论坛搜集资料

更新时间:2024-03-17 21:41:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

论坛搜集资料

锂离子电池组安全性解决

1、宁德时代:远程监控系统保障运营安全

宁德时代在动力电池产品安全上追求零事故,就需要整体安全设计的体系上来把控,除了强调设计的安全,包括电芯、模组、系统的设计上的安全和一些产品在设计方面的安全认证,其还非常重视产品应用的安全。

产品应用安全上,宁德时代推出了远程监控系统,这套系统已经运行超过一年,终端客户在用的时候,可以实时采集电池系统的数据,把数据通过传输系统送到总部的数据库里,在这个数据库里有一整套非常完整的核心算法,算出来以后就显示在统计监控的平台上,跟售后服务进行互动。

在实施报警的时候,可以实现三级报警,因此能非常及时的发现问题,也可以预知一部分的问题,使产品安全的问题减少,配合宁德时代的整个售后服务市场、市场追溯包括未来的梯次利用,就可以保证全生命周期实时监控和安全维护。 2、微宏动力:LpTO 钛酸锂电池

微宏动力的 LpTO 钛酸锂电池从材料本身化学特性上,专门针对重型商用车辆与储能应用的需求设计。采用微宏专利技术的改进钛酸锂材料作为负极材料,有效防止电解液于电极之间发生反应,同时保障安全,能有效地抑制普通钛酸锂电池常常遇到的胀气问题,充分发挥其超长循环寿命。

“如何降低电池内部化学反应速度,微宏研发出可以在300℃不收缩的隔膜,可以使电池通过化学放热一点点积累起来,而不会发生瞬间的热失控。这样,即使电池失效,也可以给我们乘客留出宝贵的逃生时间。而电解液的不燃烧,就突破了电池内短路失控的瓶颈。”

微宏动力研发副总裁刘文娟介绍,生产工艺问题、循环过程中的消耗、锂技晶这三个方面是造成锂电池热失控的原因。普通锂离子电池隔膜在温度上升到130℃左右便会收缩,导致电池内部短路而造成热失控,因此微宏研发出能在300℃不收缩的隔膜。

此外,微宏还在研发不燃烧锂离子电池电解液、耐高温隔膜以及采用浸没隔绝空气的STL智能热控流体等安全防护技术。

3、力柏:陶瓷金属纤维封接技术强化动力电池安全

目前,车用动力电池的顶盖板与极柱之间的绝缘密封主要采用有机材料密封圈密封方式,具有良好的绝缘性和密封性。然而该类密封圈在高温条件下长时间使用存在老化变硬变脆的风险,从而失去密封导致水汽进入电池带来安全隐患。 针对这种问题,力柏能源开展了陶瓷与金属纤维封接技术研究,通过活性钎料开发、钎焊工艺研究和构件结构设计,为动力电池研发和生产中存在的陶瓷与金属封接关键技术难题提供解决方案。

该产品通过对添加元素相互作用机制进行研究,提高活性元素在低温下的活性,使钎料在铝熔点附近与氧化铝陶瓷发生足够的反应,润湿性和钎焊强度达到产品指标要求。同时采用活性非晶钎料的制备技术避免绝缘失败。 4、国新动力:高效均衡BMS助力动力电池安全

国新动力的高效均衡电池管理系统是一种基于铝基板散热技术及单节电池容量偏差校正技术的均衡管理系统,此产品能够高效精准的对锂电池进行均衡管理。

传统的电池管理系统均衡电流普遍为60mA左右,此产品采用铝基板贴装均衡电阻,同时将铝基板通过紧密贴合的方式装配在铝合金外壳上,将均衡产生的热量传导出去,从而实现200mA均衡电流能力。

