2004-2011年广东高考试题分类汇编(数列解答题)

更新时间:2023-12-25 01:35:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2004-2011年普通高等学校招生全国统一考试 (广东卷)数学 数列试题汇编

1.(2004)17. (12

分)已知?,?,?成公比为2的等比数列

(???0,2??),且sin?,sin?,sin?也成等比数列. 求?,?,?的值. 1.解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α

∵sinα,sinβ,sinγ成等比数列

?sin?sin?sin2?sin4?????cos??2cos2??1sin?sin?sin?sin2?

即2cos2??cos??1?0解得cos??1,或cos???12当cosα=1时,sinα=0,与等比数列的首项不为零,故cosα=1应舍去,

12?4?当cos???,??[0,2?]时,??或??,233 2?4?8?4?8?16?所以??,??,??或??,??,??3333332.(2006)19、(本题14分)已知公比为q(0?q?1)的无穷等比数列?an?各项的和为9,无

2穷等比数列an各项的和为

??81. 5(I)求数列?an?的首项a1和公比q;

(II)对给定的k(k?1,2,3,?,n),设T(k)是首项为ak,公差为2ak?1的等差数列,求T(2)的前10项之和;

(III)设bi为数列T(k)的第i项,Sn?b1?b2???bn,求Sn,并求正整数m(m?1),使得

limSn存在且不等于零.

n??nm(注:无穷等比数列各项的和即当n??时该无穷等比数列前n项和的极限)

?a1?a1?3?1?q?9????2.解: (Ⅰ)依题意可知,?22

q??a1?81?3?2?51?q??2?(Ⅱ)由(Ⅰ)知,an?3????3?n?1,所以数列T(2)的的首项为t1?a2?2,公差

d?2a2?1?3,

S10?10?2?1?10?9?3?155,即数列T(2)的前10项之和为155. 2i?1?2?(Ⅲ) bi=ai??i?1??2ai?1?=?2i?1?ai??i?1?=3?2i?1????3?n??i?1?,

nSn4518n?27?2?n?n?1??2?n?n?1?,limm=limm? Sn?45??18n?27???????mmn??n??n2nn2n?3??3?当m=2时,limSnSn1lim=-,当m>2时,=0,所以m=2 mn??nmn??2n3(2007文) (本小题满分14分)

已知函数f(x)?x2?x?1,?,?是力程以f(x)?0的两个根(α>β),f?(x)是f(x)的导数,设a1?1,an?1?an?(1)求?,?的值;

(2)已知对任意的正整数n有an??,记bn?ln求数列{bn}的前n项和Sn.

3(2007文)解:(1)由求根公式得??f(an)(n?1,2,3,?) ?f(an)an??(n?1,2,3,?),

an???1?5?1?5, ??…………3分 22 (2)f?(x)?2x?1………4分

an2?1 an?1?………5分

2an?1?2?1??,?2?1??……7分

an?1??an2?2?an?1??an2?2?an??2an??2bn?1?ln?ln2?ln2?ln()?2bn2an?1??an?2?an?1??an?2?an??an??……10分

∴数列{bn}是首项b1?lna1??5?1,公比为q?2的等比数列………11分 ?4lna1??2b1(1?qn)5?1 ∴Sn?………………14分 ?4?(2n?1)ln1?q24.(2007理)21.(本小题满分14分)

2已知函数f(x)?x?x?1, ?、?是方程f(x)?0的两个根(???),f?(x)是f(x)的导数.设a1?1,an?1?an?f(an)(n?1,2,?), ?f(an)(1)求?、?的值;

(2)证明:对任意的正整数n,都有an??; (3)记bn?lnan?? (n?1,2,?),求数列{bn}的前n项和Sn.

