稀土金属有机配合物的合成及其在有机合成反应中的应用 (1) (1)_P

更新时间:2023-04-13 23:49:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1a6c528bb307e87100f69619 - 1 - 中国科技论文在线稀土金属有机配合物的合成及其在有机合

成反应中的应用

周双六,方鸿,潘重庆,王成燕,王绍武

基金项目:高等学校博士点专项科研基金资助(201034241100001);国家级大学生创新训练计划(201210370080)

作者简介:周双六(1973-),男,教授,主要研究方向:金属有机化学

通信联系人:王绍武(1964-),男,教授,研究方向:金属有机化学. E-mail: swwang@1a6c528bb307e87100f69619

(安徽师范大学化学与材料科学学院,安徽芜湖,241000)

5 摘要:稀土金属有机配合物由于其具有独特的结构和特殊的活性,有关稀土金属配合物的合成、成键以及反应性能研究已成为金属有机化学工作者的研究热点。近年来,非茂基稀土金属化学和特别是二价稀土金属化学取得了突破性进展,实现了除放射性元素Pm 外所有稀土元素二价稀土配合物的合成。本文综述了近年来稀土金属有机配合物的合成、成键以及在催化有机合成反应中的最新进展。主要包括三价稀土有机配合物,二价稀土有机配合物以及稀土有机配合物在催化新的有机合成反应中的应用。

10

关键词:有机合成;稀土有机配合物;催化

中图分类号:O616

Synthesis and Application of Organolanthanide Complexes on Organic Synthesis

15 ZHOU Shuangliu, FANG Hong, PAN Chongqing, WANG Chengyan, WANG Shaowu (College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui,241000) Abstract: Synthesis, bonding, and reaction activity of organolanthanide complexes have become a research focus of organometallic chemists, due its unique structure and special properties. For the past few years, organolanthanide bearing non-cyclopentadienyl ligand, especially palent 20 organolanthanides, made the breakthrough. Except for radioactive Pm, synthesis of all palent rare-earth metal complexes was realized. This paper describes recent advances in the synthesis and applications of organolanthanide complexes on organic synthesis, including the synthesis of organolanthanide(III) complexes and organolanthanide(II) complexes, and catalytic activity of organolanthanide complexes on organic synthesis.

25

Key words: Organic synthesis; Organolanthanide(III) complex; Catalysis 0 引言

自从1954年Wilkinson 等人[1]发现三茂稀土金属有机配合物以来,稀土金属有机配合物由于其具有独特的结构和特殊的活性,已成为金属有机化学工作者的研究热点。近年来有关非茂基稀土金属配合物的合成、成键以及反应性,特别是二价稀土金属配合物的合成取得了

30 新进展,除放射性元素Pm 外,实现了所有稀土元素二价配合物的合成。在反应性方面,稀

土金属有机配合物除催化烯烃和炔烃转化反应,如氢化[2]、

聚合[3]、氢化胺化[4]、氢化硅化[5]、氢化硼化[6]、氢化磷化[7]等研究较充分外,近年来在其催化有机合成新反应方面又有一些新研究。本文综述了近年来稀土金属有机配合物的合成以及在催化有机合成领域中的应用的最新进展。主要包括三价稀土有机配合物,二价稀土有机配合物以及稀土有机配合物在催化新

35 的有机合成反应中的应用。

1a6c528bb307e87100f69619 - 2 - 中国科技论文在线1 稀土金属有机配合物的合成

1.1

三价稀土金属有机配合物 Wilkinson 等人[1]发现三茂稀土金属有机配合物以来,茂基稀土金属有机化学是稀土金属有机化学中研究最为系统的领域,已经发现茂基稀土金属有机配合物在催化聚合、氢化胺

40 化等方面表现出优异的性能。近年来,非茂基稀土金属有机化学也得到了快速发展,其中包括含氮多齿配体、碳硼烷等。其中含吡咯基配体被认为是最有希望替代茂基配体的一类杂茂基配体,因为它可以与稀土金属元素以η1或η5形式成键,并且含吡咯基稀土配合物具有很高的催化活性,激发了研究者们对该领域的浓厚兴趣。

1.1.1 茂基稀土金属配合物

45 早期对三价稀土金属有机配合物的研究开始于三茂稀土化合物(C 5H 5)3Ln 的合成(图1)

[1]。

LnCl 3(C 5H 5)3Ln THF 3NaCl ++3NaC 5H 5

图1 三茂稀土化合物的合成

Fig. 1 Synthesis of (C 5H 5)3Ln

50

但由于三茂稀土金属有机配合物的结构较为简单、反应活性较低,当时并没有引起人们的重视。后继的研究表明三茂稀土金属有机配合物的结构与反应性能有许多的独特之处,可以通过茂基修饰实现结构与反应性能的调控。钱长涛课题组报道了三甲基环戊二烯基可以形成有趣的大环超分子四聚体结构[8],

均配型2-甲氧基环戊二烯基三茂稀土金属配合物可以方55 便地以过量的2-甲氧基环戊二烯基钠盐或钾盐与相应的三价稀土金属氯化物制得(图2)

[9]。

Ln = Y, La, Pr, Nd, Sm, Gd, Yb

图2 2-甲氧基环戊二烯基三茂稀土配合物的合成

Fig. 2 Synthesis of (C 5H 4CH 2CH 2OMe)3Ln

目前,人们对三价稀土金属有机配合物的合成和结构已经有一定深度的研究。而茚基作

60 为环戊二烯的稠环衍生物已广泛应用于过渡金属有机化学,同时因为茚效应[10]的存在使茚基稀土有机化学比环戊二烯基更为丰富。1997年,Herrmann 等[11]通过胺消除反应制备了含桥联茚基配体的稀土有机配合物。1998年,钱长涛等报道合成了几个典型的具有氧桥联茚基配体的三价稀土氯化物,并测定了Nd 配合物的晶体结构,发现此桥联配体存在一定的刚性,以至于形成了不对称的rac 异构体,rac : meso = 6:1 (图3)[12]。

65

1a6c528bb307e87100f69619

- 3 - 中国科技论文在线

rac

meso

rac :meso = 6:1

Ln = Y,Pr,Nd,Gd,Dy,Ho,Lu

图3 氧桥联茚基配体的三价稀土氯化物的合成

Fig. 3 Synthesis of 1,1'-(3-oxapentamethylene)-bridged bis(indenyl) ansa -lanthanocene chlorides

含茚基配体稀土金属配合物的研究主要集中于含茚基配体的稀土金属有机衍生物选择

70 性合成、表征及其催化活性的探究。三茚基稀土的合成类似于(C 5H 5)3Ln ,即通过计量的(C 9H 7)2Mg 或(C 9H 7)K ]与LnCl 3在苯或四氢呋喃中反应可以得到(C 9H 7)3Ln [13]。上世纪九十年代研究发现,通过在茚基上导入一个或多个取代基团[14]或通过Me 2Si 、O(CH 2)2等[15]桥联茚基从而可以合成出一系列具有外消旋结构的含茚基配体的稀土金属有机化合物。 我们课题组利用[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Y, Sm, Yb)与亚乙基桥联茚配体成

75 功合成了亚乙基桥联茚稀土胺基配合物[16],研究发现它们是内消旋体配合物,可以高效率地催化N-H 与C-H 对碳化亚胺的加成反应以及己内酯的开环聚合反应(图4)。

Ln Me 3Si 3

[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3

+Ln = Y; Sm; Yb

图4 亚乙基桥联茚稀土胺基配合物的合成

Fig. 4 Synthesis of [Ethylenebis(indenyl)]lanthanide amides

80

陈耀峰等利用三甲基硅茚基配体合成了稳定的二烷基稀土配合物,并发现在没有任何的引发剂的条件下可以高活性地催化分子间的氢胺化反应(图5)[17]。研究还发现随着稀土离子半径的增大,稀土配合物的催化活性也在增强。

