浅谈钙钛矿太阳能电池技术与发展

更新时间:2023-09-23 03:22:01 阅读量: 人文社科 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

浅谈钙钛矿太阳能电池技术与进展

全华锋 BY619102

摘要:基于钙钛矿材料(CH3NH3PbI)制备的太阳能电池的效率由2009年的3.8%增长到了目前的20.2%,因为其较高的光吸收系数,较低的成本以及易于制备等优势引起了广泛的关注。钙钛矿材料不仅可以作为光吸收层,还可以作为电子传输层(ETM)和空穴传输层(HTM),由此可以制备不同结构的钙钛矿太阳电池:介孔结构、介观超结构、平面结构和有机结构等。除此之外,钙钛矿材料的制备方法的多样性也使其更具吸引力,目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液—气相沉积法。本文主要介绍钙钛矿太阳电池的发展历程、工作原理、薄膜的制备方法以及各层的作用,最后对钙钛矿太阳电池面临的问题和发展前景进行介绍。

关键词:钙钛矿材料;太阳电池;光吸收层

1. 钙钛矿太阳电池的发展历程

随着人类社会的不断发展与进步,由工业发展带来的能源和环境问题日益明显,化石燃料(石油、煤炭、天然气等)的有限储量及其燃烧带来的全球变暖问题使人们不得不去寻找和开发环保且可再生的新型能源。太阳能来源丰富,取之不尽,用之不竭,而且太阳能绿色环保无污染,是未来有希望获得大规模应用的新能源之一,受到国际社会的广泛关注与研究。将太阳能转换为电能的重要器件之一就是太阳电池。

2009年,日本人Kojim等首先将有机-无机杂化的钙钛矿材料应用到量子点敏化太阳电池中,制备出第一块钙钛矿太阳电池,并实现了3.8%的效率。但这种钙钛矿材料在液态电介质中很容易溶解,该电池仅仅存在了几分钟级宣告失败,随后,Park等人于2011年将CH3NH3PbI纳米晶粒改为2-3nm,效率达到了6.5%。由于仍然采用液态电解质,仅仅经过10min,电池效率就衰减了80%。为解决钙钛矿的稳定性问题,2012年Kim等人将一种固态空穴传输材料(spiro-OMeTAD)引入到钙钛矿太阳电池中,制备出第一块全固态钙钛矿太阳电池,电池效率达到了9.7%。即使未经封装,电池在经过500小时后,效率衰减很小。空穴传输层(HTM)的使用,初步解决了液态电解质钙钛矿太阳电池不稳定和封装困难的问题。随后Snaith等首次将Cl元素引入到钙钛矿中,并使用Al2O3代替TiO2,证明钙钛

矿不仅可以作为光吸收层,还可以作为电子传输层(ETM),所得电池效率为10.9%。同样是在2012年,瑞士的Etgar等在CH3NH3PbI后直接沉淀Au电极,形成CH3NH3PbI/TiO2异质结,所得的电池效率为7.3%。这说明钙钛矿材料除了可以作为光吸收层和电子传输层,还可以作为空穴传输层。钙钛矿太阳电池自2013年开始迅猛发展,Gratzel等人首次使用两部沉积法制备钙钛矿薄膜,电池效率达到了15%,随后Snaith等人采用共蒸发的方法制备钙钛矿薄膜,形成一种全新的平面异质结电池,引起了全世界的关注。同样在2013年Yong等人采用溶液法和蒸发法相结合的方法制备钙钛矿薄膜,所得电池效率为12.1%。2014年初韩国KRICT研究所已经将钙钛矿电池的转换效率提高到17.9%,到5月份,Yong等人通过掺Y修饰的TiO2层,将电池转换效率提高到19.3%。现在KRICT研究所已经制备出转换效率达到20.2%的钙钛矿太阳电池,并已通过认证。

2. 钙钛矿太阳电池的结构及原理

2.1 钙钛矿太阳电池的结构

如图1(a)所示的介孔结构的钙钛矿太阳电池为:FTO导电玻璃、TiO2致密层、TiO2介孔层、钙钛矿层、HTM层、金属电极。在此基础上,Snaith等把多孔支架层n型半导体TiO2换成绝缘材料Al2O3,形成如图1(b)所示的一种介观超结构的异质结型太阳电池更进一步地,去掉绝缘的支架层,如图3(c)所示,制备出具有类似于P-I-N结构平面型异质结电池,

(a) (b) (c)

