通信原理指导书

更新时间:2023-10-03 16:35:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

实验一 AMI码型变换实验

一.实验目的

1. 了解二进制单极性码变换为AMI码的编码规则; 2. 根据测量和分析结果,画出电路关键部位的波形; 二.实验设备及器材配置

1. 通信原理综合实验系统。 2. 示波器。 3. 函数信号发生器。 三.实验内容

TPD01 TPD02 UD01 发时钟编码 译码 收时钟TPD05 KD01 Dt 数据输入 M 数据输出跳线器 双极性码KD02 电平 变换 跳线器 1-2 2-3 单极性码HDB3 跳线器 AMI TPD07 KD03 TPP01 TPD08 TPD06 模拟锁相环 (PLL) 256KHz 带通滤波器 位定时提取电路

图1-3 AMI编译码模块框图

AMI码的全称是传号交替反转码。这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…

由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。

由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T码型。

AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。

在通信原理综合试验箱中,采用了CD22103专用芯片(UD01)实现AMI的编译码实验,在该电路模块中,没有采用复杂的线圈耦合的方法来实现HDB3码字的转换,而是采用运算放大器(UD02)完成对AMI/HDB3输出进行电平变换。变换输出为双极性码或单极性码。由于AMI/HDB3为归零码,含有丰富的时钟分量,因此输出数据直接送到位同步提取锁相环(PLL)提取接收时钟。AMI/HDB3编译码系统组成框图见图1-3。

输入的码流进入UD01的1脚,在2脚时钟信号的推动下输入UD01的编码单元,HDB3与AMI由跳线开关KD03选择。编码之后的结果在UD01的14(TPD03)、15(TPD04)脚输出。输出信号在电路上直接返回到UD01的11、13脚,由UD01内部译码单元进行译码。通常译码之后TPD07与TPD01的波形应一致,但由于当前的输出HDB3码字可能与前4个码字有关,因而HDB3的编译码时延较大。运算放大器UD02A构成一个差分放大器,用来将线路输出的HDB3码变换为双极性码输出(TPD05)。运算放大器UD02B构成一个相加器,用来将线路输出的HDB3码变换为单极性码输出(TPD08)。

跳线开关KD01用于输入编码信号选择:当KD01设置在Dt位置时(左端),输入编码信号来自复接模块的TDM帧信号;当KD01设置在M位置时(右端),输入编码信号来自本地的m序列,用于编码信号观测。本地的m序列格式受CMI编码模块跳线开关KX02控制:KX02设置在1_2位置(左端),为15位周期m序列(111100010011010);KX02设置在2_3位置(右端),为7位周期m序列(1110010)。

跳线开关KD02用于选择将双极性码或单极性码送到位同步提取锁相环提取收时钟:当KD02设置在1_2位置(左端),输出为双极性码;当KD02设置2_3位置(右端),输出为单极性码。

跳线开关KD03用于AMI或HDB3方式选择:当KD03设置在HDB3状态时(左端),UD01完成HDB3编译码系统;当KD03设置在AMI状态时(右端),UD01完成AMI编译码系统。 四.实验步骤

1.AMI码编码规则验证

(1)首先将输入信号选择跳线开关KD01设置在M位置(右端)、单/双极性码输出选择开关设置KD02设置在2_3位置(右端)、AMI/HDB3编码开关KD03设置在AMI位置(右端),使该模块工作在AMI码方式。

(2)将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。用示波器同时观测输入数据TPD01和AMI输出双极性编码数据TPD05波形及单极性编码数据TPD08波形,观测时用TPD01同步。分析观测输入数据与输出数据关系是否满足AMI编码关系,画下一个M序列周期的测试波形。

(3)将输入数据选择跳线开关KD01拨除,将示波器探头从TPD01测试点移去,使输入数据端口悬空产生全1码。重复上述测试步骤,记录测试结果。

(4)将输入数据选择跳线开关KD01拨除,用一短路线一端接地,另一端十分小心地插入测试孔TPD01,使输入数据为全0码(或采用将示波器探头接入TPD01测试点上,使数据端口不悬空,则输入数据亦为全0码)。重复上述测试步骤,记录测试结果。