SiMe 33+Ln(CH 2SiMe 3)3(THF)2

33

Ln Me 3SiH 2CH 2SiMe 3

THF Ln = Y, Lu, Dy

85

图5 三甲基硅茚基稀土化合物的合成 Fig. 5 Synthesis of (1,3-(SiMe 3)2C 9H 5)Ln(CH 2SiMe 3)2(THF)

最近崔冬梅课题组[18]报道合成了含茂基、茚基和芴基的稀土金属烃基配合物(图6),催化苯乙烯的聚合结果显示配合物3a -3c 的催化活性(1.56 × 107 g/(mol·Ln·h))

明显比1与290 的活性高,间规选择性大于99%,分子量高达50 × 104,而稀土元素的改变对催化结果影响不大,这说明配体对催化活性有很大影响。

1a6c528bb307e87100f69619

- 4 -

中国科技论文在线

N

Y(CH 2SiMe 3)2(THF)

N

Y(CH 2SiMe 3)2(THF)2

hexane

N

+Y(CH 2SiMe 3)2(THF)30 Ln = Y(3a ), n = 1Ln = Lu(3b ), n = 1Ln = Sc(3c ), n = 0++

图6 含茂基、茚基和芴基的稀土金属烃基配合物的合成

Fig. 6 Synthesis of rare-earth metal alkyl complexes bearing cyclopentadienyl, indenyl, and

95

fluorenyl ligands

1.1.2 吡咯基稀土金属化合物

由于吡咯基可以与稀土金属元素以η1或η5形式成键,而不同形式成键的金属配合物可

能表现出不同的催化活性,这些特性使吡咯衍生物配体在稀土金属有机化学中吸引了研究者100 们的广泛兴趣。

Schumann 课题组于1990年报道了第一例仅以η1方式成键[19] (图7, a )的含吡咯配体的稀土配合物,后来他们又报道了以η5方式成键的吡咯配体稀土配合物[20] (图

7, b )。

a

b

c

图7 吡咯配体稀土配合物的成键方式

105

Fig. 7 Bonding modes of rare-earth metal pyrrolyl complexes

2002年,Gambarotta 课题组发现了在碱金属离子存在下吡咯能以η1:η5方式同时与稀土元素成键(图7, c ) [21]。

2006年周锡庚研究小组[22]将茂系配体茚和非茂系配体吡咯结合在一起后与正丁基锂反110

应构建了一个双阴离子型配体,并进一步与三氯稀土反应成功合成了一系列稀土配合物(图8),配合物中除了茚基配体能以η5方式成键外,吡咯配体还以η1:η5两种方式同时与两个金属离子中心成键。

1a6c528bb307e87100f69619

- 5 -

中国科技论文在线

图8 亚乙基桥联茚和吡咯配体稀土化合物的合成

115

Fig. 8 Synthesis of lanthanide complexes containing methylene-bridged indenyl ?pyrrolyl ligand

2007年,自国甫课题组利用含吡咯基Schiff 碱手性配体,合成了一系列手性稀土配合物(图9)[23],发现吡咯基并没有发生η5形式的配位,同时研究发现该类化合物可以催化分

子内氢胺化/环化反应和甲基丙烯酸甲酯的聚合反应,并以较高产率得到环状胺化物和同规120

聚合较多的聚甲基丙烯酸甲酯。

Me Me Al Me

Me

Ln = Y, Sm, Yb

图9 吡咯基取代手性联萘胺稀土配合物的合成

Fig. 9 Synthesis of organolanthanides with chiral (R )-bis(pyrrol-2-ylmethyleneamino)-1,1-binaphthyl ligand.

125

崔冬梅课题组在含吡咯基Schiff 碱配体的稀土化合物方面也做了不少研究。该小组合成了一系列含吡咯基稀土烷基化合物(图10)[24],并研究了配体对分子结构和催化异戊二烯聚合催化性能的影响。在研究Ln(CH 2SiMe 3)3(THF)2与含吡咯基Schiff 碱配体反应中他们也

发现了吡咯配体也以η5:η1方式同时成键的现象(图10)。并通过改变单吡咯配体的比例1:1, 130

1:2, 1:3, 可以得到一系列以η5:η1方式同时成键的稀土金属有机配合物[24]。

1a6c528bb307e87100f69619

- 6 -

中国科技论文在线

N H

Ar

Me 33

Me 3Ln = Lu, n = 2; Ln = Sc, n = 1

Ln = Lu, Sc

Ar = 2, 6-Me 2-C 6H 3 or 2, 6-i Pr 2-C 6H 3

33

3

10 吡咯基稀土金属烷基配合物的合成

Fig. 10 Synthesis of pyrrolide-supported lanthanide alkyl complexes

135

2008年Hou. Z.课题组报道了利用Ln(CH 2C 6H 4NMe 2-o )3合成了一系列含吡咯基稀土配合物(图11)[25],发现吡咯基分别可以η1或η5形式成键,他们接着研究了这些配合物催化苯乙烯的聚合活性,发现以η5形式成键的配合物的催化活性要明显高于以η1形式成键的配合物。

N Ln(CH 2C 6H 4NMe 2-o)3

3642THF, 70 o C, 16h

140

图11 吡咯基胺基苄基稀土配合物的合成

Fig. 11 Synthesis of η5

- and η1-pyrrolyl-ligated cationic rare earth metal aminobenzyl complexes

近年来,我们课题组在吡咯和吲哚基配合物的合成、成键性能方面做了大量的工作。利

用含取代吡咯基化合物与稀土化合物[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Y 、Nd 、Sm 、Dy 、145

Er)反应,成功合成并表征了一系列的三价的双核的稀土金属配合物(图12)[26],其中两个吡咯基分别可以η1:η5:η1:η5与两个稀土原子配位,从而拓宽了稀土金属有机胺化物的研究范围。

1a6c528bb307e87100f69619

- 7 -

中国科技论文在线

[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3

N

H

H N

32

Ln = Y, Nd, Sm, Dy, Er

+

图12 亚甲基桥联吡咯基稀土胺基配合物的合成

150

Fig. 12 Synthesis of methylene-linked pyrrolyl rare-earth metal amido complexes

然而,我们进一步研究胺基取代吡咯化合物与稀土化合物[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3反应,发现胺基取代基影响反应性,脂肪胺基取代吡咯与稀土化合物

[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3反应时,所有稀土金属都发生脱氢反应,生成亚胺取代吡咯稀155

土配合物。芳香胺基吡咯反应时,稀土金属影响他们的反应性,当稀土金属Nd ,Sm ,Er ,Yb 时仅发生硅胺基消除反应,当稀土金属为Eu 时,发生脱氢反应(图13)[26b, 26d]

2

dehydrogenation

RE = Nd, Sm, Er, Yb RE

N N t

Bu

N

N

t

Bu N

N(SiMe 3)2N(SiMe 3)2

R 2

R 2

RE = Y, Dy, Er, Yb, Eu R = 2,6-i PrC H H

H

(Me 3Si)2dehydrogenation

160 图13 稀土金属胺基配合物引发吡咯胺基脱氢反应

Fig. 13 The dehydrogenation of the pyrrolyl-functionalized secondary amines initiated by rare-earth metal

amides

最近,我们又将吲哚引入稀土金属有机化学,合成了系列具有新颖成键方式的吲哚稀土165

金属配合物,在研究3-亚胺基取代吲哚与[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3 反应时,吲哚以

η1:(μ2-η1:η1)成键方式形成新型吲哚基稀土配合物(图14)[27]。然而,在研究2-胺基取代吲

哚与[(Me 3Si)2N]3Eu(μ-Cl)Li(THF)3反应时,2-胺基取代吲哚也发生与胺基吡咯类似的β-H 消除反应,生成了μ-η6:η1:η1成键方式的新型吲哚基稀土配合物(图15)[28],这些研究丰富了