图1 钙钛矿太阳电池结构 (a)介孔结构 (b)介观超结构 (c)平面结构

2.2钙钛矿太阳电池的工作原理

在光照下,能量大于光吸收层禁带宽度的光子将被光吸收层中材料吸收,同时使该层中价带电子激发到导带中,并在价带中留下空穴;由于光吸收层导带能级高于电子传输层的导带能级时,光吸收层中导带电子会注入到电子传输层的导

带中;电子进一步运输至阳极和外电路,而光吸收层的价带能级低于空穴传输层的价带能级时,光吸收层中的空穴注入到空穴传输层;空穴运输到阴极和外电路构成完整的回路,其中,致密层的主要作用是收集来自钙钛矿吸收层注入的电子,从而导致钙钛矿吸收层电子-空穴对的电荷分离,此外致密层还起到阻挡作用,防止钙钛矿与FTO的接触从而造成电子与FTO的复合。

图2钙钛矿太阳能电池结构示意图

2.3钙钛矿吸收层

钙钛矿作为吸收层,在电池中起着至关重要的作用。以CH3NH3PbI为例,钙钛矿薄膜作为直接带隙半导体,禁带宽度为1.55eV电导率为10-3S/m,载流子迁移率为50cm2/(V·s)吸收系数105,消光系数较高,几百纳米厚薄膜就可以充分吸收800nm以内的太阳光,对蓝光和绿光的吸收明显要强于硅电池。且钙钛矿晶体具有近乎完美的结晶度,极大地减小了载流子复合,增加了载流子扩散长度,可高达1μm(掺Cl),这些特性使得钙钛矿太阳电池表现出优异的性能。

钙钛矿型光吸收材料的基本结构为ABX3,A离子的作用为提供晶格内的电荷补偿,并且A粒子的大小可以影响材料的光学特性和禁带宽度。B离子的作用也会影响到形成半导体材料的禁带宽度。目前已有用Sn2+替代Pb2+制备出的钙钛矿吸收层,这不仅有利于钙钛矿太阳电池的商业化生产,还减少了重金Pb造成的污染。卤族X的作用主要体现在随着半径的增加,吸收光谱向长波段方向移动。例如,通过掺入Br和调整Br的含量,使得钙钛矿材料的禁带宽度可在1.5~2.2eV可以调整,这为以钙钛矿太阳电池作为顶电池的叠层电池提供了很好的基础。

图3典型的钙钛矿晶体和与之匹配的高效空穴传输材料

在以钙钛矿吸材料为光吸收层的太阳电池中,自由电荷的产生有两种方式:一是光照下热力学能直接将电子和空穴分离开来;二是受束缚的电子在电子传输材料和钙钛矿吸收层材料的界面处分离以及受束缚的空穴在钙钛矿吸收层材料和空穴传输层的界面处分离出来。最后形成的自由电子和空穴分别传输到对应电极上。钙钛矿吸收层主要作用是:吸收太阳光产生电子-空穴对,并能髙效传输电子-空灰对、电子、空穴至相应的致密层和有机空穴传输层;有机空穴传输层主要作用是收集与传输来自钙钛矿吸收层注入的空穴,并与n型致密层一起共同促进钙钛矿吸收层电子-空穴对的电荷分离。 2.4空穴传输层

HTM作为空穴传输层,必须满足以下条件:HOMO能级要高于钙钛矿材料的价带最大值,以便于将空穴从钙钛矿层传输到金属电极;具有较高的电导率,这样可以减小串联电阻及提高FF;HTM层和钙钛矿层需紧密接触。目前应用最广泛的HTM层材料spiro-OMeTAD是小分子结构,可与钙钛矿层保持良好的接触,能够更好地实现空穴的传输。另外HTM的选择可以影响电池的填充因子,韩国的Seok小组采用不同的材料(spiro-OMeTAD,PTAA、PCDTBT等)作为空穴传输层,做了一系列的对比试验。结果表明采用spiro-OMeTAD作为HTM层PCE=8%,FF=58.8%,PTAA作为HTM层PCE=12%,FF=72.7%。即通过提高填充因子,电池效率得到了较大提升。虽然钙钛矿材料相对便宜,spiro-OMeTAD价格昂贵,而且空穴迁移率较低。Christians等发现采用CuI制成的无机空穴导电材料可以替代spiro-OMeTAD。CuI的空穴迁移率要比spiro-OMeTAD高两个数量级,所得电池串联电阻变小,但是电池的开压较小(仅为0.62V),因此电池效率仅为8.3%。除CuI外,CuSCN,NiO也被用作HTM层,这些无机HTM层的应用提高了电池的稳定性。