传统的电池管理系统主要依据单节电池的电压不一致性进行均衡控制,此产品通过估算单节电池容量计算容量偏差,再结合单节电池电压真实的识别单节电池差异量,从而根据差异量进行均衡控制。此产品较主动均衡产品有成本低、可靠性高、良好的均衡效果等优势;较传统的被动均衡产品成本相近,但具有明显均衡效果可以使动力电池可充放电能量及寿命最大化。 5、中科来方:水性隔膜涂布浆料为软包电池安全升级

传统PVDF作为一种成熟的粘结剂虽然得到广泛的应用,但其难以兼顾电导和粘结性能,容易产生污染等缺点已经阻碍了锂电池产品性能的进一步提升。 “传统PVDF方案难以兼顾电导和粘结性能,容易产生污染,我们研发的锂离子电池隔膜功能层水性涂布浆料良好的解决了这些问题。”中科来方副总经理李仁贵表示,公司研发的该款水性涂布浆料专用于软包锂电池隔膜功能层涂布,具有纳米微球核壳结构特点,在增强锂电池的导电性、增强粘结能力、降低工艺

成本、提升电池安全性和循环寿命等方面存在诸多优势,进而也为替代传统PVDF提供了条件。

其中,水性功能隔膜涂布浆料用于3C软包锂离子电池隔膜涂布方面,可增加极片与隔膜粘结力,解决电池变形问题,提供安全性和循环寿命。用于软包动力锂离子电池隔膜涂布方面,可提高电池的能量密度、硬度和平整度以及安全性能等。

6、顶皓:多层复合功能隔膜耐热性能高

目前,市场上普遍使用商品化的聚烯烃类多孔膜。这种聚烯烃类多孔膜的突出问题是锂离子电池隔膜在不正常充放电的过程中,由于温度升高导致隔膜收缩变形或破膜,电池电极直接接触使得电池发生短路,极端情况下发生电池爆炸。 随着三元材料的广泛应用,锂电池将对大功率充放电的材质要求更为严格。上海顶皓透露,与上述多孔膜相比,公司推出的复合功能隔膜会采用耐热性能更好聚合物多孔膜作为基材,在200℃高温下加热1h以内,热收缩率将小于1%。 由于闭孔层的引入,该款复合功能隔膜即使处于不正常充放电过程,温度升高超过110℃,其内部的有机高分子微球也能通过膨胀降低隔膜孔隙率,切断锂离子的传输通道,以提高电池的安全性。目前,这款复合功能隔膜还处于推广阶段。

7、凌志新材:有机硅材料护航安全

由于电动汽车处于受潮、震动、发热、浸水、挤压、极端天气等运行环境,这使得锂电池面临高温、短路、过充、漏液、过流的隐患。有机硅胶的上述特性能够为锂电池建立一层保护屏障,提升其抗高低温、散热性。

为更好地服务于锂电池,发挥出有机硅胶特性的最大最优价值,凌志新材设计出一套有机硅封装一体化解决方案。这款方案包含10余款产品,在具体使用中,凌志新材会根据客户热管理、尘防护、密封、单体电芯保护、装甲防护等不同的需求,以及方壳、软包、圆柱等不同型号,提供针对性的产品配合方案。 其中的一款产品有机硅灌封胶能够改善电芯和电池组散热、均衡电芯间温差,具备突破性的保温技术,起到了热平衡的作用;同时实现阻燃隔热、减震固定、改善电池绝缘性的安全防护。

当个别单体电芯单元发生漏液、起火、爆炸时,有机硅灌封胶可以迅速阻断火焰传播,防止破坏波及电池组内的其他电池单元。 8、恒美电子:新一代BMS保障动力系统安全可靠

在2016年高工金球奖的评选中,恒美电子参选“年度创新产品”的是新一代电池管理系统,系统的先决条件是电池Cell要先串成汽车所需的电池串(String)(比如340V)。然后将多个这样的电池串并联起来作为Pack,每一个电池串有继电器控制其通断。