吲哚金属有机化学的成键方式。

170

1a6c528bb307e87100f69619

- 8 -

中国科技论文在线

N H

N H

3)2

图14 η1:(μ2-η1:η1

)成键方式的新型吲哚基稀土配合物

Fig. 14 Synthesis of rare-earth metal complexes having an unusual indolyl-1,2-dianion

5

175 图15 μ-η6:η1:η1

成键方式的新型吲哚基稀土配合物

Fig. 15 Lanthanide complexes incorporating indolyl ligands with novel hapticities

1.2

二价稀土金属有机配合物

二价稀土金属有机配合物由于它们的强还原性与高度立体不饱和性而具有许多独特的

180

反应性能,引起了化学家们的极大兴趣。二价稀土金属有机配合物已不再局限于常见的Eu 2+,Yb 2+,Sm 2++, Tm 2+, Dy 2+和Nd 2+六种金属的化合物。同时二价稀土有机化合物的合成,除通过二价稀土卤化物和配体的碱盐的复分解反应或通过三价稀土有机化合物被Na/K 合金还原的方法合成以外,还可通过一些新的方法来合成。如我们课题组发现的利用杂原子配位促进

稀土金属—氮键均裂反应合成二价稀土金属配合物。特别是近年来,利用KC 8还原证明了185

除放射性元素Pm 以外所有二价稀土金属配合物的存在。这些都为二价稀土有机化合物的发展注入了活力,使其成为稀土金属有机化学的热点之一。

第一个经X-ray 衍射法确定结构的二价稀土金属化合物是一种具有多聚结构的甲基环

1a6c528bb307e87100f69619 - 9 - 中国科技论文在线

戊二烯镱配合物(MeC 5H 4)2Yb(THF)[29],两个Yb 原子之间通过桥甲基与环戊二烯基相联接,从而达到配位饱和。五甲基环戊二烯[30]比较大的空间位阻阻止了(C 5Me 5)2Sm(THF)2与

190 (C 5Me 4Et)Sm(THF)2的自聚而具有较好的溶解性,避免了配合物容易发生齐聚和聚合而不溶于普通溶剂的缺点,促进了二价钐有机配合物反应性能研究的发展。Hou 课题组 (Me 5C 5)2Ln(THF)2与K(ER)反应,合成了一系列C 5Me 5/ER 型Ln(II)配合物(图16)[31],并发现这类配合物可以作为单组分催化剂催化乙烯与苯乙烯的聚合及其共聚反应。

Ln = Sm, ER = OC 6H 2t Bu 2—2, 6—Me—4; m = 0, n = 2Ln = Sm, ER = OC 6H 3i Pr 2—2, 6; m = 1, n = 2Ln = Sm, ER = SC 6H 3i Pr 2—2, 6; m = 0-1, n = 1-2Ln = Sm, ER = NHC 6H 2tBu 2—2, 4, 6; m = 0, n = 2Ln = Sm, ER = N(SiMe 3)

2 or CH(SiMe

3)2; m = 0, n = 2Ln = Yb, ER = N(SiMe 3)2 or CH(SiMe 3)2; m = 0, n = 2

Ln = Eu, ER = CH(SiMe 3)2; m = 0, n = 2

195 图16 C 5Me 5/ER 型Ln(II)配合物的合成

Fig. 16 Synthesis of C 5Me 5/ER-ligated samarium(II) complexes

钱长涛课题组采用含配位性杂原子侧链的环戊二烯基(或茚基)钠盐与相应的二价稀土金属碘化物反应可以得到二价的二茂稀土金属有机配合物[32](图17)。

200 O THF Na +LnI 2+

LnI 2+

图17 含配位性杂原子侧链茂基二价稀土配合物的合成 Fig. 17 Synthesis of palent organolanthanides involving 2-methoxyethyl-cyclopentadienyl / indenyl ligands

我们课题组利用杂原子配位促进稀土金属-氮键均裂反应合成了一系列新型含茚基二价

205 稀土有机配合物[33],并对其反应机理与催化聚合活性进行了一系列的研究。杂原子取代茚基配体与三甲基硅胺基稀土金属配合物 [(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu)反应可以得到含茚基二价稀土金属有机配合物,并提出了可能的反应机理(图18)。

1a6c528bb307e87100f69619

- 10 -

中国科技论文在线

2

23D = NMe 2; R = SiMe 3, H; Ln = Eu

D = OMe; R = SiMe 3, Me 2SiNH t Bu; Ln = Eu

图18 杂原子配位促进稀土金属

-氮键均裂反应合成二价稀土有机配合物 210

Fig.18 Synthesis of palent organolanthanides through the homolysis of Ln-N bond

最近,我们又利用杂原子配位促进稀土金属-氮键均裂反应合成了一系列外消旋的新型含硅桥联茚基二价稀土有机配合物(图19)[34]。

215

DG = NMe 2, CH 2NMe 2, OMe, N(CH 2CH 2)2O RE = Yb, Eu, Sm

图19 外消旋的新型含硅桥联茚基二价稀土有机配合物的合成

Fig.19 Synthesis of rac - palent organolanthanides containing Me 2Si linked indenyl ligands

Ln 3+/Ln 2+在水溶液中的还原电势分别为 Nd ,?2.6 V ;Dy ,?2.5 V ;Tm ,?2.3 V ;Sm ,220

?1.5 V ;Yb ,?1.1 V

;Eu ,?0.35 V [35]。对还原性更强的Tm ,Dy ,Nd 的二价金属配合物TmI 2(DME)3[36],DyI 2(DME)3[37],NdI 2(THF)5[38]也被陆续合成出来,并经X-Ray 确认其结构。Evans 课题组利用TmI 2(THF)3成功地合成出首例二茂基二价铥的配合物1,3-(Me 3Si)2C 5H 3]2Tm(THF)(图20)[39]。

Me 3Me 32 KC 5H 3(SiMe 3)2

2- 2 KI

TmI 2(THF)3+225

图20 二茂基二价铥的配合物的合成 Fig. 20 Synthesis of 1,3-(Me 3Si)2C 5H 3]2Tm(THF)

Nief 研究小组在研究利用TmI 2合成二茂基二价铥的配合物的同时,利用TmI 3则合成

了二茂三价铥的配合物(图21)[40],但在配位性溶剂THF 中再加入KC 8后可得到被还原的230

二茂基二价铥的配合物,研究发现可能是二茂三价铥的配合物先被还原为无溶剂配位的二价中间体。

1a6c528bb307e87100f69619

- 11 -

中国科技论文在线

Me 3

33Me 3Me 333

图21 KC 8还原法合成二茂基二价铥的配合物

Fig.21 Synthesis of palent thulium containing cyclopentadienyl ligand through reducion of KC 8

235

他们研究小组接着利用KC 8和18-crown-6体系将二茂基三价镝配合物还原为二茂基二价镝的“ate ”型配合物(图22)[41]。研究发现该配合物具有与DyI 2类似的催化性质,能使二苯乙炔发生氧化偶联反应生成(E , E )-1, 2, 3, 4-四苯基-1, 3-丁二烯[41]。随后,二价镧和铈配合

物被Lappert 课题组利用类似的方法合成得到[42]

240

X = BH 4, Br, I

图22 二茂基二价镝的“ate ”型配合物的合成

Fig. 22 Synthesis of ate - palent dysprosium containing cyclopentadienyl ligand

最近,Evans 小组报道了由Y[N(SiMe 3)2]3与KC 8合成得到了含Y 2+的溶液,并经过EPR 245

检测出双峰信号得到证明(图23)[43]。随后他们又系统地利用该方法证明了除放射性元素Pm 外,所有二价稀土配合物[LnA 2]的存在(图24)[44]。

Y[N(SiMe 3)2]3+KC 8

THF, N 2

(Me 3Si)2(Me 3Si)23)23)2

_+

+

_

K(THF)2

+

图23 Y[N(SiMe 3)2]3与KC 8的反应

Fig. 23. Synthesis of the (N 2)3? Radical from Y 2+ via the Y[N(SiMe 3)2]3/KC 8 Reduction System