an???1?5?1?5?1?5 ??? ?? 2225?1,命题成立; 25?1, 24.解:(1) 由 x?x?1?0 得x?2 (2)(数学归纳法)①当n?1时,a1?1?②假设当n?k(k?1,k?N*)时命题成立,即ak??ak?1?a?1?2ak?12kak?212?58ak?12?1515?1, ?2????,又等号成立时ak?22162?ak?5?1*时,ak?1???n?k?1时命题成立;由①②知对任意n?N均有an??. 222an?an?1an?1 (3) f?(x)?2x?1 ?an?1?an? ?2an?12an?12an?1(an??)2?(?2???1)(an??)2 ?an?1??? ????2an?12an?12an?1a??2a??a??(an??)2an?1?? 同理 ?an?1??? ??(n)?lnn?1?2lnnan?1??an??an?1??an??2an?1 ? bn?1?2bn 又 b1?lna1??3?51?5 ?ln?4lna1??23?5 ?数列?bn?是一个首项为 4ln1?5,公比为2的等比数列; 24ln? Sn?1?51?2n??1?52?4?2n?1?ln. 1?221?an?1?2an?2? 35(2008文)(本小题满分14分)设数列?an?满足a1?1,a2?2,an?(n?3,4?),数列?bn?满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数

k,都有?1?bm?bm?1???bm?k?1 (1)求数列?an?和?bn?的通项公式;

(2)记cn?nanbn(n?1,2,?),求数列?cn?的前n项和Sn.

12?an?1?2an?2?得an?an?1??(an?1?an?2) n?3 332 又a2?a1?1?0,所以?an?an?1?是以1为首项,?为公比的等比数列

35(2008文)解:(1)由an??2? 所以an?an?1????,

?3? an?a1??a2?a1???a3?a2?????an?an?1?

?2?1????2n?2n?18323?2??2??2?????? ?1?1???????????????1????

233355?????????3?1?????3???1?b1?b2?1??1?b2?b3?1??由??1?b2?1,得b2??1,由??1?b3?1得b3?1 … ?b?Z,b?0?b?Z,b?023?2?3同理可得,n为偶数时,bn??1,n为奇数时,bn?1 所以bn??n?1n?1?1当n为奇数时

?1当n为偶数时?n?1?83?2??n?n??当n为奇数时5?3??5(2)cn?nanbn??

n?13?2??8?n?n??当n为偶数时?55?3?? Sn?c1?c2???cn

88888 当n为奇数时,Sn??2??3??4????n?

55555012n?13??2??2??2??2?? ??1????2????3??????n????

5??3??3??3????3??012n?14?n?1?3??2??2??2??2????1????2????3??????n???? ?55??3??3??3????3??88888 当n为偶数时,Sn??2??3??4????n?

55555012n?13??2??2??2??2?? ??1????2????3??????n????

5??3??3??3????3??012n?14n3??2??2??2??2????1????2????3??????n???? ??55??3??3??3????3???2??2??2??2? 令 Tn?1????2????3??????n????3??3??3??3?123012n?1 …………①

n22?2??2??2??2? ①?得Tn?1????2????3??????n???…………②

33?3??3??3??3?1?2??2??2??2? ①?②得Tn?1????????????n??

3?3??3??3??3??2?1???nnn223???????n ????3?(3?n)?? 2?3??3?1?3n?2? 所以 Tn?9?(9?3n)??

?3??4n?239(n?3)?2?n????当n为奇数时5?3??5 因此Sn??

n?4n?279(n?3)?2??当n为偶数时??5?5?3???

6.(2008理)21.(本小题满分12分)

2设p,q为实数,?,?是方程x?px?q?0的两个实根,数列{xn}满足x1?p,

12n?1n4,…). x2?p2?q,xn?pxn?1?qxn?2(n?3,(1)证明:????p,???q; (2)求数列{xn}的通项公式; (3)若p?1,q?1,求{xn}的前n项和Sn. 4p?p2?4qp?p2?4q6.解:(1)由求根公式,不妨设???,得?? ,??22p?p2?4qp?p2?4qp?p2?4qp?p2?4q???????p,?????q

2222(2)设xn?sxn?1?t(xn?1?sxn?2),则xn?(s?t)xn?1?stxn?2,由xn?pxn?1?qxn?2 得,??s?t?p22,消去t,得s?ps?q?0,?s是方程x?px?q?0的根,

?st?q

由题意可知,s1??,s2?? ①当???时,此时方程组??s???s2???s?t?p的解记为?1 或?st?qt??t????1?2?xn??xn?1??(xn?1??xn?2),xn??xn?1??(xn?1??xn?2),

即?xn?t1xn?1?、?xn?t2xn?1?分别是公比为s1??、s2??的等比数列, 由等比数列性质可得xn??xn?1?(x2??x1)?n?2,xn??xn?1?(x2??x1)?n?2, 两式相减,得(???)xn?1?(x2??x1)?n?2?(x2??x1)?n?2

?x2?p2?q,x1?p,?x2??2??2???,x1????