表1部分以Spiro-OMeTad为空穴传输材料PSC的光电效率

相比于有机空穴传输材料, CuI, CuSCN 和NiO 等无机P型半导体材料因为具有可溶剂处理、空穴迁移率高和带隙宽等特点, 显示出了作为廉价、高效的空穴传输材料的应用前景。

Christians 等首次将 CuI 作为空穴传输材料应用于 CH 3NH 3PbI 3 钙钛矿电池中, 就得到了高达 6% 的 PCE, 对应器件的 JSC, VOC 和 FF 分别为 17.8 mA/cm 2,0.55 V 和 0.62。对应条件制备的Spiro-OMeTad为空穴传输材料的电池的 PCE、JSC、VOC 和 FF 分别为 7.9%,16.1 mA/cm2, 0.79 V和 0.61。阻抗谱测试表明 CuI 制备的电池与 spiro-OMeTAD 制备的电池相比, 具有较低的复合电阻, 器件内的电荷复合较多, 致使开路电压 VOC较低。 CuI 的电导率比Spiro-OMeTAD 的电导率高2个数量级, 因而 CuI 制备的器件有着较高的 FF。降低 CuI 制备的器件的复合可以使 CuI 成为 spiroOMeTAD 在钙钛矿电池中作为空穴传输材料的有力竞争者。

氧化石墨烯(Grapheneoxide,GO)已经作为无机空穴传输材料应用在有机发光二极管和有机太阳能电池中。Wu等首次使用GO作为反型钙钛矿电池的空穴传输材料,制备的电池结构为ITO/GO/CH3NH3PbI3?xClx/PCBM/ZnO/Al,电池效率最高为12.4%,对应的JSC,VOC和FF分别为17.46mA/cm2,1.00V和0.71XRD测试表明GO膜上制备的钙钛矿膜结晶性得到显著增强,且有明显的(110)面取向,GO膜的存在还增加了钙钛矿膜的覆盖率, 同时更有利于空穴的提取。

以上无机空穴传输材料在钙钛矿电池中的应用, 为钙钛矿电池的商业化途径提供了新的选择。部分无机空穴传输材料制备的电池性能见表2。

环境友好。

(7)可制备高效柔性器件: 可以采用辊-辊大面积制造工艺将电池制在塑料、织物等柔性基底上, 作为可穿戴、移动式柔性电源。 Liu等人在大于1 cm2的柔性衬底上制备的钙钛矿柔性电池具有 10.2%的转换效率, 是柔性太阳能器件发展中的一个里程碑,其结构简单如图 6 所示。

图6全固态钙钛矿太阳能电池结构和工作原理示意图(a), 以及剖面结构 SEM 图(b)

近几年来钙钛矿太阳电池的发展和研究均表现出了良好的趋势,短短几年成为了当今最有发展前途的光伏技术之一。钙钛矿太阳电池不仅可以低了制备成本及使用成本,而且高达50%的理论光电转换效率,是当前市场上主流太阳电池效率的两倍。从2009年,光电转化效率的不到4%的钙钛矿太阳电池的首次报道以来,短短5年的时间里,在2013年转换效率已经突破15%。钙钛矿太阳电池的发展速度超出了人们的预期,平均每年提高3%左右的光电转换效率以及最高效率突破15%,被美国《SCIENCE》评为2013年十大科技突破之一。随后,英国的《NATURE》在2014年初预测钙钛矿太阳电池会在当年光电转换效率会突破20%,更加环保的无铅钙钛矿太阳电池也会在当年问世,这在当年被光伏领域作为了最值得期待的科技突破之一,光伏领域的研究者对钙钛矿太阳电池的研究热情被点燃了。目前,整个钙钛矿太阳电池领域的研究发展趋势有以下的几个方面:拓宽吸收光谱范围、获得较高的开路电压、制备出高质量钙钛矿结构有机金属卤化物、开发新型空穴传输材料和光阳极材料、提高器件的一致性和稳定性、研究电池的机理性能和测试方法、制备平面异质结钙钛矿太阳电池、有机电子输运材料型钙钛矿太阳电池、透明型钙钛矿太阳电池以及大面积的钙钛矿太阳电池。