该系统的创新性是:1、可以检测每一个Cell的Voltage和Temprature,(Cell保护);2、电池串内部采用被动均衡,可以保证串内电池均衡(String保护);3、电池串间通过继电器控制通断,到截止电压即切断,既能保护电池不过充过放又能大幅度延长续航里程(Pack保护);4、计算每一个Cell的SOC,比电压方式更好地保护电池(SOC保护)。

恒美电子表示,该系统能够随时随地准确的掌握每个CELL的状态,进行控制、纠错,保证电池始终处于最佳工作状态、有效提高汽车续航里程。BMU、LECU均有2个独立供电的CPU,符合ISO26262 配置要求,有效的保证了产品安全性与可靠性。

圆柱、方形和软包的比较

目前,主流的锂电池封装形式主要有三种,即圆柱、方形和软包,不同的封装结构意味着不同的特性,它们各有优缺点。从最近几年的市场发展趋势来看,软包电池的占比越来越高,专家预计未来软包电池的市场份额有望超过50%。

圆柱形电池:生产工艺成熟,产品良率高

圆柱型锂电池有诸多型号,比如,14650、17490、18650、21700、26500等。圆柱形锂电池生产工艺成熟,PACK成本较低,电池产品良率以及电池组的一致性较高;由于电池组散热面积大,其散热性能优于方型电池;圆柱形电池便于多种形态组合,适用于电动车空间设计的充分布局。但圆柱形电池一般采用钢壳或铝壳封装,会比较重,比能量相对较低。目前中、日、韩、美等都有成熟的生产企业,比如SANYO、SONY、LG、万向A123等。

随着电动汽车市场的进一步扩大和对续航里程要求的不断提升,整车企业对动力电池在能量密度、制造成本、循环寿命和产品附加属性等方面都提出了更高的要求。在原材料领域尚未获得巨大突破的前提下,适当增大圆柱电池的体积以获得更多的电池容量便成为一种可探索的方向。目前,特斯拉已经启动了21700电池的规模化生产,并计划用于特斯拉汽车Model 3上,如果在特斯拉其他车型上测试通过,将全部替换掉之前使用的18650电池,特斯拉的做法或将在世界范围内引领一股“21700风潮”。

方形硬壳电池:型号太多,工艺统一难

方形硬壳电池壳体多为铝合金、不锈钢等材料,内部采用卷绕式或叠片式工艺,对电芯的保护作用优于于铝塑膜电池(即软包电池),电芯安全性相对圆柱型电池也有了较大改善。

锂电池铝壳在钢壳基础上发展而来,与钢壳相比,轻重量和安全性以及由此而来的性能优点,使铝壳成为锂电池外壳的主流。锂电池铝壳目前还在向高硬度和轻重量的技术方向发展,这将为市场提供技术更加优越的锂电池产品。

目前,生产方形硬壳电池的企业有国轩高科、三星SDI、力神、宁德时代等。

由于方形锂电池可以根据产品的尺寸进行定制化生产,所以市场上有成千上万种型号,而正因为型号太多,工艺很难统一。方形电池在普通的电子产品上使用没有问题,但对于需要多只串、并联的工业设备产品,最好使用标准化生产的圆柱形锂电池,这样生产工艺有保证,以后也更容易找到可替换的电池。

软包电池:未来市场占比有望超过50%

软包锂电池所用的关键材料—正极材料、负极材料及隔膜—与传统的钢壳、

铝壳锂电池之间的区别不大,最大的不同之处在于软包装材料(铝塑复合膜),这是软包锂电池中最关键、技术难度最高的材料。软包装材料通常分为三层,即外阻层(一般为尼龙BOPA或PET构成的外层保护层)、阻透层(中间层铝箔)和内层(多功能高阻隔层)。

软包电池的包装材料和结构使其拥有一系列优势,比如,安全性能好,软包电池在结构上采用铝塑膜包装,发生安全问题时,软包电池一般会鼓气裂开,而不像钢壳或铝壳电芯那样发生爆炸;重量轻,软包电池重量较同等容量的钢壳锂电池轻40%,较铝壳锂电池轻20%;内阻小,软包电池的内阻较锂电池小,可以极大的降低电池的自耗电;循环性能好,软包电池的循环寿命更长,100次循环衰减比铝壳少4%~7%;设计灵活,外形可变任意形状,可以更薄,可根据客户的需求定制,开发新的电芯型号。

