文翻译
case and a soft tough core [2]. The manufacturer should make the critical components durable and efficient through accurate and consistent manufacturing standards by selecting appropriate material and correct heat treatment parameters. En 353 (15 Ni Cr 1 Mo 12) and En 207 (20 Mn Cr 1) are the two widely used fine-grained steel billet materials used in manufacturing of these critical components. Typical applications of En 353 being heavy-duty gears, shaft, pinions, camshafts, gudgeon pins, heavy vehicles transmission components while En 207 being used widely for medium sized gear wheels and shafts [3]. This paper deals with a failure investigation of a crown wheel and pinion. 2. Manufacturing process
Crown wheel and pinion are manufactured from forged blanks that are isothermally annealed at 850–880 °C to obtain uniform properties after heat treatment. The forgings are precision machined by computer numerical control gear generators to high dimensional accuracy. It is followed by gas carburizing at 900–930 °C to have uniform case, which can vary from 1.524–1.905 mm in its depth. Hardening is done at 780–820 °C in controlled atmospheric temperature and press quenched in oil to avoid distortion. In the case of pinion, selective case hardening is done to impart maximum strength to the pinion to maximize wear resistance. The pinion thread is specially treated to soft conditions to withstand higher shock loading and yielding arising out of torque tightening. After hardening, the crown wheel and pinion are tempered at 150–200 °C to remove thermal stresses. Finally, the crown wheel and pinion are checked thoroughly for hard spots to prevent premature failure and also to ensure noise-free operation. The backlash is kept within 0.2–0.3 mm band to keep noise and vibration to a bare minimum [4]. 3. Experimental investigation
共12页 第15页
外文翻译
The research methodology adopted in the present investigation is shown in Fig. 2.
Display Full Size version of this image (26K)
Fig. 2. Research methodology for failure investigation. 4. Visual examination
The failed crown wheel and pinion taken for the investigation is from a medium type commercial vehicle. This vehicle has a 120 kW engine and can transmit a payload of 13,000 kg. It is a more stable and ideal vehicle for construction and off road applications. If a crown wheel or pinion fails, always it is necessary that both have to be replaced completely as a matching pair; otherwise the life of the unit will be greatly reduced. The number of teeth in the crown wheel varies from passenger vehicles to heavy vehicles. Heavy vehicles have less number of teeth when compared to passenger vehicles and also the thickness of the teeth is larger than passenger vehicles teeth thickness. From the visual examination it was found that the number of teeth in the crown wheel and pinion is 45 and 7, respectively. The expected normal life of the component will approximately range between 1,50,000 and 2,00,000 km. The fractured surfaces of the failed crown wheel and pinion showed the presence of burn marks (cold weld) on the edge of a teeth, partial uprooting on 8 number of tooth and teeth chipping all along the outer edge of the crown wheel. It was further observed that the gear teeth had no worn-out surface either
共12页 第16页
外文翻译
on the front or on the rear side indicating that the crown wheel and pinion are relatively new (see Fig. 3).
Display Full Size version of this image (35K)
Fig. 3. Crown wheel failure.
The companion gear (i.e. pinion) shows sub case fatigue fracture initiated by fine cracks. Large fragments have spalled away from the tooth. Fatigue beach marks can also be seen in Fig. 4. Sub case fatigue is fracture of case hardened components by the formation of crack below the contact surface within the hertzian stress field. However, the depth at which the crack forms is much greater than the macro pitting fatigue and it is a function of material strength in conjunction with the alternating hertzian shear stress. It is also sometimes referred as case crushing but since it results from fatigue crack that initiates below the effective case depth or in the lower carbon portion of the case, the former nomenclature will be used frequently. Thin case depth relative to radius of curvature is the factor that controls the occurrence of sub case fatigue.
Display Full Size version of this image (34K)
共12页 第17页
外文翻译
Fig. 4. Pinion failure. 5. Pitting
Generally, gears fail due to several mechanisms but most often due to surface pitting of gear teeth. Surface pitting is in fact the principal mode of failure of mechanical elements that are subjected to rolling contacts and governs the surface life of a component under applied load [5]. Hence, the failed components were subjected to macro examination using a stereomicroscope for pitting failure. The pitting of gear teeth is characterized by the occurrence of small pits on the contact surfaces, as visible in Fig. 4. The process of surface pitting can be visualized as formation of surface-breaking or sub surface initial cracks, which grow under repeated contact loading. Eventually the crack becomes large enough for unstable growth to occur, which results in a part of the surface material layer breaking away. The resulting void is a pit. The availability of pits in both the components was very less. Relatively, the number of pits in pinion is larger as the number of revolutions of pinion is higher than crown wheel. This confirms to the fact that the failure is premature and not due to pitting. 6. Chemical analysis
As no information with respect to the chemical composition and the heat treatment condition of the pinion material was available, the next task in the failure analysis was the material identification. A small size specimen was cut using abrasive cut off wheel from location A of the crown wheel as shown in Fig. 3 and subjected for optical emission spectrometer studies and metallographic examination. Chemical analysis was carried out at two different locations, one at the surface (case) and another at the central portion (core) of the component. The chemical analysis helps to
共12页 第18页
外文翻译
identify the basic composition of the raw material selected for the component, carbon potential used for carburizing process and any compromise on the basic composition with respect to the component that made by the manufacturer. The results of the chemical analysis along with the nominal composition of En 353 and En 207 are given in the Table 1. Table 1.
