二次函数综合(动点与三角形)问题方法与解析

更新时间:2024-07-04 19:57:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

九年级数学专项训练《二次函数》

二次函数综合(动点与三角形)问题

一、知识准备:

抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形;

解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。

二、例题精析

㈠【抛物线上的点能否构成等腰三角形】

例一.(2013?铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积;

(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

2

分析: (1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x+bx+c得:解得:. 2, 第1页

九年级数学专项训练《二次函数》 ∴抛物线解析式为:y=x+2x﹣3. (2)令y=0得:0=x+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,解得:∴M1(﹣1,, ),M2(﹣1,﹣, 22); , ②当MB=BA时,解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评: 本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】

例二.(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax+bx+c

2

的图象交于y轴上的一点B,二次函数y=ax+bx+c的图象与x轴只有唯一的交点C,且OC=2.

2

(1)求二次函数y=ax+bx+c的解析式;

2

(2)设一次函数y=0.5x+2的图象与二次函数y=ax+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.

2

考点:二次函数综合题.

第2页

九年级数学专项训练《二次函数》

分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax+bx+c=a

2

(x﹣2),进而求出即可;

(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可. 解答:解:(1)∵y=0.5x+2交x轴于点A, ∴0=0.5x+2, ∴x=﹣4,

与y轴交于点B, ∵x=0, ∴y=2

∴B点坐标为:(0,2), ∴A(﹣4,0),B(0,2),

2

∵二次函数y=ax+bx+c的图象与x轴只有唯一的交点C,且OC=2

2

∴可设二次函数y=a(x﹣2), 把B(0,2)代入得:a=0.5

2

∴二次函数的解析式:y=0.5x﹣2x+2; (2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴∴=

=

2

2

得:OP1=1, ∴P1(1,0),

(Ⅱ)作P2D⊥BD,连接BP2,

2

将y=0.5x+2与y=0.5x﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5), 则AD=

当D为直角顶点时

∵∠DAP2=∠BAO,∠BOA=∠ADP2, ∴△ABO∽△AP2D, ∴

==

, ,

解得:AP2=11.25,

则OP2=11.25﹣4=7.25, 故P2点坐标为(7.25,0);

(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0) 则由Rt△OBP3∽Rt△EP3D 得:

第3页

九年级数学专项训练《二次函数》

∴,

∵方程无解,

∴点P3不存在,

∴点P的坐标为:P1(1,0)和P2(7.25,0).

点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.

㈢【抛物线上的点能否构成相似三角形】

例三.(2013?恩施州)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0). (1)求直线BD和抛物线的解析式.

(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.

(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.

第4页

九年级数学专项训练《二次函数》

考二次函数综合题. 点: 分(1)由待定系数法求出直线BD和抛物线的解析式; 析: (2)首先确定△MCD为等腰直角三角形,因为△BND与△MCD相似,所以△BND也是等腰直角三角形.如答图1所示,符合条件的点N有3个; (3)如答图2、答图3所示,解题关键是求出△PBD面积的表达式,然后根据S△PBD=6的已知条件,列出一元二次方程求解. 解解:(1)∵直线l:y=3x+3与x轴交于点A,与y轴交于点B, 答: ∴A(﹣1,0),B(0,3); ∵把△AOB沿y轴翻折,点A落到点C,∴C(1,0). 设直线BD的解析式为:y=kx+b, ∵点B(0,3),D(3,0)在直线BD上, ∴, 解得k=﹣1,b=3, ∴直线BD的解析式为:y=﹣x+3. 设抛物线的解析式为:y=a(x﹣1)(x﹣3), ∵点B(0,3)在抛物线上, ∴3=a×(﹣1)×(﹣3), 解得:a=1, 2∴抛物线的解析式为:y=(x﹣1)(x﹣3)=x﹣4x+3. (2)抛物线的解析式为:y=x﹣4x+3=(x﹣2)﹣1, ∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1). 直线BD:y=﹣x+3与抛物线的对称轴交于点M,令x=2,得y=1, ∴M(2,1). 设对称轴与x轴交点为点F,则CF=FD=MN=1, ∴△MCD为等腰直角三角形. ∵以点N、B、D为顶点的三角形与△MCD相似, ∴△BND为等腰直角三角形. 如答图1所示: (I)若BD为斜边,则易知此时直角顶点为原点O,