软包电池的不足之处是一致性较差,成本较高,容易发生漏液。成本高可通过规模化生产解决,漏液则可以通过提升铝塑膜质量来解决。生产软包电池的企业有多氟多、中航锂电、万向、中信国安、微宏动力等。

在数码领域,消费类电子产品对于电池的要求向着体积小、轻薄化的趋势发展,软包替代方形铝壳的速度不断加快,软包聚合物锂电池凭借其优异的综合性能,在智能手机、平板电脑、可穿戴设备等消费类电子产品中广泛使用,且增长速度远超过锂电池行业平均水平。

此外,动力电池领域的应用也在加快,经调研发现,北汽、长安、东风等国内中高端新能源乘用车上都开始采用软包动力电池。据统计,2015年国内方形、圆柱、软包锂电池产量分别为17GWh、10.1GWh、19.8GWh,占比分别为36.4%、21.5%、42.3%,软包占比已经超过方形和圆柱。

2016年前三个季度,受新能源汽车市场波动等因素影响,方形、圆柱电池产量环比都出现了不同程度的下滑,只有软包电池产量环比上升,国内软包电池

前三季度产量达13Gwh,其中,第三季度环比增长达20%。近年来,国内如东风、众泰、北汽新能源等主流电动车企也纷纷开始尝试软包动力电池,上海卡耐新能源、山东恒宇等企业也开始大力投建软包动力电池生产线。

总的来说,圆柱、方形和软包三种封装类型的电池各有优势,也各有不足,每种电池都有自己主导的领域,比如,方形电池中磷酸铁锂较多,软包电池中三元更多一些。随着新能用汽车新补贴政策的出台,电池的系统能量密度成为一项重要考核指标。比如,补贴新政要求纯电动客车续驶里程不低于200公里、电池系统能量密度要高于85Wh/kg、电池系统总质量占整车整备质量比例不高于20%,这些都说明补贴向着重量更轻、续航里程更高的三元电池方向转变。三元软包电池容量较同等尺寸规格的钢壳锂电高10~15%、较铝壳电池高5~10%,而重量却比同等容量规格的钢壳电池和铝壳电池更轻,因此,补贴新政对三元软包电池更有利。鉴于软包电池的优势,业内专家预计,随着电池路线的发展,软包电池在新能源汽车市场的渗透率将不断提升,未来软包电池在各类型电池中的占比有望超过50%。

影响锂离子电池使用寿命的影响因素

针对在电动汽车上使用的动力电池使用寿命终了,定义是电池的衰减量达到初始容量的20%。动力电池的使用寿命在电动汽车上反复充放电时,会由于锂离子电池内部的副反应不断发生使得电池本体材料性质而发生衰退。这种衰退是由于以下几个方面产生:电极材料晶格结构的改变;电极材料发生分解、剥落或腐蚀造成活性材料减少;电解液分解消耗引起的导电性下降和阻抗增加;由于负极析锂或副反应造成可脱嵌的锂离子被消耗;副反应生成的气体、不溶物质以及粘结剂改性和集流体腐蚀引起的阻抗增加。

从实际使用环境条件来看,影响动力电池单体使用寿命的因素主要包括充放电截止电压、充放电倍率、使用温度以及搁置条件。

已经有很多资料文献表明在一定范围内,不同充电截止电压的循环寿命分别随充电电压越高而越短。这说明充电截止电压对电池使用寿命的影响非常大。高的充电截止电压会加剧电池副反应的发生导致电池使用寿命缩短。动力电池在整车上使用时,由于电动汽车的各种行驶状况使得电池易出现衰退而在较高电位区域充