250

1a6c528bb307e87100f69619

- 12 -

中国科技论文在线

2 LnA 3+

(THF)x

THF

2 "LnA 2"+ 2 MA

or

2 "MLnA 3"

N Ln = Sc, Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu

A = N(SiMe 3)2, OC 6H 3t Bu 2-2,6, C 5Me 5, C 5Me 4H, C 5Me 4SiMe 3, C 5H 2t Bu 3, I, BPh 4,M = K, KC8, Na, x = 0-2

图24 二价稀土配合物[LnA 2]的存在证据

Fig. 24 Evidence for “LnA 2”-like reactivity was found for all the lanthanides through dinitrogen reduction

studies

255 紧接着Evans 小组通过设计配体和引入18-crown-6来稳定二价稀土配合物,报道了由KCp * (Cp * = C 5H 4SiMe 3)与YCl 3反应得到Cp *3Y ,在KC 8和18-crown-6体系中再还原得到第一例二价钇的晶体配合物[(18-crown-6)K]-[Cp*3Y](图25),并由EPR 检测与X-ray 衍射得

到证明[45]。随后他们将这一反应拓展的二价钬、铒、镨、钆、铽和镥配合物的合成(图24)

[46]

。这些最新的研究成果毫无疑问地促进了二价稀土化合物的发展,丰富了二价稀土化合

260

物的内涵,为稀土金属化学的进一步发展构建了一个崭新的研究平台。

3

Me +KC 8

+18-crown-6o O

O

3

Ln = Y, Ho, Er, Pr, Gd, Tb, Lu

图25 二茂基二价镧的“ate ”型配合物的合成

Fig. 25 Synthesis of ate - palent lanthanide containing cyclopentadienyl ligand

265 至此,除放射性元素Pm 外,实现了所有稀土元素二价配合物的合成与结构鉴定。当然,相比较三价稀土金属配合物,新的二价配合物的合成、结构以及反应性研究还有待进一步深入。

2 稀土金属有机配合物的应用

270

近几十年来,随着稀土金属配合物的合成与表征日新月异,研究稀土金属有机配合物催化聚合以及有机反应,是稀土化学的研究热点与目标之一。正是由于稀土配合物具有独特的反应活性,使得稀土金属配合物的研究与应用步入一个崭新的台阶。在反应性方面,稀土金属有机配合物除催化烯烃和炔烃转化反应,如氢化[2]、聚合[3]、氢化胺化[4]、氢化硅化[5]、

氢化硼化[6]、氢化磷化[7]等研究较充分外,近年来在其催化有机合成新反应方面又有一些新275

研究稀土配合物可以催化很多有机反应,比如催化聚合反应、氢化/环化反应、氢化胺化/环化反应、氢膦化/环化反应、氢硅化以及氢磷酸酯化等反应。本文仅就近年来发展的稀土金属配合物催化氢烷氧基化/环化反应、胺或末端炔烃与碳化二亚胺的加成反应、末端炔烃与腈基、异腈的加成反应以及醛、酮与亚磷酸酯的氢磷酸酯化反应作一介绍。

280 2.1 催化氢烷氧基化/环化反应

1a6c528bb307e87100f69619

- 13 -

中国科技论文在线

Marks 课题组于2007年报道了Ln[N(SiMe 3)2]3可以高效地催化炔醇或累烯醇的氢烷氧基化/环化反应,转化率高达99%。其机理不同于传统的过渡金属催化剂的催化反应(图26)

[47]

OH

O

O

O

+

Ln[N(SiMe 3)2]3, 5 mol%66

C 6

D 6

285 图26 稀土配合物催化炔醇或累烯醇的氢烷氧基化/环化反应

Fig. 26 Hydroalkoxylation/cyclization of alkynyl and allenyl alcohols mediated by lanthanide catalysts

2.2 催化胺或末端炔烃与碳化二亚胺的加成反应

2007年侯召民课题组[48]报道了用茂基稀土金属胺化物催化胺(或末端炔烃)与碳化二290

亚胺的加成反应。我们课题组也发现[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3[49]以及含茚基稀土金属胺化物(EBI)LnN(TMS)2[16]等能高效催化胺(伯胺和仲胺)以及末端炔烃与碳化二亚胺加成生成胍和脒类化合物,并在各种溶剂多种底物中均获得非常好的效果。最近,我们课题组研究发现含吡咯基三价双核稀土胺基配合物能很好的催化芳香胺与碳化二亚胺的加成反应,并表现

出很好的催化活性(图27)[26a],该反应提供了一种直接的、原子经济性的合成多取代胍的295

方法,具有一定的工业生产价值。

Ln = Y, Nd, Sm, Dy, Er

Ar-NH 2+NR

C THF 60C

Ar

N

N

N R

R

catalyst =

Yield up to 95%

R = Cy , i Pr

图27 吡咯基稀土配合物催化芳香胺与碳化二亚胺的加成反应 Fig. 27 Guanylation of amines was catalyzed by the pyrrolyl lanthanide ligand

300 2.3 催化末端炔烃与腈基、异腈以及叠氮化物的加成反应

周锡庚课题组发现La[N(SiMe 3)2]3可以催化末端炔烃和腈的加成生成炔-酮的反应(图28)[50]。

La[N(SiMe 3)2]3/n -BuNH 2R 1

+

R 2

CN 1)2.5mol%2)H 2O

R 2

R 1O

toluene/r.t

图28 La[N(SiMe 3)2]3催化末端炔烃和腈的加成反应

305

Fig. 28 La[N(SiMe 3)2]3 catalyzed monoaddition of terminal alkynes to nitriles

Takaki 课题组报道了Sm[N(SiMe 3)2]3可以催化末端炔与异腈的加成反应。该反应对各种的末端炔都具有广泛的适应性(图29)[51]。

1a6c528bb307e87100f69619

- 14 -

中国科技论文在线

R

+

10mol%Sm[N(SiMe 3)2]310mol %C

H NH N

H C R

310

图29 Sm[N(SiMe 3)2]3催化末端炔与异腈的加成反应

Fig. 29 Rare-earth silylamide-catalyzed monocoupling reaction of isocyanides with terminal alkynes

最近,周锡庚课题组发现Sm[N(SiMe 3)2]3和n BuNH 2可以催化末端炔烃和叠氮化物的加

成生成三唑(图30)[52],进一步拓宽了稀土金属配合物的应用。

315

La[N(SiMe 3)2]3 (5 mol%)

R

1

+R 2

N 3

toluene, 50 C

n

BuNH (10 mol%)N N

N

R 2R 1

图30 Ln[N(SiMe 3)2]3催化末端炔烃和叠氮化物的加成反应 Fig. 30 Ln[N(SiMe 3)2]3-catalyzed cycloaddition of terminal alkynes to azides

2.4催化醛、酮与亚磷酸酯的氢磷酸酯化反应

320

沈琪课题组利用[(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = La, Sm, Er, Y, Yb)催化醛与亚磷酸酯反应生成α-羟基磷酸酯,催化剂使用量低达0.1mol%,产率优异 (图31) [53]。

Ar

O H

+P H OR

[(Me Si)N]La(u -Cl)Li(THF)25o C, 5 min toluene

Ar

P OR OR O 18 examples yield 91~97%

0.1mol%

O

图31 [(Me 3Si)2N]3Ln(μ-Cl)Li(THF)3催化亚磷酸酯与醛的加成反应

Fig. 31 Hydrophosphonylation of aldehydes and ketones catalyzed by Hydrophosphonylation of aldehydes