?(x2??x1)?n?2??2??n?2??n,(x2??x1)?n?2??2??n?2??n

n?1n???n?1???n,?xn? ?(???)xn?1????,即?xn?1???????nn②当???时,即方程x2?px?q?0有重根,?p2?4q?0, 即(s?t)2?4st?0,得(s?t)2?0,?s?t,不妨设s?t??,由①可知

xn??xn?1?(x2??x1)?n?2,????,?xn??xn?1?(x2??x1)?n?2??n

即?xn??xn?1??n,等式两边同时除以?,得

nxn?n?xn?1?n?1?1,即

xn?n?xn?1?n?1?1

x?数列{nn}是以1为公差的等差数列,?xnn?x1?(n?1)?1?2??n?1?n?1

?????xn?n?n??n

??n?1??n?1,(???)

综上所述,x??????n?n?n??n,(???)?(3)把p?1,q?11122代入x?px?q?0,得x?x??0,解得???? 44211?xn?n?()n?()n

22111??1111??1Sn??()?()2?()3?...?()n???()?2?()2?3?()3?...?n?()n?

222??2222??21111??1?1?()n??()?2?()2?3?()3?...?n?()n?

2222??21111?1?()n?2?()n?1?n()n?3?(n?3)()n

22227.(2009文)(本小题满分14分)

已知点(1,

1)是函数f(x)?ax(a?0,且a?1)的图象上一点,等比数列{an}的3前n项和为f(n)?c,数列{bn}(bn?0)的首项为c,且前n项和Sn满足Sn-

Sn?1=Sn+Sn?1(n?2).

(1)求数列{an}和{bn}的通项公式; (2)若数列{

10001的最小正整数n是多少? }前n项和为Tn,问Tn>

2009bnbn?11?1?7.(2009文)解:(1)Qf?1??a?,?f?x????

3?3?x12f2?c?f1?c????c ,a2????, ????????392f3?c?f2?c????? a3?? . ????????2742a21又数列?an?成等比数列,a1?2?81????c ,所以 c?1;

a3?23327 a1?f?1??c?a12?1?又公比q?2?,所以an????a133?3?QSn?Sn?1?n?1?1???2?? n?N* ;

?3?n?Sn?Sn?1??Sn?Sn?1?Sn?Sn?1 ?n?2?

?又bn?0,Sn?0, ?Sn?Sn?1?1; 数列

?S?构成一个首相为1公差为1的等差数列,n2Sn?1??n?1??1?n , Sn?n2

2当n?2, bn?Sn?Sn?1?n??n?1??2n?1 ;

?bn?2n?1(n?N*);

(2)Tn?11111111????K????L?

b1b2b2b3b3b4bnbn?11?33?55?7(2n?1)??2n?1? ?1?1?1?11?1?11?1?11?1??????K?????????? 2?3?2?35?2?57?2?2n?12n?1?1?1?n; ??1???2?2n?1?2n?1 由Tn?

8.(2009理)21.(本小题满分14分)

已知曲线Cn:x2?2nx?y2?0(n?1,2,?).从点P(?1,0)向曲线Cn引斜率为

n100010001000?得n?,满足Tn?的最小正整数为112. 2n?1200992009kn(kn?0)的切线ln,切点为Pn(xn,yn).

(1)求数列{xn}与{yn}的通项公式; (2)证明:x1?x3?x5???x2n?1?1?xnx?2sinn. 1?xnyn228.解:(1)设直线ln:y?kn(x?1),联立x?2nx?y?0得

222222(1?kn)x2?(2kn?2n)x?kn?0,则??(2kn?2n)2?4(1?kn)kn?0,∴

kn?n2n?1(?n2n?1舍去)

2knnn2n?1n2x?,即,∴ y?k(x?1)?x??nnnn2n?1n?11?kn(n?1)22nn1?xnn?1??(2)证明:∵

n1?xn1?n?11?1 2n?1x1?x3?x5?????x2n?1?132n?1132n?11 ??????????????242n352n?12n?1∴x1?x3?x5?????x2n?1?1?xn