放电时性能下降较严重。

动力电池在电动汽车的使用过程中为满足不同的驾驶工况从而采用不同的充放电倍率。对动力电池倍率充放电的研究表明大倍率充放电会加速电池容量的衰减,充放电倍率越大,电池容量衰减越快。这主要是由于正极材料结构和性质的改变以及负极表面膜增厚导致锂离子扩散困难造成的。如果充放电倍率过大的话,还有可能造成单体电池过热、短路引起爆炸等。

不同的动力电池有不同的最佳使用温度,过高或过低的温度都会对电池的使用寿命产生影响。随着温度的降低,锂离子动力电池的放电容量会有所降低。这是因为随着温度的降低,电解液的离子电导率随之降低,引起电池内阻迅速增大,导致电池在低温时输出性能变差。

动力电池在搁置不使用的条件下,会由于电池本身的性质发生自放电、正负极材料钝化、电解液分解等情况。有实验结果表明负极SEI性能不稳定会导致负极活性材料快速衰退,并容易产生锂金属析出,而形成稳定SEI膜的锂电池可以在高温条件下储存超过4年,同时不同的电解液组份对电极材料的衰退影响程度不同。

单体的不一致性对动力电池组的影响

电池单体的不一致性主要是在制造过程中产生,由于工艺水平使电池极板厚度、微孔率、活性物质的活化程度等存在微小差别。这种电池内部结构上的不一致性就会使同一批次出厂的同一型号电池的电压、容量、内阻等不可能完全一致。单体电池的不一致性对动力电池组使用寿命的影响分为电压的不一致性、容量的不一致性以及内阻的不一致性。

在单体电池成组的过程中,如果电压的不一致性较大,会造成低压电池与正常电池一起使用时成为电池组的负载。因为当并联的两节电池中存在低压电池,那么会发生互充电现象,其他电池将会给该电池充电。这种连接方式会使得低压电池的容量小幅度增加而高压电池容量大幅度减少,能量损耗在互充电上达不到理想的对外输出。

初始容量不一致在电池成组前经过筛选已经大大减小,在使用过程尽管可以通过电池单体单独充电方式来平衡单体电池初始容量的不同。但电动汽车的连续充放电循环过程使得这种不一致性在某种程度上会放大,容量随循环的衰减速度不

同,随着电池循环次数的增加,容量的差异就会越来越大。这样会使得单体电池的容量加剧衰减带动整个电池组的容量衰减。

内阻的不一致性使得单体电池在电池组内的电压电流分配不均,局部出现过压充电或欠压放电。内阻的不一致性还会使单体电池在放电过程中热量的损失不等,内阻越大则温度升高的速度越快,有可能最终造成热失控。

电压、容量、内阻等各类不一致性导致电池单体寿命与电池组寿命出现差异,主要表现在温度差异、充放电倍率差异、放电深度差异和可用容量差异上。比如放电深度的差异,由于电池单体初始容量的差异,大部分电池还处于浅放电的状况下,低容量的电池单体已经深度放电。 总结

影响动力电池组寿命的因素较多且相互作用,致使电池组性能容易出现比较严重的衰退,尤其在高温低温或过充放电这类条件下并缺乏有效的管理和控制时,电池组的性能将进一步衰退。另外,大量单体电池的串联与并联使得容量和性能较差的某个单体限制了整个电池组的性能,进而限制了电池组的充分使用。

锂电池电池组一致性的解决方案

锂电池应用的主要问题是电池成组应用问题。为解决“电池一致性问题”,业内普遍使用电池均衡技术。目前,业界把主流电池均衡技术分为被动均衡法(能耗分流法),主动均衡法(动态均衡法),内均衡法(自然均衡法)三种。

被动均衡法是通过放电均衡的办法让电池组内的电池电压趋于一致。在传统能耗型BMS系统中,以被动均衡为主,采用单体电池并联分流能耗电阻的方式,且只能在充电过程中做均衡工作,多余的能量被消耗到消耗电阻上,效率为零。同时,均衡电流很小,通常小于100mA,对大容量电池的作用可忽略不计,SOC估算精度也很低。