325

我们课题组利用含有芳香胺基取代吡咯基双核稀土胺基配合物和杯[4]-吡咯基稀土金属配合物,实现了亚磷酸酯与醛,

特别是惰性的酮的加成反应,提供了一种原子经济性的合成α-羟基磷酸酯的方法(图32)[54]。

(Me 3)2Ln = Y, Nd, Sm, Dy, Yb

R

R'O H P OEt

O

OEt +R

P HO R'O

OEt

OEt cat

R' = H, Me or Ar

cat =

N(SiMe 3)2

(Me 3Si)2N Ln = Nd, Sm, Gd

330

图32 稀土配合物催化亚磷酸酯与醛酮的加成反应

Fig. 32 Hydrophosphonylation of aldehydes and ketones catalyzed by rare earth metal complexes

1a6c528bb307e87100f69619

- 15 - 中国科技论文在线

3 展望 从第一个茂基稀土金属有机配合物的合成至今的近60年时间里,稀土金属配体已从当初的环戊二烯及其衍生物发展到碳硼烷、β-二酮和烷氧基等含氧配体,β-二亚胺,吡咯等含

335 氮配体,围绕稀土金属配合物的稳定性、反应性及其调控方面开展了系列研究工作。特别是近年来,二价稀土金属配合物的合成已从传统的Sm 2+, Yb 2+, Eu 2+, Tm 2+, Dy 2+和Nd 2+,发展到近年来的Y, Ho, Er, La, Gd, Pr, Te, Lu 等配合物的合成。并且证明了除放射性元素Pm 以外,所有二价稀土金属配合物的存在。可以预期未来还原性更高的二价稀土金属有机配合物的合成及利用其还原性作为聚合以及有机合成反应的催化剂可望取得进一步发展。

340

致谢

感谢高等学校博士点专项科研基金资助(201034241100001)和国家级大学生创新训练计划(201210370080)的支持。

345 [参考文献] (References)

[1] Wilkinson, G.; Birminghan, J. M. YCLOPENTADIENYL COMPOUNDS OF Sc, Y, La, Ce AND SOME LANTHANIDE ELEMENTS[J]. J. Am. Chem. Soc. 1954, 76, 6210-6218.

[2] (a) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. Highly reactive organolanthanides. A mechanistic study of catalytic olefin hydrogenation by bis(pentamethylcyclopentadienyl) and related 4f 350 complexes[J]. J. Am. Chem. Soc. 1985, 107, 8111. (b) Haar, C. M.; Stern, C. L.; Marks, T. J. Coordinative Unsaturation in Chiral Organolanthanides. Synthetic and Asymmetric Catalytic Mechanistic Study of Organoyttrium and -lutetium Complexes Having Pseudo-meso Me2Si(h5-RC5H3)(h5-RC5H3) Ancillary Ligation[J]. Organometallics 1996, 15, 1765. (c) Molander, G. A.; Romero, J. A. C. Lanthanocene Catalysts in Selective Organic Synthesis[J]. Chem. Rev. 2002, 102, 2161.

355 [3] (a) Ballard, D. G. H.; Courtis, A.; Holtor, J.; Mcmeeking, J.; Pearce, J. Alkyl bridged complexes of the group 3A and lanthanoid metals as homogeneous ethylene polymerisation catalysts[J]. J. Chem. Soc., Chem. Commun. 1978, 994. (b) Watson, P. L. Ziegler-Natta polymerization: the lanthanide model[J]. J. Am. Chem. Soc. 1982, 104 , 337. (c) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; Schumann, H.; Marks, T. J. Highly reactive organolanthanides. Systematic routes to and olefin chemistry of early and late bis(pentamethylcyclopentadienyl) 4f 360 hydrocarbyl and hydride complexes[J]. J. Am. Chem. Soc. 1985, 107, 8091. (e) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. Reaction Chemistry of Sterically Crowded Tris(pentamethylcyclopentadienyl)samarium[J]. J. Am. Chem. Soc. 1998, 120, 9273. (f) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. Activity of [Sm(C5Me5)3] in Ethylene Polymerization and Synthesis of [U(C5Me5)3], the First Tris(pentamethylcyclopentadienyl) 5f-Element Complex[J]. Angew. Chem. Int. Ed. Engl. 1997, 36, 774. (g) Ihara, E.; Nodona. M.; Katsura, K.; Adachi, Y.; 365 Yasuda, H. Synthesis and Olefin Polymerization Catalysis of New Divalent Samarium Complexes with Bridging Bis(cyclopentadienyl) Ligands[J]. Organometallics 1998, 17, 3945. (h) Hou, Z.; Koizumi, T.; Nishiura, M.; Wakatsuki, Y. Lanthanide(II) Complexes Bearing Linked Cyclopentadienyl-Anilido Ligands: Synthesis, Structures, and One-Electron-Transfer and Ethylene Polymerization Reactions[J]. Organometallics 2001, 20, 3323.

[4] (a) Motta, A.; Fragalà, I. L.; Marks, T. J. Organolanthanide-Catalyzed Hydroamina- tion/Cyclization Reactions 370 of Aminoalkynes. Computational Investigation of Mechanism, Lanthanide Identity, and Substituent Effects for a Very Exothermic C-N Bond-Forming Process[J]. Organometallics 2006, 25, 5533-5539. (b) Hong, S.; Tian, S. Metz, M. V.; Marks, T. J. C2-Symmetric Bis(oxazolinato)lanthanide Catalysts for Enantioselective Intramolecular Hydroamination/Cyclization[J]. J. Am. Chem. Soc. 2003, 125, 14768-14783. (c) Gribkov, D. V.; Hultzsch, K. C. Hampel, F. 3,3'-Bis(trisarylsilyl)-Substituted Binaphtholate Rare Earth Metal Catalysts for Asymmetric 375 Hydroamination[J]. J. Am. Chem. Soc. 2006, 128, 3748. (d) O'Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie, K.M.; Scott, P. Chiral-at-metal organolanthanides: enantioselective aminoalkene hydroamination /cyclisation with non-cyclopentadienyls[J]. Chem. Commun. 2003, 1770-1771. (e) Kim, J. Y.; Livinghouse, T. Enantioselective Intramolecular Alkene Hydroaminations Catalyzed by Yttrium Complexes of Axially Chiral Bis(thiolate) Ligands[J]. Org. Lett. 2005, 7, 1737-1739. (f) Zhao, J.; Marks, T. J. Recyclable Polymer-Supported 380 Organolanthanide Hydro- amination Catalysts. Immobilization and Activation via Dynamic Transamination[J]. Organometallics 2006, 25, 4763-4772.

[5] (a) Molander, G. A.; Dowdy, E. D.; Schumann, H. Catalytic Cyclization/Silylation of Dienes Containing 1,1-Disubstituted Olefins Using Organolanthanide and Group 3 Organometallic Complexes. J. Org. Chem. 1998, 63, 3386. (b) Molander, G. A.; Schmitt, M. H. Organoyttrium-Catalyzed Sequential Cyclization/Silylation 385 Reactions of Nitrogen-Heteroaromatic Dienes Demonstrating "Aryl-Directed" Regioselectivity. J. Org. Chem. 2000, 65, 3767. (c) Murci, A. R.; Bercaw, J. E. Yttrocene-catalyzed asymmetric cyclization-hydrosilylation of

1a6c528bb307e87100f69619

- 16 - 中国科技论文在线

α,ω-dienes. Tetrahedron Lett. 2000, 41, 7609. [6] (a) Harrison, K. N.; Marks, T. J. Organolanthanide-catalyzed hydroboration of olefins. J. Am. Chem. Soc. 1992, 114, 9220. (b) Bijpost, E. A.; Duchateau, R.; Teuben, J. H. Early transition metal catalyzed-hydroboration of 390 alkenes. J. Mol. Catal. 1995, 95, 121. (a) Harrison, K. N.; Marks, T. J. Organolanthanide-catalyzed hydroboration of olefins. J. Am. Chem. Soc. 1992, 114, 9220. (b) Bijpost, E. A.; Duchateau, R.; Teuben, J. H. Early transition metal catalyzed-hydroboration of alkenes. J. Mol. Catal. 1995, 95, 121. [7] Douglass, M. R.; Marks, T. J. Organolanthanide-Catalyzed Intramolecular Hydrophosphination/Cyclization of Phosphinoalkenes and Phosphinoalkynes. J. Am. Chem. Soc. 2000, 122, 1824. 395

