湖北省黄冈中学等八校2018届高三第二次联考数学(理)试卷(含答案)

更新时间:2024-05-27 01:39:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

鄂南高中 华师一附中 黄冈中学 黄石二中 荆州中学 孝感高中 襄阳四中 襄阳五中

2018届高三第二次联考

理科数学试题

本试卷共4页,23题(含选考题)。全卷满分150分。考试用时120分钟。

★祝考试顺利★

注意事项:

1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符

合题目要求的。 1.设集合A?{y|y?2x,x?R},B?{x|y?1?x,x?R},则A?B?

A.?1? B.(0,??)

C.(0,1) D.(0,1]

2.若复数z满足2?zi?z?2i(i为虚数单位),z为z的共轭复数,则z?1?

A.5 B.2

C.3 D.3

3.在矩形ABCD中,AB?4,AD?3,若向该矩形内随机投一点P,那么使得?ABP与?ADP的面积都不小于2的概率为

1144 B. C.D. 43794.已知函数f(x)?(x?1)(ax?b)为偶函数,且在(0,??)单调递减,则f(3?x)?0的解集为

A.(2,4) B.(??,2)?(4,??) C.(?1,1) D.(??,?1)?(1,??)

A.

x2y25.已知双曲线??1的离心率为2,则a的值为 2a2?aA.1 B.?2 C.1或?2 D.-1 6.等比数列的前n项和,前2n项和,前3n项和分别为A,B,C,则

A.A?B?C

B.B2?AC

C.A?B?C?B3D.A2?B2?A(B?C)

7.执行如图所示的程序框图,若输入m?0,n?2,输出的x?1.75,则空白判断框内应填的条件为

A.m?n?1? B.m?n?0.5? C.m?n?0.2? D.m?n?0.1? 8.将函数f?x??2sin?2x?得图象向左平移对称轴为 A.x???????图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所3??个单位得到函数g?x?的图象,在g?x?图象的所有对称轴中,离原点最近的12?24 B.x??4 C.x?5?? D.x?2412

9.在(1?x)2?(1?x)3???(1?x)9的展开式中,含x2项的系数是

A.119 B.120 C.121 D.720 10.我国古代数学名著《九章算术》记载:“刍甍者,下有袤有广,而上有袤

无丈.刍,草也;甍,屋盖也.”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形.则它的体积为 A.

256160 B.160 C. D.6433

x2y2?1,直线l:x?4与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交11.已知椭圆C:?43于A,B两点,点C在直线l上,则“BC//x轴”是“直线AC过线段EF中点”的 A.充分不必要条件 C.充要条件 12.下列命题为真命题的个数是

B.必要不充分条件

D.既不充分也不必要条件

①ln3?3ln2;②ln???e;③215?15;④3eln2?42 A.1 B.2 C.3 D.4

二、填空题:本题共4小题,每小题5分,共20分。

??????013.平面向量a与b的夹角为45,a?(1,?1),b?1,则a?2b?__________.

?x?y?2?0?14.已知实数x,y满足约束条件?x?y?k?0,且z?x?2y的最小值为3,则常

?x?1?数k?__________.

15.考虑函数y?ex与函数y?lnx的图像关系,计算:

?1e2lnxdx?__________.

16.如图所示,在平面四边形ABCD中,AD?2,CD?4,?ABC为正三角形,

则?BCD面积的最大值为__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试

题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分)

若数列?an?的前n项和为Sn,首项a1?0且2Sn?an2?an(n?N?). (1)求数列?an?的通项公式; (2)若an?0(n?N?),令bn?

18.(12分)

如图,四边形ABCD与BDEF均为菱形,FA?FC,且?DAB??DBF?60?. (1)求证:AC?平面BDEF;

(2)求直线AD与平面ABF所成角的正弦值.

19.(12分)

1,求数列?bn?的前n项和Tn.

an(an+2)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以160,180?,180,200?,200,220?,220,240?,240,260?,

??????260,280?,[280,300)分组的频率分布直方图如图所示.

(1)根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量?的值; (2)用频率估计概率,利用(1)的结果,假设该市每户居民月平均用电量X服从正态分布

N?,?2

(ⅰ)估计该市居民月平均用电量介于?~240度之间的概率;

(ⅱ)利用(ⅰ)的结论,从该市所有居民中随机抽取3户,记月平均用电量介于?~240度之..间的户数为Y,求Y的分布列及数学期望E(Y).

??

20.(12分)

如图,圆O:x?y?4,A(2,0),B(?2,0),D为圆O上任意一点,过D作圆O的切线分别交直线x?2和x??2于E,F两点,连AF,BE交于点G,若点G形成的轨迹为曲线C.

(1)记AF,BE斜率分别为k1,k2,求k1?k2的值并求曲线C的方程; (2)设直线l:y?x?m(m?0)与曲线C有两个不同的交点P,Q,与直线

22x?2交于点S,与直线y??1交于点T,求?OPQ的面积与?OST面积的比值

?的最大值及取得最大值时m的值.

21.(12分)

已知函数f(x)?(1+ax2)ex?1.

(1)当a?0时,讨论函数f(x)的单调性; (2)求函数f(x)在区间[0,1]上零点的个数.

(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计

分。

22.[选修4—4:坐标系与参数方程](10分)

?2t?x???2已知直线l的参数方程为?(t为参数,a?R),曲线C的极坐标方程为?y?a?2t??2?sin2??4cos?.

(1)分别将直线l的参数方程和曲线C的极坐标方程化为直角坐标方程; (2)若直线l经过点(0,1),求直线l被曲线C截得线段的长.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)?2x?4?x?1,x?R (1)解不等式f(x)?9;

(2)若方程f(x)??x?a在区间[0,2]有解,求实数a的取值范围.

2理科数学

1 D 2 A 3 D 4 B 5 C 6 D 7 B 8 A 9 B 10 A 11 A 12 C 13.10 14.?2 15.e2?1 16.4?43 【提示】

本文来源:https://www.bwwdw.com/article/2bp7.html

Top