第三章 离散线性系统随机振动
更新时间:2023-08-13 13:41:01 阅读量: IT计算机 文档下载
- 第三章第四幕推荐度:
- 相关推荐
第三章 离散线性系统随机振动
3.1 离散线性系统的表示法 实际的机械(结构)系统几乎都是连续的、非线 性的,离散线性系统是实际系统经过离散化与 线性化两个步骤后得到的一种理想化模型。 对许多实际系统,当激励比较小时,离散线性 系统的模型在定性与定量方面都已能很好地反 映原系统,而且容易得到离散线性系统的随机 响应统计量。因此这种离散线性系统模型被广 泛采用着。
描述离散线性系统的运动方程为线性常微分方 程。一个n自由度的离散线性系统常用n个二阶 方程的方程组描述。这是根据动力学的基本原 理或定律导出的运动方程的最初形式。
对机械(结构)系统,最一般的运动方程形为: MY (t ) + (C + G )Y (t ) + (K + N )Y (t ) = X (t ) Y (t ) = Y ,Y (t ) = Y0 0 0 0
(3.1-1)
式中X(t)与Y(t)是n维矢量过程,分别表示激励 与响应;M为质量矩阵;C为阻尼矩阵;G为陀 螺矩阵;K为刚度矩阵;N为非保守矩阵。M和 K为对称矩阵, G与N为反对称矩阵。 在很多情形下,G= N =0,(3.1-1)化为 MY (t ) + CY (t ) + KY (t ) = X (t ) Y (t ) = Y ,Y (t ) = Y0 0 0 0
(3.1-2)
作用在系统上的激励矢量维数可与响应维数不 相等,并可能与其一阶导数过程有关,此时可 表为 X (t ) = B1 X1 (t ) + B2 X1 (t )
(3.1-3) . 式中Bl与B2为n m矩阵;X1(t)与X1(t)为m维矢 量,表示实际的激励。
离散线性系统的运动方程也常表示成一阶方程 组形式,即 Z (t ) = AZ (t ) + F (t ), Z (t0 ) Z0 (3.1-4) (3.1-4)常称为状态方程,因为,如果引入状 态矢量 Z (t ) = [Y (t ) Y (t )]T (3.1-5) (3.1-1)可化成(3.1-4)的形式,其中0 I A= - M -1 ( K + N ) - M -1 (C + G ) 0 F (t ) -1 M X (t )
(3.1-6)
若Z(t)的维数为n,F(t)维数为m n,则可引入 n m矩阵B,从而(3.1-4)改写成 Z (t ) = AZ (t ) + BF (t ), Z (t0 ) Z0 (3.1-7) 有时离散线性系统的运动方程是一个高阶常微 分方程bmY ( m ) + bm-1Y ( m-1) + + b0 = an X (n ) + an -1 X ( n -1) + + a0 Y (t0 ) Y0 , Y (t0 ) Y0 , , Y ( m-1) (t0 ) Y0( m-1)
(3.1-8)
有时为方便计,上述各方程还写成算子形式。 (3.1-1),(3.1-2)及(3.1-4)可写成 LY(t)=X(t) (3.1-9) Y(t0)=Y0, , Y(l-1)(t0)=Y0 (l-1) 其中L为线性均方微分算子;l为其最高阶导数 的阶数。而(3.1-8)可写成 DmY(t)=PnX(t) (3.1-10) . Y(t0)=Y0, DY(t0)=Y0, , D(m-1)Y (t0)=Y0 (m-1) ak D k。 式中D=d/dt,Dm b j D , Pnm j j 0k 0 n
算子方程的一个优点是,它的形式解可用算子 简单地表示。 例如(3.1-9)与(3.1-10)的解分别为 Y(t)= L-1X (t) (3.1-11)
与Y(t)= Dm-1PnX (t) (3.1-12) 式中L-1与Dm-1表示线性均方积分算子。