被动均衡法的特点是原理简单,容易实现,当均衡电流较小时,器件成本相对较低。但存在两大问题:一是电阻能消耗放电,浪费能量,产生热量;二是由于放电电阻不可能选得太小,充电结束时,根据电池特性往往小容量电池的电压最高,在静态均衡时,放掉的恰恰是小容量电池的电量,反而加大了电池间的互差。

主动均衡法,是针对电池在使用过程中产生的容量个体,及自放电率产生的电压差异进行主动均衡。其主要功能是在电池组充电、放电或放置过程中,都可在电池组内部对电池单体之间的差异性进行主动均衡,以消除电池成组后由于自身和使用过程中产生的各种不一致性。

主动均衡法的主要特点有采用DC/CD双向有源均衡电路,均衡效率高;充电、放电和静态过程中都做均衡;平衡电流大,均衡速度较快。但也存在两大问题:一是技术复杂,成本高,实现困难;二是频繁切换均衡电路,对电池造成的伤害大,影响电池的寿命。 目前,无论是被动均衡技术还是主动均衡技术,都不能很好地解决问题。究其原因,目前普遍使用的充放电控制过程,是以固定的电压作为充放电终止条件,而电池在工作过程中,其有效电压范围是随着温度、充放电流和循环周期等条件在不断变化,因此,采用固定电压控制充放电,极易造成电池的过充或过放。而温度的变化会造成锂电池内部材料的老化,使电池过早劣化。虽然研究人员一直在探索并提出一些解决方案,并对电池进行了建模和仿真,但算法过于复杂,不适合在电池管理系统的单片机上运行。由于缺乏普遍性,需要对特定品牌和型号的电池进行复杂的辨识和建模,在电池组的充电设备上不断进行改进,以获得更平稳的充电电源,但作用仍然有限。

内均衡法是利用BMS在对串联电池充电的过程中,通过调节充电电流和控制充电电压的拓扑算法,使得电池组中各单体电池荷电量达到基本一致。

内均衡技术的特点是算法简单;没有能量损失;没有增加附加的充放电过程,不影响电池寿命;不增加硬件设备。但如果电池的荷电量相差很大,则需要较长的时间才能均衡。 近年来,BMS采用内均衡的方法在国内外80多家动力电池厂及不同车型的电动车厂家做过大量实际验证,均取得了很好的应用效果,得到业界广泛好评。

通过三种均衡模式的对比,并经过大量实践案例证明,BMS“内均衡技术”遵循了“电池拐点”理论,既省去了繁杂且违背电池固有规律做法的硬件成本,又降低了锂电池成组应用的运营成本,得到业界广泛认可。

锂离电池不一致性原因

自动化和质量监控不到位

据业界专家介绍,日韩等国的电池及电池组的生产线由“全自动化上料、连续合浆、极片和电芯生产、电池组装、电池自动化化成和筛选、电池组和模块自动化组装、自动物流和在线质量检测”等十多项工艺流程组成,自动化程度比较高;而国内的动力电池制造工艺自动化水平相对较低,例如连续合浆系统,国内很多企业是一罐一罐地进行,并非连续操作。 另外,日韩等国对生产过程质量把控严格。在生产过程中,通过自动化的操作对生产环境进行控制(减少粉尘颗粒和水分含量);对材料中的杂质进行控制;改进合浆和涂布工艺(提高正负极材料的附着力);改进极片和成型工艺,控制较大毛刺的产生;提高电芯制造精度,避免正负极错位析锂;改进电池结构和隔膜性能,调整注液工艺,提高电解液快速、充分浸润的效果等,以最终保证电池的质量和标准化。

媒体透露,我国动力电池测试中心主任王子冬在LG生产动力电池的工厂调研时了解到,该厂对全部动力电池的生产控制点有整整1000个;而国内所有动力电池生产企业普遍达不到如此严格的质量控制水平,一般是几十个控制点,多的也就是上百个。 制造设备水平落后

