精修版人教版数学八年级下第19章《一次函数》单元测试题及答案(2)

更新时间:2023-12-26 13:56:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

精修版资料整理精修版资料整理精修版资料整理精修版资料整理精修版资料整理精修版资料整理新人教版八年级数学第19章《一次函数》单元测试(2)

一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x的取值范围是x≥2的是( ) A.y=2?x B.y=1 C.y=4?x2 D.y=x?2·x?2 x?22.下面哪个点在函数y=

1x+1的图象上( ) 2 A.(2,1) B.(-2,1) C.(2,0) D.(-2,0) 3.下列函数中,y是x的正比例函数的是( ) A.y=2x-1 B.y=

x C.y=2x2 D.y=-2x+1 34.一次函数y=-5x+3的图象经过的象限是( ) A.一、二、三 B.二、三、四 C.一、二、四 D.一、三、四

6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( ) A.k>3 B.0

7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1

8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的( )

9.李老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车

耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y?(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )

10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),?那么这个一次函数的解析式为( ) A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=二、你能填得又快又对吗?(每小题3分,共30分)

11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,?该函数的解析式为_________.

12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.

13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+?2?上的点在直线y=3x-2上相应点的上方.

15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________. 16.若一次函数y=kx+b交于y?轴的负半轴,?且y?的值随x?的增大而减少,?则k____0,b______0.(填“>”、“<”或“=”)

17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组?18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.

19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.

20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.

三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y与x成正比,且当x=9时,y=16;

(2)y=kx+b的图象经过点(3,2)和点(-2,1).

1x-3 2?x?y?3?0的解是________.

?2x?y?2?0y4A32C-11O1-2234x-1

23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少? (2)降价前他每千克土豆出售的价格是多少?

(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?

24.(10分)如图所示的折线ABC?表示从甲地向乙地打长途电话所需的电话费y(元) 与通话时间t(分钟)之间的函数关系的图象(1)写出y与t?之间的函数关系式. (2)通话2分钟应付通话费多少元?通话7分钟呢?

25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,?现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.?1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.?9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.

①求y(元)与x(套)的函数关系式,并求出自变量的取值范围; ②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?

新人教版八年级数学第19章《一次函数》单元测试(2)答案

3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16 16.<;< 17.??x??5 18.0;7 19.±6 20.y=x+2;4

?y??821.①y=

1617x;②y=x+ 22.y=x-2;y=8;x=14 95523.①5元;②0.5元;③45千克

24.①当03时,y=t-0.6. ②2.4元;6.4元

25.①y=50x+45(80-x)=5x+3600.

∵两种型号的时装共用A种布料[1.1x+0.?6(80-x)]米, 共用B种布料[0.4x+0.9(80-x)]米, ∴ 解之得40≤x≤44, 而x为整数,

∴x=40,41,42,43,44,

∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44); ②∵y随x的增大而增大, ∴当x=44时,y最大=3820,

即生产M型号的时装44套时,该厂所获利 润最大,最大利润是3820元.

最新精品资料

本文来源:https://www.bwwdw.com/article/21zx.html

Top