1?xn由于

xn?yn1?xn1,可令函数f(x)?x?2sinx,则f'(x)?1?2cosx,?2n?11?xn令f'(x)?0,得cosx???2,给定区间(0,),则有f'(x)?0,则函数f(x)在(0,)上

442单调递减,∴f(x)?f(0)?0,即x??2sixn在(0,)恒成立,又

40?12n?1?13??4,

则有

11?2n?1?2sin12n?1,即xn1?x?2sinxn. w.w.w.k.s.5.u.c.o.m nyn9(2011文)本小题满分14分)

设b>0,数列?anban?1n}满足a1=b,an?a(n≥2)

n?1?n?1(1)求数列?an

?的通项公式;

(2)证明:对于一切正整数n,2abn?1

n?+1

9(2011文)解:(1)由a1?b?0,知an?1n?nbaa?n?1?0

n?1

n11na???1 nbban?1

令A?nna,A11?, nb 当n?2时,An?1b?1bAn?1 ?1b???11bn?1?bn?1A1

?1b???11bn?1?bn. 1?①当b?1时,Ab??1?1?bn?

?bnn???1n 1?1b(b?1)b

②当b?1时,An?n.

?nbn(b?1)

?a?,b?1n?? ?bn?1?1,b?1

2nbn(b?1)?bn?1?1, (2)当b?1时,(欲证2an?nb?1

只需2nb?(bnn?1bn?1?1))

b?1

?(bn?1bn?1?1)?b2n?b2n?1???bn?1?bn?1?bn?2???1

b?1

111???bn?bn?n?bn?1?n?1???b??

b?bb?

?bn(2?2???2) ?2nbn,

2nbn(b?1)?2an??1?bn?1. nb?1综上所述2an?bn?1?1.

10.(2011理)20.(本小题共14分) 设b>0,数列?an?满足a1=b,an?(1)求数列?an?的通项公式;

nban?1(n?2)

an?1?2n?2.

bn?1(2)证明:对于一切正整数n,an?n?1?1.

210.解(1)法一:

anban?1nan?1?2(n?1)12n?1,得, ?????nan?1?2(n?1)anban?1bban?1设

21n?bn,则bn??bn?1?(n?2),

bban11为首项,为公差的等差数列, 22(ⅰ)当b?2时,?bn?是以即bn?111?(n?1)??n,∴an?2 222222?(bn?1??),则bn??bn?1??(?1), bbb(ⅱ)当b?2时,设bn???令?(211121?1)?,得????(bn?1?)(n?2), ,?bn?bb2?b2?bb2?b

知bn?11121?(b1?)?()n?1,又b1?, 是等比数列,?bn?2?b2?b2?bbb12n112n?bnnbn(2?b)?bn??()???,?an?.

2?bb2?b2?bbn2n?bn法二:(ⅰ)当b?2时,?bn?是以即bn?11为首项,为公差的等差数列, 22111?(n?1)??n,∴an?2 2222b22b2(b?2)3b33b3(b?2)?2?3(ⅱ)当b?2时,a1?b,a2?,a2?2, b?2b?22b?2b?4b?23nbn(b?2)猜想an?,下面用数学归纳法证明:

bn?2n①当n?1时,猜想显然成立;

kbk(b?2)②假设当n?k时,ak?,则 kkb?2ak?1(k?1)b?ak(k?1)b?kbk(b?2)(k?1)bk?1(b?2), ??k?kkk?1k?1ak?2(n?1)kb(b?2)?2k?(b?2)b?2所以当n?k?1时,猜想成立,

nbn(b?2)由①②知,?n?N*,an?. nnb?22n?1(2)(ⅰ)当b?2时, an?2?n?1?1,故b?2时,命题成立;

2(ⅱ)当b?2时,b2n?22n?2b2n?22n?2n?1bn,

b2n?1?2?b?22n?1?2b2n?22n?2n?1bn,

??,bn?1?2n?1?bn?1?2n?1?2b2n?22n?2n?1bn,以上n个式子相加得

b2n?b2n?1?2???bn?1?2n?1?bn?1?2n?1???b?22n?1?22n?n?2n?1bn,

n?2n?1bn(b?2)[(b2n?b2n?1?2???b?22n?1?22n)?bn?2n](b?2) an?n?1n?nn?1nn2(b?2)2(b?2)(b2n?b2n?1?2???b?22n?1?22n)(b?2)?bn?2n(b?2) ?n?1nn2(b?2)(b2n?1?22n?1)?bn?1?2n?bn?2n?1 ?n?1nn2(b?2)(b2n?1?bn?1?2n)?(bn?2n?1?22n?1)bn?1?n?1?1.故当b?2时,命题成立; ?n?1nn22(b?2)综上(ⅰ)(ⅱ)知命题成立.