上述方程中的系数矩阵的元素可以是常数、随 机变量、随时间确定性或随机地变化的量等多 种情形。这里将系数随时间周期性变化或随机 地快变情况放在后面讨论。
这里假定系数为常数,或随时间非周期确定性 地变化。
离散线性系统的动态特性还可用系统对某种典 型的激励的响应来描述。脉冲响应矩阵与频率 响应矩阵是最常用的两种。 此外,时不变线性系统还可用模态(固有频率 与振型)来描述,所有这些描述的理论依据是 叠加原理。 脉冲响应矩阵,频率响应矩阵及模态可由给定 的运动方程得到,也可用实验方法直接测量得 到。因此,这些描述方法具有独立的意义。 容易证明,各种描述方法是等价的。
在随机振动中,对应于离散线性系统的每一种 表示法,都有一种或几种预测随机响应的方法, 各种方法各有其优缺点。 预测方法的选择取决于系统的动态特性是用什 么方式给出的,也取决于所要求的响应量及其 精度。
3.2 应用脉冲响应矩阵的相关分析 一个离散线性系统,其上作用m个激励,有n 个响应量,可用如下一个n m脉冲响应矩阵描 述 h11 (t , ) h12 (t , ) h1m (t , ) h (t , ) h (t , ) h (t , ) 22 2m h(t , ) 21 hn1 (t , ) hn 2 (t , ) hnm (t , )
(3.2-1)
式中hjk(t, )表示在 时刻在第k个激励处作用单 位脉冲而在t时刻的第j个响应,即hjk(t, )是下 列方程之特解 L h(t, )=BId(t- ) (3.2-2) 式中L为与均方微分算子L对应的确定性微分算 子;B为n m矩阵;I为m维单位矩阵;d(t- ) 为狄拉克d函数。 基于因果关系,当t< 时, h(t, )=0。当系统为时不变时, h(t, )=h(t- )
有了脉冲响应矩阵,离散线性系统对任意激励 X(t)的响应可用卷积积分得到,即 (3.2-3) 对时不变线性系统,瞬态响应可表示为Y (t ) h(t - ) X ( )d t0 t t - t0 0
Y (t ) h(t, ) X ( )d h(t, ) X ( )d t0 t0
t
h( ) X (t - )d
t -t0
(3.2-4)
-
h( ) X (t - )d
若X(t)是平稳的,则当t0 - 时,渐近稳定的 时不变线性系统的响应也是平稳的,于是Y (t ) h(t - ) X ( )d h( ) X (t - )d - 0
h( ) X (t - )d -
(3.2-5)
基于激励与响应关系式(3.2-3)-(3.2-5),并 注意期望运算与均方积分次序的可交换性,不 难得出各种响应统计量。
一般离散线性系统对任意随机激励的响应统计 量为平均矢量E[Y (t )]
h(t , ) E [ X ( )]d t0 t
相关矩阵RYY (t1 , t2 ) t2 t0
h(t , ) E [ X ( )]d t0
(3.2-6)
t1
t0
h(t1 , 1 ) RXX ( 1 , 2 ) hT (t2 , 2 ) d 1d 2 h(t1 , 1 ) RXX ( 1 , 2 ) hT (t2 , 2 ) d 1d 2
t0
t0
(3.2-7)
激励与响应互相关矩阵RXY (t1 , t2 ) RXX (t1 , 2 )hT (t2 , 2 )d 2t0 t2
(3.2-8)
方差矩阵
RXX (t1 , 2 )hT (t2 , 2 )d 2t0
Var[Y (t )] RYY (t , t ) - E[Y (t )]E[Y T (t )]
(3.2-9) 时不变离散线性系统对平稳激励的瞬态响应统 计量为平均函数E[Y (t )] t -t0 0
h( )d E[ X ]
t -t0
-
h( )d E[ X ]
(3.2-10)
相关矩阵RYY (t1 , t2 )
0 t2 - t0 -
t2 - t0
t1 -t 0 t1 -t 0
0