Chemical composition
Elements Chemical composition (wt%) Carbon Chromium En 353 En 207 Failed component Case Core 0.24 1.44 1.43 0.01 0.01 0.26 0.12–0.18 0.17–0.22 0.91 0.75–1.25 1.0–1.3 1.1–1.4 – 1.46 1.44 0.01 0.01 Manganese 0.6–1.0 Nickel 1.0–1.5 Molybdenum 0.08–0.15 – Silicon 0.1–0.35 0.4 (max) 0.24 It was found that the material selected for the preparation of the crown wheel and pinion was not exactly matching with either En 353 or En 207, but it was nearer to En 207 with variation in the composition of certain elements. En 353 is a better material for heavy-duty application than En 207 and it is costlier. Also elements like C, and Mn were found to be excess than the required level expected for heavy-duty applications. C, Mn, Cr, Ni and Mo increase hardenability but the influence is higher for manganese, and nickel on comparing with other alloying elements [3]. The presence of Si also increases hardenability a little but retains hardness of the
共12页 第19页
外文翻译
component during tempering. Nickel strengthens ferrite and increases hardenability, refines the grain, increases elastic limit and tensile strength with no practical loss in ductility. It also improves the resistance to fatigue and impact. Since nickel is almost nil in the failed material it is devoid of all the above said characteristics. A higher percentage of molybdenum inhibits grain boundary segregation as well as help in reducing temper brittleness. Generally molybdenum is used in combination with nickel and chromium as it enters into ferrite to form carbides. It also inhibits grain growth. However, as seen in Table 1. The molybdenum percentage was also quite marginal resulting in deficiency of temper brittleness and grain boundary segregation.
In order to check the hardenability of the material the carbon equivalent (CE) was estimated as follows:
(1)
The carbon equivalent (CE) for the failed material was found to be 0.77, whereas it was only 0.713 and 0.77 for En 207 and En 353, respectively. The chemical analysis confirms that the failure is due to a selection of less withstanding materials. Not only that the manufacturer has made a compromise on the base composition by adding manganese in higher proportion, which is a cheaper substitute for costly nickel. The carbon content is also high. This resulted in high core hardness, finally ending up in premature failure of component [6]. 7. Microhardness survey
Being a case carburized material a gradient of decreasing hardness exists from the case to the core. Hence, microhardness survey was carried out
共12页 第20页
外文翻译
and the result is shown in Fig. 5. In general, the cut off value taken for calculating the effective case depth (ECD) is 540 HV and it is expected to be between 1.524 and 1.905 mm. The depth at which the original carbon content (hardness remains the same with respect to the depth) of the material is reached is called the total case depth. Hence, the total case depth is more than the effective case depth. The case hardness, total case depth and effective case depth were found to be 737 HV, 1.4 and 1.22 mm, respectively. For the failed component the core hardness was measured at the center of tooth base. It was found to be 458 HV. Normally, the desired core hardness is between 317 and 401 HV and is tolerable up to 430 HV, beyond that the component is highly prone to failure. This is very high for heavy-duty application and is due to high manganese content in the raw material. The high core hardness results in sub case fatigue and poor resistance to impact. It is also the reason for the premature failure. In this study, the ECD was only 1.22 mm, which confirms inadequate case depth. Insufficient case depth resulted in spalling of a pinion tooth as shown in Fig. 4 and in turn reduces durability of the crown wheel. This is due to low temperature employed during carburization or may be due to inadequate gas feed.