11.(2011东莞一模)(本小题满分14分)设Sn为数列an?的前n项和,对任意的n?N,

*?都有Sn??m?1??man(m为常数,且m?0). (1)求证:数列an?是等比数列;

(2)设数列an?的公比q?f?m?,数列?bn?满足b1?2a1,bn?f?bn?1? (n?2,n?N),

*??求数列?bn?的通项公式;

?2n?1?(3)在满足(2)的条件下,求数列??的前n项和Tn.

?bn?11.(2011东莞一模)

(1)证明:当n?1时,a1?S1??m?1??ma1,解得a1?1.………1分 当n?2时,an?Sn?Sn?1?man?1?man. …………………2分 即?1?m?an?man?1. ∵m为常数,且m?0,∴

anm??n?2?. …………………3分 an?11?mm的等比数列. …………………4分 ?1?mm(2)解:由(1)得,q?f?m??,b1?2a1?2. …………5分

1?m∴数列an?是首项为1,公比为∵bn?f?bn?1??bn?11111,…6分 ∴??1,即??1?n?2?. …7分

1?bn?1bnbn?1bnbn?1∴??1?1是首项为,公差为1的等差数列.………………8分 ?2?bn?2112n?1*,即bn?(n?N).……………9分 ???n?1??1?2n?1bn22∴

22n?1(3)解:由(2)知bn?,则?2n?2n?1?.………10分

2n?1bn2223242n2n?1所以Tn?, ??????b1b2b3bn?1bn即Tn?2?1?2?3?2?5???2123n?1??2n?3??2n??2n?1?, ① ……11分

则2Tn?2?1?2?3?2?5???2??2n?3??2234nn?1??2n?1?, ② ……12分

②-①得Tn?2n?1??2n?1??2?23?24???2n?1, …………13分

23?1?2n?1?1?2?2n?1??2n?3??6. ……………14分

故Tn?2n?1??2n?1??2?12.(2011韶关一模)(本小题满分14分)已知数列满足

3?bn?前n项和

Sn?321n?n22.数列?an?an?4?(bn?2)(n?N?),数列

?cn?满足cn?anbn。

(1)求数列

?an?和数列?bn?的通项公式;?c?T(2)求数列n的前n项和n;

12m?m?14对一切正整数n恒成立,求实数m的取值范围。

(3)若

cn?12.(2011韶关一模)解:(1)由已知得,当n?2时,

3131bn?Sn?Sn?1?(n2?n)?((n?1)2?(n?1))?3n?22222 …2分

b1?1?3?1?2,符合上式。故数列?bn?的通项公式bn?3n?2。……3分

3又∵

an?4?(bn?2),∴an?4?(bn?2)3?4?(3n?2)?231?()n, 4故数列?an?的通项公式为an?(),…5分

n141cn?anbn?(3n?2)?()n4, (2)

1111Sn?1??4?()2?7?()3???(3n?2)?()n4444,……①

111111Sn?1?()2?4?()3?7?()4???(3n?5)?()n?(3n?2)?()n?1444444,…② 3111111Sn??3?[()2?()3?()4???()n]?(3n?2)?()n?1444444 ①-②得 411()2[1?()n?1]114??3?4?(3n?2)?()n?1111441???(3n?2)?()n?1424,

Sn?212n?81n?1??()334。 …10分

1cn?(3n?2)?()n4, (3)∵

1113n?1cn?1?cn?(3n?1)?()n?1?(3n?2)?()n?()n?[?(3n?2)]4444∴ 1??9?()n?1(n?1)4 ,

cn?1?cn;当n?2时,cn?1?cn,∴

(cn)max?c1?c2?14。

当n?1时,

cn?212121m?m?1m?m?1?44即可, 对一切正整数n恒成立,则4 ∴m?4m?5?0,即m??5或m?1。 ………14分

13.(2011汕头一模)(本小题满分14分)

???2a设数列{an}为等比数列,数列{bn}满足bn?na1?(n?1)a2?n?1?an,n?N,已知

b1?m,b2?3m,其中m?0. 2(Ⅰ) 求数列{an}的首项和公比; (Ⅱ)当m=1时,求bn;

(Ⅲ)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn?[1,3],求实数m 的

取值范围.