h( 1 ) RXX (t 2 - t1 + 1 - 2 )hT ( 2 )d 1d 2 h( 1 ) RXX (t2 - t1 + 1 - 2 )hT ( 2 )d 1d 2
-
(3.2-11) 激励与响应互相关矩阵RXY (t1 , t2 ) t2 -t0 0
RXX (t2 - t1 - 2 )hT ( 2 )d 2 RXX (t2 - t1 - 2 )hT ( 2 )d 2
方差矩阵
t2 -t0
-
(3.2-12)
Var[Y (t )] RYY (t , t ) - E[Y ]E[Y T ]
(3.2-13)
渐近稳定的时不变离散线性系统对平稳激励的 平稳响应统计量为 均值矢量 相关矩阵RY ( ) E[Y ] h( )d E[ X ] h( )d E [ X ] (3.2-14)0 -
0
0
h( 1 ) RX ( + 1 - 2 )hT ( 2 )d 1d 2 h( 1 ) RX ( + 1 - 2 )hT ( 2 )d 1d 2
- -
(3.2-15)
激励与响应互相关矩阵RXY ( ) RX ( - 2 )hT ( 2 )d 20
RX ( - 2 )hT ( 2 )d 2-
(3.2-16)
方差矩阵Var[Y ] RY (0) - E[Y ] E[Y T ]
(3.2-17) 如果激励是高斯矢量随机过程,那么响应也将 是高斯矢量随机过程,以上给出的响应统计量 完全描述了响应过程。如果激励是非高斯随机 过程,响应一般亦是非高斯过程,上述统计量 只给出关于响应过程的近似描述,可以用脉冲 响应矩阵建立激励与响应的高阶统计量之间关 系,例见后。
正在阅读:
第三章 离散线性系统随机振动08-13
清明节踏青作文(优秀6篇)03-26
课题研究中存在的问题和困惑10-13
2016qq离开状态经典语句02-10
【完整版】2019-2025年中国功能饮料行业创造与驱动市场战略研究报告05-02
部编版九年级语文上册期中检测卷(含答案)06-10
宏观经济学第四版印刷版(习题)11-15
风筝作文600字07-07
桃花里的发现作文350字07-15
- 供应商绩效评价考核程序
- 美国加州水资源开发管理历史与现状的启示
- 供应商主数据最终用户培训教材
- 交通安全科普体验教室施工方案
- 井架安装顺序
- 会员积分制度
- 互联网对美容连锁企业的推动作用
- 互联网发展先驱聚首香港
- 公司文档管理规则
- 机电一体化系统设计基础作业、、、参考答案
- 如何选择BI可视化工具
- 互联网产品经理必备文档技巧
- 居家装修风水的布置_家庭风水布局详解
- 全省基础教育信息化应用与发展情况调查问卷
- 中国石油--计算机网络应用基础第三阶段在线作业
- 【知识管理专题系列之五十八】知识管理中如何实现“场景化协同”
- 网络推广方案
- 中国石油--计算机网络应用基础第二阶段在线作业
- 汽车检测与维修技术专业人才培养方案
- 详解胎儿颈透明层
- 离散
- 线性
- 振动
- 随机
- 第三章
- 系统
- 高压旋喷桩技术标准和要求
- 2009年福建省(春季)公务员考试行测真题及答案解析
- 新人教版选修一4.1《改善大气质量》word教案1
- 大众化餐饮发展现状及问题
- 综合行政类岗位笔试题
- 动物学河蚌系列实验实验报告
- 汽轮机旁路控制系统
- 项目管理师基础知识
- 钢结构厂房的防雷设计
- 10_子网掩码计算
- 全球迪士尼乐园简介 英文
- 对调查笔录的理解m,
- 找客户的各国搜索引擎
- m2u2课文 reading 牛津高中英语 课文文本
- K418涡轮盘与42CrMo轴异种材料惯性摩擦焊研究
- 2015年宁波继续教育答案东奥
- 对联学案语文
- 日文履历书2
- 教师业务考绩档案正本填法指导
- Impact of information and communications technology on transport