[8] Xie, Z.; Hahn, F. E.; Qian, C. Studies on organolanthanide complexes: XXXIX. Synthesis and molecular structure of (MeCp)3La (MeCp = CH3C5H4): a tetrameric complex of the type [(MeCp)3La]4[J]. J Organomet. Chem. 1991, 414, C12. [9] Qian,C.; Wang , B.; Deng , D.; Sun , J.; Hanh, F. E.; Chen, J.; Zheng, P. J. Synthesis and crystal structures of tris(2-methoxyethylcyclopentadienyl)lanthanide complexes[J]. J. Chem. Soc. Dalton. Trans. 1996, 955. 400

[10] O'Connor, J. M.; Casey, P. Ring-Slippage Chemistry of Transition-Metal Cyclopentadienyl and I ndenyl Complexes[J]. Chem. Rev. 1987, 87, 307. [11] Herrmann, W.A.; Eppinger, J.; Spiegler, M.; etal. β-Si ?H Agostic Rigidity in a Solvent-Free Indenyl-Derived ansa-Yttrocene Silylamide[J]. Organometallics 1997,16.1813. [12] Qian, C.; Zou, G.; Sun, J. Synthesis and crystal structure of 1,1'-(3-oxapentamethylene)-bridged bis(indenyl) 405

ansa-lanthanocene chlorides[J]. J. Chem. Soc., Dalton Trans. 1998, 1607. [13] Atwood, J. L.; Burns, J. H.; Laubereau, P. G. Crystal Structure of Triindenylsamarium[J]. J. Am. Chem. Soc. 1973, 95, 1830. [14] Qian, C.; Zou, G.; Sun, J. Chiral lanthanocene complexes with an ether-functionalized indene ligand: synthesis and structure of bis{1-(2-methoxyethyl)indenyl}lanthanocene chlorides[J]. J. Organomet. Chem. 1998, 410

566. 21. [15] (a) Qian, C.; Zou, G.; Sun, J. Synthesis and crystal structure of 1,1′-(3-oxapentamethylene)-bridged bis(indenyl) ansa-lanthanocene chlorides[J]. J. Chem. Soc. Dalton Trans. 1998, 1607. (b) Qian, C.; Zou, G.; Sun, J. A facile access to rac ansa-lanthanocene alkyl complexes with an ether-bridged indenyl ligand and crystal structure of rac-[O(CH2CH2C9H6)2]YCH2SiMe3[J]. J. Chem. Soc. Dalton. Trans.1999, 519. (c) Qian, C.; Zou, G.; Chen, 415

Y.; Sun, J. Synthesis, Structure, and Catalytic Behavior of rac-1,1′-(3-Oxapentamethylene)-Bridged Bis(indenyl) ansa-Lanthanidocenes[J]. Orgamometallics 2001, 20, 3106. [16] Zhou, S.; Wang, S.; Yang, G, et al. Synthesis, Structure, and Diverse Catalytic Activities of [Ethylenebis(indenyl)]lanthanide(III) Amides on N-H and C-H Addition to Carbodiimides and ?-Caprolactone Polymerization[J]. Organometallics 2007, 26, 3755-3761. 420

[17] Xu, X.; Chen, Y.; Feng, J.; Zou, G.; Sun J. Half-Sandwich Indenyl Rare Earth Metal Dialkyl Complexes: Syntheses, Structures, and Catalytic Activities of (1,3-(SiMe3)2C9H5)Ln(CH2SiMe3)2(THF) Organometallics 2010, 29, 549-553. [18] Pan, Y.; Rong, W.; Jian, Z.; Cui, D. Ligands Dominate Highly Syndioselective Polymerization of Styrene by Using Constrained-geometry-configuration Rare-earth Metal Precursors[J]. Macromolecules 2012, 45, 1248?1253. 425

[19] Schumann. H.; Lee, P. R.; Dietrieh A Organometallic Compounds of the Lanthanides, Pyrrolyl Complexes of Yttrium and Lutetium. Molecular Structure. of. Dicyclopentadienyl (2,5-dimethylpyrrolyl) (tetrahydrofuran) lutetium (III)[J]. Chem. Ber. 1990, 123, 1331-1334. [20] Schumann, H.; Rosenthal, E. C. E.; Winterfeld, J.; Kohn. G. K. Metallorganische Verbindungen der Lanthanoide XCVIII. Synthese und Strukturaufklarung Von 430

Dichloro(2,5-di-tert.-butylpyrrolyl)bis(tetrahydrofuran)ytterbium[J]. J. Organometallic. Chem. 1995, 495, 12-14. [21] Ganesan, M; Berube, C. D; Gambarotta, S.; Yap, G. P. A. Effect of the Alkali-Metal Cation on the Bonding Mode of 2,5-Dimethylpyrrole in Divalent Samarium and Ytterbium Complexes[J]. Organometallics 2002, 21, 1707-1713. [22] Pi, C.; Zhang, Z.; Liu, R.; Weng, L.; Chen, Z.; Zhou, X. Synthesis, Structural Characterization, and Reactivity 435

of Lanthanide Complexes Containing a New Methylene-Bridged Indenyl ?Pyrrolyl Dianionic Ligand[J]. Organometallics 2006, 25, 5165-5172. [23] Xiang L.; Wang Q.; Song H.; Zi G. Synthesis, Structural Characterization, and Reactivity of Organolanthanides Derived from a New Chiral Ligand, (R)-Bis(pyrrol-2-ylmethyleneamino)-1,1-binaphthyl[J]. Organometallics 2007, 26, 5323-5329 440

[24] (a) Yang, Y.; Liu, B.; Lv, K., Gao, W.; Cui, D.; Chen, X.; Jing, X. Pyrrolide-Supported Lanthanide Alkyl Complexes. Influence of Pyrrolide-Supported Lanthanide Alkyl Complexes. Influence of Ligands on Molecular Structure and Catalytic Activity toward Isoprene Polymerization[J]. Organometallics 2007, 26, 4575-4584. (b) Cui, C.; Shafir, A.; Reeder, C. L.; Arnold, J. Highly Isospecific Polymerization of Methyl Methacrylate with a Bis(pyrrolylaldiminato)samarium Hydrocarbyl Complex[J]. Organometallics 2003, 22, 3357-3359. (c) Yang, Y.; 445

Li, S.; Cui, D.; Chen, X.; Jing, X. Pyrrolide-Ligated Organoyttrium Complexes. Synthesis, Characterization, and Lactide Polymerization Behavior[J]. Organometallics. 2007, 26, 671-678. [25] Nishiura, M.; Mashiko, T.; Hou, Z. Synthesis and styrene polymerisation catalysis of η5- and η1-pyrrolyl-ligated cationicrare earth metal aminobenzyl complexes[J]. Chem. Commun. 2008, 2019-2021.