第5页

22

九年级数学专项训练《二次函数》 ∴N1(0,0); (II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上, ∵OB=OD=ON2=3, ∴N2(﹣3,0); (III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上, ∵OB=OD=ON3=3, ∴N3(0,﹣3). ∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3). (3)假设存在点P,使S△PBD=6,设点P坐标为(m,n). (I)当点P位于直线BD上方时,如答图2所示: 过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3. S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)?m﹣×3×3﹣(m﹣3)?n=6, 化简得:m+n=7 ①, ∵P(m,n)在抛物线上, 2∴n=m﹣4m+3, 2代入①式整理得:m﹣3m﹣4=0, 解得:m1=4,m2=﹣1, ∴n1=3,n2=8, ∴P1(4,3),P2(﹣1,8); (II)当点P位于直线BD下方时,如答图3所示: 过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n. S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)?(﹣n)+×3×3﹣(3﹣n)?m=6, 化简得:m+n=﹣1 ②, ∵P(m,n)在抛物线上, 2∴n=m﹣4m+3, 2代入②式整理得:m﹣3m+4=0,△=﹣7<0,此方程无解. 故此时点P不存在. 综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8). 第6页

九年级数学专项训练《二次函数》 点本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与评: 性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解. 三、形成训练

1.(2013?湘西州)如图,已知抛物线y=﹣x+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0). (1)求抛物线的解析式及它的对称轴方程;

(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式; (3)试判断△AOC与△COB是否相似?并说明理由;

(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.

2

考点: 二次函数综合题. 分析: (1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=方程;

第7页

求出对称轴 九年级数学专项训练《二次函数》 (2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式; (3)根据,∠AOC=∠BOC=90°,可以判定△AOC∽△COB; (4)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解. 解答: 2解:(1)∵抛物线y=﹣x+bx+4的图象经过点A(﹣2,0), ∴﹣×(﹣2)+b×(﹣2)+4=0, 解得:b=, ∴抛物线解析式为 y=﹣x+x+4, 又∵y=﹣x+x+4=﹣(x﹣3)+∴对称轴方程为:x=3. (2)在y=﹣x+x+4中,令x=0,得y=4,∴C(0,4); 令y=0,即﹣x+x+4=0,整理得x﹣6x﹣16=0,解得:x=8或x=﹣2, ∴A(﹣2,0),B(8,0). 设直线BC的解析式为y=kx+b, 把B(8,0),C(0,4)的坐标分别代入解析式,得: , 解得k=,b=4, x+4. 2222222, ∴直线BC的解析式为:y= (3)可判定△AOC∽△COB成立. 理由如下:在△AOC与△COB中, ∵OA=2,OC=4,OB=8, ∴, 又∵∠AOC=∠BOC=90°, ∴△AOC∽△COB. (4)∵抛物线的对称轴方程为:x=3, 可设点Q(3,t),则可求得: AC===, 第8页

九年级数学专项训练《二次函数》 AQ=CQ==, =. i)当AQ=CQ时, 有22=, 25+t=t﹣8t+16+9, 解得t=0, ∴Q1(3,0); ii)当AC=AQ时, 有2=, t=﹣5,此方程无实数根, ∴此时△ACQ不能构成等腰三角形; iii)当AC=CQ时, 有2=, 整理得:t﹣8t+5=0, 解得:t=4±, ∴点Q坐标为:Q2(3,4+),Q3(3,4﹣). 综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣). 点评: 本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点.难点在于第(4)问,符合条件的等腰三角形△ACQ可能有多种情形,需要分类讨论. 2 :已知:直线y?11x?1与y轴交于A,与x轴交于D,抛物线y?x2?bx?c与直线交22于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0).(1)求抛物线的解析式;(2)

动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.

第9页

九年级数学专项训练《二次函数》

3、如图,抛物线y??122x?x?2与x轴交于A、B两点,与y轴交于C点.(1)求22A、B、C三点的坐标;(2)证明△ABC为直角三角形;(3)在抛物线上除C点外,是否

还存在另外一个点P,使△ABP是直角三角形,若存在,请求出点P的坐标,若不存在,请

说明理由.

4、如图,已知抛物线y??224x?x?2的图象与x轴交于A,B两点,与y轴交于点C,抛33物线的对称轴与x轴交于点D. 点M从O点出发,以每秒1个单位长度的速度向B运动,过

M作x轴的垂线,交抛物线于点P,交BC于Q. (1)求点B和点C的坐标;

(2)设当点M运动了x(秒)时,四边形OBPC的面积为S,求S与x的函数关系式,并指出自变量x的取值范围.

(3)在线段BC上是否存在点Q,使得△DBQ 成为以为一腰的等腰三角形?若存在, .BQ.....求出点Q的坐标,若不存在,说明理由.

第10页

九年级数学专项训练《二次函数》

5、(09年成都)在平面直角坐标系xOy中,已知抛物线y=a(x?1)2?c(a?0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y?kx?3,

与x轴的交点为N,且COS∠BCO=

310。 10(1)求此抛物线的函数表达式;

(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;

(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

第11页

九年级数学专项训练《二次函数》

5、(09年成都)在平面直角坐标系xOy中,已知抛物线y=a(x?1)2?c(a?0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y?kx?3,

与x轴的交点为N,且COS∠BCO=

310。 10(1)求此抛物线的函数表达式;

(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;

(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

第11页

本文来源:https://www.bwwdw.com/article/2gl.html

Top