Display Full Size version of this image (12K)
Fig. 5. Microhardness survey. 8. Microstructure
共12页 第21页
外文翻译
Although retained austenite has been claimed to benefit contact fatigue life, there are situations when austenite can be determinantal to dimensional stability and surface hardness. During operation metastable retained austenite will transform under stress and strain to untempered martensite, which result in a volume expansion. This volume expansion can create distortion, induce stress and may result in a decreased life through misalignment and noise. Excess retained austenite will also lower material hardness and resistance to fatigue initiation. Basically, steel must have sufficient quantities of correct alloying elements to produce component with proper surface and core hardness in addition to avoiding unwanted non-martensitic transformation products (NMTP), such as quenched-in pearlite [7]. Carbon content controls surface hardness and other alloying elements aid in controlling the core hardness and the amount of NMTP. The NMTP microconstituents like ferrite, pearlite and bainite are softer than the martensite and reduce the contact fatigue resistance of steel. Hence, it should be avoided. Alloying element, such as carbon, manganese, nickel, molybdenum and chromium lower the martensite start temperature of iron and thus produce greater levels of retained austenite. A small specimen cut from the failed component is further subjected to microstructural study using optical microscope. The case and the core micrograph of the failed component are shown in Fig. 6.
Display Full Size version of this image (78K)
Fig. 6. Microstructure of failed component. (a) Case micrograph; (b) core micrograph.
共12页 第22页
外文翻译
The case micrograph shows the presence of 70% martensite and 20–25% retained austenite and a very little ferrite, whereas the core micrograph shows banded bainite along with evenly distributed ferrite. Instead of formation of fine pearlite the presence of banded bainite could be attributed to the presence of increased amount of manganese, which is confirmed by the high core hardness value of 458 HV. This is approximately equivalent to the hardness of bainite (410 HV).
Important information about the nature of fracture can be obtained from microscopic examination of fracture surface [8]. Fractography is done using scanning electron microscope (SEM). The large depth of focus and the fact that the actual surface can be examined make the SEM an important tool for failure analysis. A portion of the fractured teeth was studied using SEM and is shown in Fig. 7. The mode in which the fracture has occurred is highly brittle in nature as evident by the cleavage facets.
Display Full Size version of this image (52K)
Fig. 7. SEM picture of the failed specimen. 9. Tooth contact studies
The failed component is subjected to contact studies in order to know the contact details and sequence of failure. Tooth contact analysis was carried out by revolving the failed pinion on crown wheel by referring the index number given in the back cone face of the crown wheel and the
共12页 第23页
外文翻译
shank of the pinion. The index number of failed teeth of crown wheel is identified as 17, 18, 19, 27, 29, 30, 31, 32 and 38, whereas for the pinion it is 3. As the gear ratio is 6.5, for every revolution the failed teeth of pinion does not come and mate at the same teeth in the next revolution. The sequence with which the failed tooth (third tooth) of pinion mating with crown wheel is given in Table 2 along with the level of damage observed through visual inspection. The sequence in which the fracture in crown wheel has occurred is 17, 31, 38, 18, 32, 29, 19, 30 and 27. From Table 2, it is observed that the failed pinion teeth does not affect all the teeth of crown it mate. It also confirms that failure has not taken place in one revolution of crown wheel. For the failure to occur in all the identified teeth, definitely the crown wheel has revolved seven times after the initial failure. The sequence indicates fairly a gradual progression of the damage and ends with the cold weld at the end. This confirms that cold welding has occurred in seventh revolution of crown and all other fracture in the preceding 6 revolutions. The mode of failure of crown wheel is by partial uprooting. Table 2.
Tooth contact analysis of crown wheel and pinion
Revolution of crown wheel 1 2 3 4 5 6 Sequence of contact of failed pinion teeth with crown wheel indicating the level of damage 3 10 7 14 4 11 1 8 5 12 2 19 17 Small 21 18 Medium 15 19 Small 16 24 28 25 22 26 23 31 Medium 35 32 Large 29 Small 33 30 Large 38 Medium 42 39 36 40 37 45 43 44 共12页 第24页
外文翻译
Revolution of crown wheel 7 Sequence of contact of failed pinion teeth with crown wheel indicating the level of damage 6 13 20 27 Cold weld 34 41 The teeth chipping have occurred all around the edges of crown wheel tooth contact analysis was carried out with the help of marking medium (a yellow paint) on one of the pinion tooth. Then it is rotated over the crown wheel. The pattern of contact registered by the marking medium on the crown wheel matches with the standard pattern [4] shown in Fig. 8. It reveals a partial mating between the pinion and crown wheel and this could have been due to improper alignment. It develops high stress between the teeth in contact leading to larger load acting on a very small area during sliding. This resulted in teeth chipping all around the edges of the crown wheel, which is shown in Fig. 3.