[26] (a) Liu C.; Zhou S.; Wang S.; Zhang L.; Yang G. Rare earth metal bis(trimethylsilyl)amido complexes 450 bearing pyrrolyl-methylamide ligand. Synthesis, structure, and catalytic activity towards guanylation of amines[J]. Dalton Trans. 2010, 39, 8994-8999. (b) Li, Q.; Rong, J.; Wang, S.; Zhou S.; Zhang, L.; Zhu, X.; Wang, F.; Yang, S.; Wei, Y. Redox Chemistry between Europium(III) Amide and Pyrrolyl Functionalized Secondary Amines. Synthesis and Structural Characterization of Lithium and Novel Lanthanide Complexes Incorporating

1a6c528bb307e87100f69619

- 17 - 中国科技论文在线

Functionalized Pyrrolyl Ligands[J]. Organometallics 2011, 30, 992-1001. (c) Zhou S.; Wu, S.; Zhu, H.; Wang, S.; 455 Zhu, X.; Zhang, L.; Yang G.; Cui, D.; Wang, H. Synthesis, structure and catalytic activity of alkali metal-free bent-sandwiched lanthanide amido complexes with calix[4]-pyrrolyl ligands[J]. Dalton Trans. 2011, 40, 9447-9453. (d) (d) Li, Q.; Zhou, S. Wang, S.; Zhu, X.; Zhang, L.; Feng, Z.; Guo, L.; Wang, F.; Wei, Y. Dehydrogenation of secondary amines: synthesis, and characterization of rare-earth metal complexes incorporating imino- or amido-functionalized pyrrolyl ligands[J]. Dalton Trans. 2013, 42, 2861. 460

[27] Zhu, X.; Zhou, S.; Wang, S.; Wei, Y.; Zhang, L.; Wang, F.; Wang, S.; Feng, Z. Rare-earth metal complexes having an unusual indolyl-1,2-dianion through C-H activation with a novel h1:(μ2-h1: h1) bonding with metals[J]. Chem. Commun. 2012, 48, 12020-12022. [28] Feng, Z.; Zhu, X.; Wang, S.; Wang, S.; Zhou, S.; Wei, Y.; Zhang, G.; Deng, B.; Mu, X. Synthesis, Structure, and Reactivity of Lanthanide Complexes Incorporating Indolyl Ligands in Novel Hapticities[J]. Inorg. Chem. 2013, 465

52, 9549?9556. [29] Zinnen H. A.; Pluth J. J.; Evans W. J. X-Ray crystallographic determination of the structure of bis(methyl-cyclopentadienyl)ytterbium tetrahydrofuranate and its ready formation by four new routes[J]. J. Chem. Soc.; Chem. Commun. 1980, 810. [30] (a) Tilley, T. D.;Andersen, R. A.; Spencer, B.; Ruben, H.; Zalin, A.; Templeton, D.H. Divalent Lanthanide 470

Chemistry. Bis(pentamethylcyclopentadienyl)europium(II) and -ytterbium(II) Derivatives: Crystal Structure of Bis(pentamethylcyclopentadieny1) (tetrahydrofuran)ytterbium(II)-Hemitoluene at 176 K[J]. Inorg. Chem. 1980, 19, 2999. (b) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. Metal Vapor Synthesis of (C5Me5)2Sm(THF), and (C5Me4Et)2Sm(THF), and Their Reactivity with Organomercurial Reagents. Synthesis and X-ray Structural Analysis of (C5Me5)2Yb(NH3)(THF)[J]. Organometallics 1985, 4, 112. (c) Evans, 475

W. J.; Grate, J. W.; choi, H. W.; Bloom, I.; Hunter, W. E.; Atwood, J. L. Solution Synthesis and Crystallographic Characterization of the Divalent Organosamarium Complexes (C5Me5)2Sm(THF) and [(C5Me5)Sm(μ-I)(THF)2]2[J]. J. Am. Chem. Soc. 1985, 107, 941. [31] (a) Hou, Z. M.; Zhang, Y. G.; Nishiura, M.; Wakatsuki, Y (Pentamethylcyclopentadienyl)lanthanide(II) Alkyl and Silyl Complexes: Synthesis, Structures, and Catalysis in Polymerization of Ethylene and Styrene[J]. 480

Organometallics 2003, 22, 129. (b) Hou, Z. M.; Zhang, Y. G.; Tezuka, H.; Xie, P.; Tardif, O.; Koizumi, T.; Yamazaki, H.; Wakatsuki, Y. C5Me5/ER-Ligated Samarium(II) Complexes with the Neutral "C5Me5M" Ligand (ER = OAr, SAr, NRR', or PHAr; M = K or Na): A Unique Catalytic System for Polymerization and Block-Copolymerization of Styrene and Ethylene[J]. J. Am. Chem. Soc. 2000, 122, 10533. (c) Hou, Z. M.; Tezuka, H.; Zhang, Y. G.; Yamazaki, H.; Wakatsuki, Y. One-Step Block-Copolymerization of Ethylene with Styrene by 485

C5Me5/ER-Ligated Samarium(II) Complexes (ER = OAr, SAr)[J]. Macromolecules 1998, 31, 8650. [32] (a) Deng, D.; Qian, C.; Song, F.; Wang, Z.; Wu, G.; Zheng, P. Studies on organolanthanide complexes: XLIV. Synthesis of bis(2-methoxyethylcyclopentadienyl) palent organolanthanides (Ln = Sm, Yb) and molecular structure of solvated (MeOCH2CH2C5H4)2YboOC4H8[J]. J. Organomet. Chem. 1993, 443, 79. (b) Qian, C.; Li, H.; Sun, J.; Nie, W. Synthesis and crystal structure of bis(2-dimethylaminoethylindenyl) palent 490

organolanthanides (Ln=Sm, Yb)[J]. J. Organomet. Chem. 1999, 585, 59. [33] (a) Sheng, E. H.; Wang, S. W.; Yang, G.. S.; Zhou, S. L.; Cheng, L.; Zhang, K. H.; Huang, Z. X. A New Heteroatom Coordination Promoted Homolysis of the Yb ?N Bond. Synthesis and Structural Characterization of a New Class of Ytterbium(II) and Ytterbium(III) Complexes with Amido and Indenyl Ligands and Catalytic Activities of Ytterbium(II) Complexes[J]. Organometallics 2003, 22, 684-692. (b) Wang, S.; Tang, X.; Vega, A.; 495

Saillard, J. Y.; Sheng, E.; Yang, G.; Zhou, S.; Huang, Z. Experimental and Theoretical Evidence for the First Example of an Organolanthanide(II) Compound Having an Indenyl Ligand Bonded to the Metal through the Benzo Ring in η4 Hapticity[J]. Organometallics 2006, 25, 2399 -2401. (c) Wang, S. W.; Zhou, S. L.; Sheng, E. H.; Xie, M.; Zhang, K.; Cheng, L.; Feng, Y.; Mao, L.; Huang, Z. Homolysis of the Eu ?N Bond. Synthesis, Structural Characterization, and Catalytic Activity of Novel Europium(II) Complexes[J]. Organometallics 2003, 22, 500

3546-3552. (d) Zhang, K. H.; Zhang, W.; Wang, S. W.; Sheng, E. H.; Yang, G. S.; Xie M. H.; Zhou, S. L.; Feng, Y.; Mao, L.; Huang, Z. Homolysis of the Ln-N (Ln = Yb, Eu) bond. Synthesis, structural characterization and catalytic activity of ytterbium(II) and europium(II) complexes with methoxyethyl functionalized indenyl ligands[J]. Dalton Transaction 2004, 1029. (e) Wu, Y.; Wang, S.; Qian, C.; Sheng, E.; Xie, M.; Yang, G.; Feng, Q.; Zhang, L.; Tang, X. Homolysis of the Ln-N bond: Synthesis, characterization and catalytic activity of organolanthanide(II) 505

complexes with furfuryl- and tetrahydrofurfuryl-functionalized indenyl ligands[J]. J. Organomet. Chem. 2005, 690, 4139. (f) Wang, S.; Feng, Y.; Mao, L.; Sheng, E.; Yang, G.; Xie, M.; Wang, S.; Wei, Y.; Huang, Z. Homolysis of the Ln-N bond: Synthesis, characterization and catalytic activity of organolanthanide(II) complexes with 2-pyridylmethyl and 3-pyridylmethyl-functionalized indenyl ligands[J]. J. Organomet. Chem. 2006, 691, 1265-1274. 510

[34] Zhou, S.; Wu, Z.; Zhou, L.; Wang, S.; Zhang, L.; Zhu, X.; Wei, Y.; Zhai, J.; Wu, J. Controlled Synthesis of Racemic Indenyl Rare-Earth Metal Complexes via the Cooperation between the Intramolecular Coordination of Donor Atoms and a Bridge[J]. Inorg. Chem. 2013, 52, 6417?6426. [35] Morss, L. Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions[J]. Chem. Rev. 1976, 76, 827-841 515

[36] Bochkarev, M.; Fedushkin, I.; Fagin, A.; Petrovskaya, T.; Ziller, J.; Broomhall- Dillard, R.; Evans, W. Synthesis and Structure of the First Molecular Thulium(II) Complex: [TmI2(MeOCH2CH2OMe)3][J]. Angew. Chem., Int. Ed. Engl. 1997, 36, 133. [37] Evans, W. J.; Allen, N. T.; Ziller, J. W. The Availability of Dysprosium Diiodide as a Powerful Reducing

Agent in Organic Synthesis: Reactivity Studies and Structural Analysis of DyI2((DME)3 and Its Naphthalene 520 Reduction Product[J]. J. Am. Chem. Soc. 2000, 122, 11749.

