第二章 完全信息静态博弈的基本理论

更新时间:2023-10-27 13:41:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第二章 完全信息静态博弈的基本理论

0.完全信息(complete information)博弈与不完全信息(incomplete information)博弈 完全信息博弈是指每个参与人的支付函数都是该博弈的公共知识;只要有一个参与人的支付函数不是该博弈的公共知识,就意味着该博弈是不完全信息博弈。

特别提示:如果该博弈是完全信息博弈,这意味着参与人不仅知道自己是什么类型的人,也知道对手们是什么类型的人。

一.求解方法之一:剔除严格劣策略 1.占优策略与劣策略。

严格占优策略与严格劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于b策略,则称a策略是相对于b策略的严格占优策略(strictly dominating strategy),b策略是相对于a策略的严格劣策略(strictly dominated strategy)。

弱占优策略与弱劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付不低于b策略,且至少有一种情况下的支付会严格大于b策略,则称b策略是相对于a策略的弱劣策略(weakly dominated strategy );a策略则是相对于b策略的弱占优策略(weakly dominating strategy)。

占优策略就是我们平时所说的上策,劣策略就是我们平时所说的下策。

特别提示:本文对占优策略的理解与其他教材不同,本文可以将以上述方式定义出来的占优策略称为局部占优策略;如果不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于其他所有策略,则称a策略是全局严格占优策略。类似地,可以定义局部劣策略与全局劣策略。

理性的人在博弈时绝对不会选择严格劣策略。通过剔除严格劣策略所获得的博弈解就称之为占优策略均衡。

2.案例 案例1

坦白 不坦白 -6 -10 0 -1 -1 甲 坦白 -6

0 不坦白 -10

案例2

不作广告

作广告 10 8 2 2 4 4 甲 不作广告 8

作广告 10

在上面的两个例子中,通过剔除严格劣策略,可以获得一个占优策略均衡(坦白,坦白),(作广告,作广告)。

3.请思考下面这个例子是否存在占优策略均衡?

甲在上与下之间作选择,乙在左中右之间作选择 乙

左 中 右 甲 上 1,0 1,2 0,1 下 0,3 0,1 2,0

经过重复剔除严格劣策略,可以获得一个占优策略均衡(上,中),这就是求解方法之一——严格劣策略的迭代剔除方法。

思考:占优策略均衡(上,中)是通过不断剔除严格劣策略而获得的,为了成功地进行剔除,需要什么样的前提条件?由此可以理解公共知识的重要性。

4.思考:下面这个博弈是否存在占优策略均衡?

假设甲乙两个参与人分别在上中下,左中右之间作选择: 乙

左 中 右 上 0 4 4 0 5 3 甲 中 4 0 0 4 5 3 下 3 5 3 5 6 6

剔除严格劣策略并不适合于求解所有的博弈,许多博弈是不存在占优策略均衡的。

5.集体困境(dilemma)、合作与非合作博弈、占优策略均衡

(1)案例

案例1:霍布斯博弈

假设鲁滨逊与星期五生活在一个自然状态之中。为了生存,他们各自有两个选择:自己生产财富或掠夺对方的财富。博弈情形如下:

甲 生产

掠夺

生产 掠夺 10 8 8 -2 10 -2 -1 -1

思考:面对囚徒困境、广告博弈、霍布斯博弈,请思考如何解决社会困境?(答案略;最低价格承诺实际上就是为解决寡头之间的串谋困境提供了有效的解决机制)

案例2:1964年以前,美国香烟的电视广告非常普遍,1964年卫生总监的报告宣布以后,美国四大烟草公司经过协商与联邦政府达成协议,决定不再做电视广告,协议于1971年生效。各大烟草公司的利润得以大幅增加。

(2)合作博弈与非合作博弈

A合作博弈:参与人直接事先达成具有约束力的协议,以集体协商的方式选择策略,故又可称之为联盟博弈。由此形成的策略选择与支付被称为博弈的合作解,通常以帕累托最优作为度量标准。合作博弈其实就是指参与人在行动前能够实现进行沟通、交流,且沟通交流达成的协议是有约束力的。