除了制造工艺自动化和质量监控水平较差外,我国动力电池自动化生产线设备和电池测试设备也无法与国外水平持平。

动力电池属于高端制造业,需要极高的制造精度。生产过程中,为了提高质量,降低生产成本,提高电池组的一致性,对自动化设备的依赖很大。而近几年国内的自动化生产线设备和电池测试设备技术与日韩相比,整体上差距很大,仅在单机自动化方面有些进步,基本是高价、循环引进。

据业内专家分析,出现这种现象的原因有很多,首先,设备制造商缺乏资金和技术,没有能力升级改造,而国内电池生产企业采购设备基本属于临时抱佛脚,不提前投入研发,只是在产能无法满足订单需求,急需扩大生产规模时采购设备,因此,基本没有时间与设备制造商共同开发适合自己的生产线; 其次,电池生产企业缺乏总体设计人员,同时担心把生产工艺告诉制造商会泄露商业秘密,不愿听制造商的建议,通常只给设备使用范围,很少提设备之间的衔接要求,而设备制造商没有开发的主动权,因此也不愿对开发新技术投入太多。 据悉,日本的电池企业为了缩短开发周期、保持在行业内的竞争力,与产业链上游的新材料企业、设备制造企业合作很紧密,通常是共同开发、共同生产。

动力电池是一个技术、资金高度密集的行业,电池企业应学习日企的经验,加大技术、资金的投入,和产业链上游的设备制造商、材料商一起,对行业急需的共性设备进行共同开发和生产,以实现动力电池产线自动化甚至智能化;另外,针对我国自动化工业设备落后的现状,政府部门也应该给与资金扶持,引进关键技术设备,让企业提前研发、集中攻关和升级改造。今年年初,工信部联合行业内外九家企业投入5亿元资本金组建动力电池研发平台就是一个很好的尝试,应该持续大力推进。只有政府、企业甚至科研机构共同发力,才有可能实现动力电池生产工艺的精细调控和质量监控,并最终破解了动力电池 “一致性”的难题。

到底是什么因素影响着锂离子动力电池的使用寿命?已有11人参

锂离子动力电池单体并不能满足电动汽车的动力需求,因此电动汽车必须采用多块电池进行串联、并联构成的动力电池组来提供电动汽车使用能量。从目前的锂离子动力电池单体制造工艺水平来看,生产过程中的各种因素影响使得同一型号的单体电池也会在电压、容量、内阻等方面产生偏差。动力电池组的性能决定于电池单体的性能,但绝不是单体电池性能的简单累加。由于单体电池性能不一致性的存在,使得动力电池组在电动汽车上进行反复使用时,动力电池组产生各种问题从而导致使用寿命缩短。

受限于目前的锂离子动力电池技术发展瓶颈,对动力电池使用寿命的影响因素进行研究,并解决相关问题用以延长动力电池的使用寿命显得十分重要。这将有助于锂离子动力电池在电动汽车的发展,提高锂离子动力电池的使用效率。 到底是什么因素影响着锂离子动力电池的使用寿命?

动力电池单体使用寿命的影响因素

针对在电动汽车上使用的动力电池使用寿命终了,定义是电池的衰减量达到初始容量的20%。动力电池的使用寿命在电动汽车上反复充放电时,会由于锂离子电池内部的副反应不断发生使得电池本体材料性质而发生衰退。这种衰退是由于以