13.(2011汕头一模)解(Ⅰ)由已知b1?a1,所以a1?m;…………1分 3m2a1?a2?ma2??b2?2a1?a2,所以2,解得2;

所以数列{an}的公比

q??12;…………3分

n?1?1?an?????2?(Ⅱ)当m?1时,

,…………1分

bn?na1?(n?1)a2???2an?1?an,………………………①,

1?bn?na2?(n?1)a3???2an?an?12,……………………②, 3?bn??n?a2?a3???an?an?1②-①得2,………3分

1??1???1????2???2???n????n?1?1???1??????3?2?1??????1?????2?,

n3?bn??n?2所以

2n22?1?6n?2?(?2)1?nbn???????399?2?9.…………5分

n?1?m[1????]n2m??1??2??Sn????1?????3??1???2???1????2??(Ⅲ),…………1分

n1?1??1?1?????01????因为?2?,所以由Sn?[1,3]得?2?nnn≤2m≤33?1?1?????2?,………2分

nn?1??3??1??31??????1,?1??????,注意到,当n为奇数时,?2??2?;当n为偶数时,?2??4?1?331????所以?2?最大值为2,最小值为4.…………4分

n?1??,

1?1?1????对于任意的正整数n都有?2?n≤2m≤33?1?1?????2?,

n42m≤≤233所以,解得2≤m≤3,…………6分

14..(2011广州一模)(本小题满分14分)

设各项均为正数的数列?an?的前n项和为Sn,已知数列等差 数列.

(1) 求数列?an?的通项公式; (2)令bn?n1,若不等式?bi??an?1S2n?1i?1?S?是首项为1,公差为1的

nL2n?1?1anS2n?1*

对任意n?N都成立, 求实数L的取值范围.

14..(2011广州一模) (1)解:∵数列

?S?是首项为1,公差为1的等差数列,

n ∴Sn?1??n?1??n.

∴Sn?n2. …… 2分 当n?1时,a1?S1?1;

2 当n?2时,an?Sn?Sn?1?n??n?1??2n?1.

2 又a1?1适合上式.

∴an?2n?1. …… 4分 (2)解:bn?11 ?anS2n?1?an?1S2n?1?2n?1?2n?1??2n?1?2n?11 ??2n?1??2n?1??2n?1?2n?122n?1?2n?1

? ??2n?1??2n?1? ?n1?11?. …… 6分 ???2?2n?12n?1?i ∴

?bi?1?b1?b2???bn

?1?1?1?11?1?11? 1?????????????2?2?2n?13?2?35?2n?1?1?1?2n?1?1. …… 8分 1????2?2n?1?22n?1 ? 故要使不等式

?bi?i?1nL2n?1?1L对任意n?N都成立,

* 即2n?1?122n?1?2n?1?1对任意n?N都成立,

*? 得L? 令cn?2n?1?1??2n?1?122n?1??n2n?1对任意n?N都成立. … 10分

*ncn?1?n?1?2n?12n3?5n2?4n?1,则???1.

32cn2n?1n2n?32n?3n ∴cn?1?cn. ∴cn?cn?1???c1?3. …… 12分 3 ∴L??3?3. ∴实数L的取值范围为???,?. …… 14分 ?3?3?

15.(2011茂名一模)(本小题满分12分)

等差数列{an}中,a1?3,前n项和为Sn,等比数列{bn}各项均为正数,

b1?1,且b2?S2?12,{bn}的公比q? (1)求an与bn; (2)求

S2 b2111??…? S1S2Sn?q?3?a2?12? 15.(2011茂名一模)解:(I)由已知可得? 3?a2q??q?解得,q?3或q??4(舍去),a2?6

?an?3?(n?1)3?3n bn?3n?1

(2)证明:?Sn?n(3?3n)12211???(?) 2Snn(3?3n)3nn?1?1112111111121??…??(1??????…??)?(1?) S1S2Sn322334nn?13n?1

本文来源:https://www.bwwdw.com/article/23u5.html

Top