Display Full Size version of this image (50K)
Fig. 8. Tooth contact pattern. 10. Conclusions
The investigation on crown wheel and pinion helps to identify the reason for the failure, importance in selecting a correct material and also to know the intricacies of heat treatment. The present study shows that the failure is due to improper selection of material for heavy-duty application, the compromise made for nickel by cheaper substitute
共12页 第25页
外文翻译
manganese so as to reduce the overall cost of the component. This improper selection resulted in high core hardness finally leading to premature failure of the components. The microhardness study concludes that the effective case depth was not up to the desired level and is due to low temperature employed during carburizing or may be due to inadequate gas feed. The improper heat treatment is also evident by the high levels of retained austenite (25%) in the case, which is detrimental to the component under service. Failure has started in pinion that made the crown wheel to fail prematurely wherever the failed tooth made contact with the crown wheel. The mode of pinion failure is by sub case fatigue due to insufficient case depth. Partial uprooting is the mode of failure in the crown wheel. Hence, being critical components every heat treatment batch sample should be diligently and microscopically scrutinized to have minimum cementite network, minimum decarburized layers and minimum retained austenite so as to avoid cracking during service, reduce rapid wear of teeth and prevent distortion in operation, respectively. The presence of retained austenite can be alleviated by the introduction cryogenic treatment to the conventional heat treatment process of crown wheel and pinion [9]. The cryogenic treatment should be done immediately after quench hardening, followed by tempering, which can enhance wear resistance and dimensional stability of the components during service. This will enable to produce durable components in future.
Acknowledgements
The authors sincerely thank Mr. Jeyaprakash Narayanan, Ex-Ashok Leyland, Senior Manager (Heat treatment) for the guidance in successful completion of this work. We are also indebted to Mr. I. Jeyakrishnan, DGM Technical
共12页 第26页
外文翻译
and Mr. K. Sevugarajan, Metallurgist of M/s. IP Rings Limited,
Maraimalainagar for the valuable suggestions and extension of facility.
References
[1] S. Farfan, C. Rubio-González, T. Cervantes-Hernández and G. Mesmacque, High cycle fatigue, low cycle fatigue and failure modes of a carburized steel, Int J Fatigue 26 (2004), pp. 673–678. SummaryPlus | Full Text + Links | PDF (485 K) | Abstract + References in Scopus | Cited By in Scopus [2] H.S. Avner, Introduction to physical metallurgy, Tata McGraw-Hill Publishing Company Limited (2002).
[3] S.N. Bagchi and P. Kuldip, Industrial steel reference book, Wiley Eastern Limited (1986).
[4] COMET 4X4. Ashok leyland service manual, 1969.
[5] K.J. Abhay and V. Diwakar, Metallurgical analysis of failed gear, Eng Fail Anal 9 (2002), pp. 359–365.
[6] K.H. Prabhudev, Handbook of heat treatment of steels, Tata McGraw-Hill Publishing Company Limited (2000).
[7] Fatigue and failures. ASM handbook, vol. 19, 2002. p. 698–700. [8] Failure analysis and prevention. ASM handbook, vol. 11, 2002. p. 700–27.
[9] R.F. Barron, Effect of cryogenic treatment on lathe tool wear, Prog Refrigeration Sci Technol 1 (1973), pp.
共12页 第27页
外文翻译
共12页 第28页
正在阅读:
中国导电塑料电位器行业研究报告09-16
金工实习机 械 类 A 答案11-07
虚拟设计中公差与配合的检验和分析方法07-26
教科版五年级下册科学教学计划及教案(表格式) - 图文07-12
砌体标准作法要求 - 图文03-05
浅谈小学数学教学中空间观念的形成12-22
4-工艺文件06-14
FT6001T248智能火灾报警控制器联动型说明书05-06
考研政治史纲中各个时期土地问题汇总12-29
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 锥齿轮
- 英文翻译
- 失效
- 齿轮
- 原文
- 及其
- 分析
- 机械
- 甜味剂综述
- 第八章 完全竞争市场练习
- 王家砭中心小学精准扶贫工作制度
- 中国传统城市化与新型城市化的异同
- 智能交通系统的发展现状及趋势
- 防水施工方案
- 寄生虫列表小结 - 图文
- 2017-2018学年北京市101中学高一(上)期中数学试卷
- 基于PLC的污水处理系统 - 毕业设计 - 图文
- 2018-2024年中国滨海旅游行业现状分析及市场前景预测报告 - 图文
- TT使用手册 - 图文
- 雷雨
- 质量员(设备安装)考核评价大纲
- 国际金融实务课后习题答案 刘玉操
- 发展服务外包考试题目92分
- 无机非1201优秀班级申报材料 2 - 图文
- 广州版七年级上unit1 语法知识讲解
- MBA学位论文写作指南
- EDA实验报告完结版
- 2016尔雅网络课《古代名剧鉴赏》期末考试答案