B非合作博弈:又称策略博弈,参与人以独立的方式选择策略。由此形成的策略选择与支付被称为博弈的非合作解。

C一般所说的博弈论是指非合作博弈理论。

(3)集体困境与占优策略均衡

A集体困境的基本特征就是博弈的不合作解与合作解相悖。

B凡是存在集体困境问题的场合必定存在占优策略均衡,即集体困境问题是存在占优策略均衡的重要博弈类型。

C注意:不要认为占优策略均衡都一定意味着集体处于困境之中。以下面的政治博弈为例: 甲乙作为竞选的对手,分别有三种立场可以选择:左中右;选民的分布是对称的;甲乙均追求选票最大化;具体的选票情况如下:

左 中 右 左 55 45 30 70 50 50 甲 中 75 25 50 50 70 30 右 50 50 25 75 45 55

思考:该博弈存在占优策略均衡吗?该博弈存在集体困境吗? 从这个博弈可以看出,只有中间立场在政治上被充分表达,绝大多数的非中间立场的选民的立场被严重忽视。

(4)占优策略均衡在制度设计中有着广泛的应用价值。

二.求解方法之二:最优反应法——符合理性人性质的方法,博弈论最重要的求解方法 1.最优反应策略:给定其他所有参与人策略选择的情况下,能够给某参与人带来最大收益的策略,其思维过程为:如果对手采用??,某参与人就应该采用??。这是一种相对优势策略。

通过最优反应方法所获得的博弈解称之为纳什均衡。

2.如何寻找纳什均衡?划线法(仅适合二人有限策略博弈)

案例1 竞选博弈 假设甲乙两个参与人分别在上中下,左中右之间作选择: 乙

左 中 右 上 0 4 4 0 5 3 甲 中 4 0 0 4 5 3 下 3 5 3 5 6 6

思考(下,右)这个策略组合具有什么特点?互相构成对对手策略选择的最优反应。

案例2 选址博弈

甲乙两家百货公司考虑开店,可供选择的地址有四个:市郊、市中心、城市东部、城市西部。具体支付情况如下:

市郊 市中心 城市东部 城市西部 市郊 30 40 50 95 55 95 55 120 甲 市中心 115 40 100 100 130 85 120 95 城市东部 125 45 95 65 60 40 115 120 城市西部 105 50 75 75 95 95 35 55

思考(市中心 市中心)这个策略组合具有什么特点?

3.纳什均衡:它是由全部参与人所选择的策略构成的这样一个组合,在这个组合中,每个参与人的策略都是针对其他参与人人策略选择的最优反应。

特别注意,均衡是针对策略组合的,而不是支付组合的,即在上面的博弈中,(下,右)才

是均衡,(6 6)是这个博弈的均衡结果,不要把均衡与均衡结果混淆,这显然与微观经济学不同,在微观经济学中均衡是针对结果而言的。

4.关于纳什均衡的体会:纳什均衡具有策略稳定性,在均衡状态之下没有人愿意单方面改变自己的策略选择,因此,纳什均衡具有自我实施特征。 特别说明:策略稳定性不同于均衡稳定性。

5.纳什均衡与占优策略均衡

(1)占优策略均衡肯定也是纳什均衡,但是纳什均衡不一定是占优策略均衡。

(2)纳什均衡与占优策略均衡都是博弈的非合作解。

6.多重纳什均衡问题

(1)寻找下列博弈的纳什均衡 案例1 节目选择博弈

甲乙两个电台各有三种节目形式可供选择,分别是摇滚乐、乡村音乐以及谈话节目 乙

摇滚乐 乡村音乐 谈话节目 摇滚乐 35 35 50 40 80 10 甲 乡村音乐 40 50 20 20 40 10 谈话节目 10 80 10 40 5 5

案例2 夫妻博弈

夫 足球

芭蕾

足球 1 3 -1 -1 1 0 3 芭蕾

0

上述两个例子的共同特点就是存在多个纳什均衡,这是纳什均衡的最大缺陷,降低了纳什均衡解的预测能力,因为一旦参与人的预期不一致,就可能出现极为糟糕的结局。

(2)多重纳什均衡的精炼(refine)

所谓精炼就是通过附加另外的合理的标准,使得某些不合理的纳什均衡被剔除掉,以减少纳什均衡的个数,提高理论分析对现实的预测能力(因为纳什均衡只是涵盖了理性的一个方面:最优反应)。

本文来源:https://www.bwwdw.com/article/2hl2.html

Top