2.AMI码译码和时延测量

(1)将输入数据选择跳线开关KD01设置在M位置(右端);将CMI编码模块内的M序列类型选择跳线开关KX02设置在1_2位置(右端),产生7位周期m序列;将锁相环模块内输入信号选择跳线开关KP02设置在HDB3位置(左端)。

(2)用示波器同时观测输入数据TPD01和AMI译码输出数据TPD07波形,观测时用TPD01同步。观测AMI译码输出数据是否满正确,画下测试波形。问:AMI编码和译码的的数据时延是多少?

3.AMI译码位定时恢复测量

(1)将输入数据选择跳线开关KD01设置在M位置(右端),将CMI编码模块内的M序列类型选择跳线开关KX02设置在1_2(或2_3)位置,将锁相环模块内输入信号选择跳线开关KP02设置在HDB3位置(左端)。

(2)先将跳线开关KD02设置在2_3位置(右端)单极性码输出,用示波器测量同时观测发送时钟测试点TPD02和接收时钟测试点TPD06波形,测量时用TPD02同步。此时两收发时钟应同步。然后,再将跳线开关KD02设置在1_2位置(左端)双极性码输出,观测TPD02和TPD06波形。记录和分析测量结果。

(3)将跳线开关KD02设置回2_3位置(右端)单极性码输出,再将跳线开关KD01拨除,使输入数据为全1码(方法见1)。重复上述测试步骤,记录分析测试结果。

4. 分析实验结果,写出实验报告。

实验二 PAM编译码器系统

一.实验目的 1. 验证抽样定理;

2. 观察了解PAM信号形成的过程; 3. 了解混叠效应形成的原因; 二.实验设备及器材配置

1.通信原理综合实验系统。 2.示波器。 3.函数信号发生器 三.实验内容

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原始信号。通常将语音信号通过一个3400 Hz低通滤波器(或通过一个300~3400Hz的带通滤波器),限制语音信号的最高频率为3400Hz,这样可以用频率大于或等于6800 Hz的样值序列来表示。用截止频率为fh的理想低通滤波器可以无失真地恢复原始信号m(t)。

实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz的语音信号,通常采用8KHz抽样频率。这样可以留出一定的防卫带(1200Hz)。当抽样频率fs低于2倍语音信号的最高频率fh,就会出现频谱混叠现象,产生混叠噪声,影响恢复出的话音质量。

在抽样定理实验中,采用标准的8KHz抽样频率,并用函数信号发生器产生一个频率为

fh的信号来代替实际语音信号。通过改变函数信号发生器的频率fh,观察抽样序列和低通

滤波器的输出信号,检验抽样定理的正确性。抽样定理实验各点波形见图1-4所示。

输入信号 低通 滤波器 抽样 保持 低通 滤波器 8KHz 抽样 脉冲

图1-4 抽样定理实验原理框图

TP701 电话1接口 KO01 内部测试信号 跳线外部测试信号 器 K701 跳N 线器 T K701 U701A、B 低通 滤波器 K702 跳线NF 器 F U703 抽样 /保持 U702A、C 低通 滤波器 TP702 TP703 TP704 交换模块内 KQ02 H 开 NH 关 UQ01 抽样 脉冲

图1-5 抽样定理实验电路组成框图

电路原理描述:

输入信号首先经过信号选择跳线开关K701,当K701设置在N位置时(左端),输入信号来自电话接口1模块的发送话音信号;当K701设置在T位置时(右端),输入信号来自测试信号。测试信号可以选择外部测试信号或内部测试信号,当设置在交换模块内的跳线开关KQ01设置在1_2位置(左端)时,选择内部1KHz测试信号;当设置在2_3位置(右端)时选择外部测试信号,测试信号从J005模拟测试端口输入。抽样定理实验采用外部测试信号输入。

本文来源:https://www.bwwdw.com/article/2fwd.html

Top