目前,钙钛矿太阳电池的光电转换效率在实验室水平已经突破了20%,但是还有若干关键因素对钙钛矿太阳电池的发展有制约作用:(1)高性能电池器件的

重现性。虽然钙钛矿太阳电池的转换效率一直在提高,但是较差的重现性会影响到将来大规模应用和进一步的科学研究。钙钛矿太阳电池在制备过程对细微条件的变化非常敏感,这导致同一条件下制备出的一组电池的光电转换效率有很大的统计偏差。(2)太阳电池器件的稳定性。钙钛矿太阳电池在暴露在大气环境下光电转换效率存在严重的衰减,另外紫外光照、温度、水分、有机分子也会影响到钙钛矿太阳电池的稳定性。所以开发稳定性较高的电子/空穴传输材料、光吸收层等太阳电池的组成材料,寻找简单有效的的电池器件封装的方法,将会提高钙钛矿太阳电池的稳定性有帮助。(3)大面积太阳电池的制备。高转换效率的钙钛矿太阳电池的有效光照面积都比较小,加大制备面积后造成了器件薄膜的均匀性变差,使得大面积的太阳电池的转换效率不高。目前,制备钙钛矿太阳电池最常用的是旋涂法,这种方法不利于大面积、连续的钙钛矿薄膜的制备。所以对新制备方法的探索和研究,希望可以制备出大面积高效率的电池器件,为以后的大规模的商业化生产提供可能性。(4)环境污染问题。常用的钙钛矿太阳电池的吸收层中含有可溶性重金属Pb,并且在器件制备过程中还可能用到有毒性的有机溶剂,易对环境造成污染。开发出环境友好型无Pb的钙钛矿太阳电池已经成为了新的研究方向。(5)钙钛矿太阳电池的理论研究。来源于染料敏化电池的钙钛矿太阳电池在短时间的飞速发展和取得的成绩,使得研究者将更多的精力放在了如何改进薄膜的合成方法、提高材料的性能和电池的效率上面,对电池微观物理机理、材料的基本性质、电池工作机理的深层认识还缺乏。增强钙钛矿太阳电池的理论研究,不仅可以进一步提高电池性能,而且也可以为寻找更简单、高效的新型结构提供思路。由于钙钛矿太阳电池独特的性质,使其具有非常光明的产业前景,成为了现有的商业太阳电池最有潜力的竞争者之一。因此,钙钛矿太阳电池的积极的开展和研究对抢占太阳电池行业发展的先机,促进新型太阳电池技术的升级换代具有重要意义。从长远意义上考虑,开展钙钛矿太阳电池研究,推动其大面积产业化,为人类获得更廉价、更方便的环保清洁能源,以及对经济和整个人类的可持续发展、提高绿色GDP、治污防霾都具有重要意义。

参考文献:

[1] The emergence of perovskite solar cells, Nature Photonics, 2014, 8, 506–514. [2]

Perovskite

Solar

Cells:

From

Materials

to

Devices,

Small,

doi:10.1002/small201402767.

[3]邓林龙, 谢素原, 黄荣彬,等. 钙钛矿太阳能电池材料和器件的研究进展[J]. 厦

门大学学报:自然科学版, 2015, 54(05).

[4]张玮皓,彭晓晨,冯晓东. 钙钛矿太阳能电池的研究进展[J]. 电子元件与材

料,2014,08:7-11.

[5]赵雨, 李惠, 关雷雷,等. 钙钛矿太阳能电池技术发展历史与现状[J]. 材料导报,

2015,第11期(11):17-21.

[6] CONINGS B, BAETEN L, DE DOBBELAERE C, et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Advanced Materials, 2014, 26(13): 2041–2046.

[7]魏静, 赵清, 李恒,等. 钙钛矿太阳能电池:光伏领域的新希望[J]. 中国科学:技

术科学,2014, 08期(08):801-821.

[8] Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3,Science,2013,342,344-347.

[9] SHI JIANG-JIAN, DONG WAN, XU YU-ZHUAN, et al. Enhanced

Performancein perovskite organic lead iodide heterojunction solar cells with metal insulator semiconductor back contact. Chinese Physics Letters, 2013, 30(12): 1284021–1–5.

[10]张晓婷. 钙钛矿太阳能电池的研究进展[J]. 科技风, 2015, 第16期(16):46-47. [11]邵景珍, 董伟伟, 邓赞红,等. 基于有机金属卤化物钙钛矿材料的全固态太阳

能电池研究进展[J]. 功能材料, 2014, 24期(24):24008-24013.

本文来源:https://www.bwwdw.com/article/27cd.html

Top