下几个方面产生:电极材料晶格结构的改变;电极材料发生分解、剥落或腐蚀造成活性材料减少;电解液分解消耗引起的导电性下降和阻抗增加;由于负极析锂或副反应造成可脱嵌的锂离子被消耗;副反应生成的气体、不溶物质以及粘结剂改性和集流体腐蚀引起的阻抗增加。 从实际使用环境条件来看,影响动力电池单体使用寿命的因素主要包括充放电截止电压、充放电倍率、使用温度以及搁置条件。 已经有很多资料文献表明在一定范围内,不同充电截止电压的循环寿命分别随充电电压越高而越短。这说明充电截止电压对电池使用寿命的影响非常大。高的充电截止电压会加剧电池副反应的发生导致电池使用寿命缩短。动力电池在整车上使用时,由于电动汽车的各种行驶状况使得电池易出现衰退而在较高电位区域充放电时性能下降较严重。

动力电池在电动汽车的使用过程中为满足不同的驾驶工况从而采用不同的充放电倍率。对动力电池倍率充放电的研究表明大倍率充放电会加速电池容量的衰减,充放电倍率越大,电池容量衰减越快。这主要是由于正极材料结构和性质的改变以及负极表面膜增厚导致锂离子扩散困难造成的。如果充放电倍率过大的话,还有可能造成单体电池过热、短路引起爆炸等。 不同的动力电池有不同的最佳使用温度,过高或过低的温度都会对电池的使用寿命产生影响。随着温度的降低,锂离子动力电池的放电容量会有所降低。这是因为随着温度的降低,电解液的离子电导率随之降低,引起电池内阻迅速增大,导致电池在低温时输出性能变差。

动力电池在搁置不使用的条件下,会由于电池本身的性质发生自放电、正负极材料钝化、电解液分解等情况。有实验结果表明负极SEI性能不稳定会导致负极活性材料快速衰退,并

容易产生锂金属析出,而形成稳定SEI膜的锂电池可以在高温条件下储存超过4年,同时不同的电解液组份对电极材料的衰退影响程度不同。 单体的不一致性对动力电池组的影响

电池单体的不一致性主要是在制造过程中产生,由于工艺水平使电池极板厚度、微孔率、活性物质的活化程度等存在微小差别。这种电池内部结构上的不一致性就会使同一批次出厂的同一型号电池的电压、容量、内阻等不可能完全一致。单体电池的不一致性对动力电池组使用寿命的影响分为电压的不一致性、容量的不一致性以及内阻的不一致性。 在单体电池成组的过程中,如果电压的不一致性较大,会造成低压电池与正常电池一起使用时成为电池组的负载。因为当并联的两节电池中存在低压电池,那么会发生互充电现象,其他电池将会给该电池充电。这种连接方式会使得低压电池的容量小幅度增加而高压电池容量大幅度减少,能量损耗在互充电上达不到理想的对外输出。

初始容量不一致在电池成组前经过筛选已经大大减小,在使用过程尽管可以通过电池单体单独充电方式来平衡单体电池初始容量的不同。但电动汽车的连续充放电循环过程使得这种不一致性在某种程度上会放大,容量随循环的衰减速度不同,随着电池循环次数的增加,容量的差异就会越来越大。这样会使得单体电池的容量加剧衰减带动整个电池组的容量衰减。

内阻的不一致性使得单体电池在电池组内的电压电流分配不均,局部出现过压充电或欠压放电。内阻的不一致性还会使单体电池在放电过程中热量的损失不等,内阻越大则温度升高的速度越快,有可能最终造成热失控。

电压、容量、内阻等各类不一致性导致电池单体寿命与电池组寿命出现差异,主要表现在温度差异、充放电倍率差异、放电深度差异和可用容量差异上。比如放电深度的差异,由于电池单体初始容量的差异,大部分电池还处于浅放电的状况下,低容量的电池单体已经深度放电。 总结

影响动力电池组寿命的因素较多且相互作用,致使电池组性能容易出现比较严重的衰退,尤其在高温低温或过充放电这类条件下并缺乏有效的管理和控制时,电池组的性能将进一步衰退。另外,大量单体电池的串联与并联使得容量和性能较差的某个单体限制了整个电池组的性能,进而限制了电池组的充分使用。

本文来源:https://www.bwwdw.com/article/27d8.html

Top