1a6c528bb307e87100f69619 - 18 - 中国科技论文在线[38] Bochkarev, M. N.; Fedushkin, I. L.; Dechert, S.; Fagin, A. A.; Schumann, H. [NdI2(thf)5], the First Crystallographically Authenticated Neodymium(II) Complex[J]. Angew. Chem., Int. Ed. 2001, 40, 3176. [39] Evans, W. J.; Allen, N. T.; Ziller, J. W. Expanding Divalent Organolanthanide Chemistry: The First Organothulium(II) Complex and the In Situ Organodysprosium(II) Reduction of Dinitrogen[J]. Angew. Chem., Int. 525

Ed. 2002, 41, 359. [40] Jaroschik F.; Nief, F.; Le Goff, X.; Ricard, L. Synthesis and Reactivity of Organometallic Complexes of Divalent Thulium with Cyclopentadienyl and Phospholyl Ligands[J]. Organometallics 2007, 26, 3552-3558. [41] Jaroschik, F.; Nief, F.; Le Goff, X.; Ricard, L. Isolation of Stable Organodysprosium(II) Complexes by Chemical Reduction of Dysprosium(III) Precursors[J]. Organometallics 2007, 26, 1123-1125. 530

[42] (a) Cassani, M. C.; Duncalf, D. J.; Lappert, M. F. The First Example of a Crystalline Subvalent Organolanthanum Complex: [K([18]crown-6)- (η2-C6H6)2][(LaCptt2)2(μ-η6:η6-C6H6)]o2C6H6 (Cptt η5-C5H3But2-1,3)[J]. J. Am. Chem. Soc. 1998, 120, 12958. (b) Hitchcock, P. B.; Lappert, M. F.; Maron, L.; Protchenko, A. V. Lanthanum Does Form Stable Molecular Compounds in the +2 Oxidation State[J].Angew. Chem., Int. Ed. 2008, 47, 1488. 535

[43] Fang M.; Lee D. S.; Ziller J. W.; Doedens R. J.; Bates J. E.; Furche F.; Evans W. J. Synthesis of the (N2)3? Radical from Y2+ and Its Protonolysis Reactivity To Form (N2H2)2? via the Y[N(SiMe3)2]3/KC8 Reduction System[J]. J. Am. Chem. Soc. 2011, 133, 3784-3787. [44] (a) Jaroschik, F.; Momin, A.; Nief, F.; Le Goff, X.-F.; Deacon, G. B.; Junk, P. C. Dinitrogen Reduction and CH Activation by the Divalent Organoneodymium Complex [(C5H2tBu3)2Nd(μ-I)K([18]crown-6)][J]. Angew. 540

Chem., Int. Ed. 2009, 48, 1117. (b) Evans, W. J.; Fang, M.; Zucchi, G.; Furche, F.; Ziller, J. W.; Hoekstra, R. M.; Zink, J. I. Synthesis, Structure, and Density Functional Theory Analysis of a Scandium Dinitrogen Complex, [(C5Me4H)2Sc]2(μ-η2:η2-N2)[J]. J. Am. Chem. Soc. 2009, 133, 11195. (c) Fang, M.; Bates, J. E.; Lorenz, S. E.; Lee, D. S.; Rego, D. B.; Ziller, J. W.; Furche, F.; Evans, W. J. (N2)3? Radical Chemistry via Trivalent Lanthanide Salt/Alkali Metal Reduction of Dinitrogen: New Syntheses and Examples of (N2)2? and (N2)3? Complexes and 545

Density Functional Theory Comparisons of Closed Shell Sc3+, Y3+, and Lu3+ versus 4f9 Dy3+[J]. Inorg. Chem. 2011, 50, 1459. [45] MacDonald M. R.; Ziller J. W.; Evans W. J. Synthesis of a Crystalline Molecular Complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y][J]. J. Am. Chem. Soc. 2011, 133, 15914-15917 [46] (a) MacDonald, M. R.; Bates, J. E.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Expanding 550

Rare-Earth Oxidation State Chemistry to Molecular Complexes of Holmium(II) and Erbium(II)[J]. J. Am. Chem. Soc. 2012, 134, 8420. (b) MacDonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+[J]. 1a6c528bb307e87100f69619/10.1021/ja403753j [47] (a) Yu, X.; Seo, S. Y.; Marks, T. J. Effective, Selective Hydroalkoxylation/Cyclization of Alkynyl and 555

Allenyl Alcohols Mediated by Lanthanide Catalysts[J]. J. Am. Chem. Soc. 2007, 129, 7244-7245. (b) Sung ,Y. S.; Xiang, H. Y.; Marks, T. J. Intramolecular Hydroalkoxylation/Cyclization of Alkynyl Alcohols Mediated by Lanthanide Catalysts. Scope and Reaction Mechanism[J]. J. Am. Chem. Soc. 2009. 131, 263. [48] Zhang, W. X.; Nishiura, M.; Hou, Z. M. Catalytic Addition of Amine NH Bonds to Carbodiimides by Half-Sandwich Rare-Earth Metal Complexes: Efficient Synthesis of Substituted Guanidines through Amine 560

Protonolysis of Rare-Earth Metal Guanidinates[J]. Chem. Eur. J. 2007, 13, 4037. [49] Li, Q. Wang, S.; Zhou, S.; Yang, G.; Zhu, X.; Liu, Y. Highly Atom Efficient Guanylation of both Aromatic and Secondary Amines Catalyzed by Simple Lanthanide Amides[J]. J. Org. Chem. 2007, 72, 6763-6767. [50] Quan, S.; Shen, W.; Wang, J. L.; Zhou, X. G. Ln[N(SiMe3)2]3/RNH2 Catalyzed Monoaddition of Terminal Alkynes to Nitriles: A Novel and Concise Access to the Synthesis of Ynones[J]. Organometallics 2008, 27, 301. 565

[51] Komeyama, K.; Sasayama, D.; Kawabata, T.; Takehira, K.; Takaki, K. Rare-Earth Silylamide-Catalyzed Monocoupling Reaction of Isocyanides with Terminal Alkynes[J]. J. Org Chem. 2005, 70, 10679. [52] Hong, L.; Lin, W.; Zhang, F.; Liu, R.; Zhou, X. Ln[N(SiMe3)2]3-catalyzed cycloaddition of terminal alkynes to azides leading to 1,5-disubstituted 1,2,3-triazoles: new mechanistic features[J]. Chem. Commun., 2013, 49, 5589. 570

[53] Wu, Q.; Zhou, J.; Yao, Z.; Xu, F.; Shen, Q. Lanthanide Amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 Catalyzed Hydrophosphonylation of Aryl Aldehydes[J]. J. Org. Chem. 2010, 75, 7498-7501. [54] (a) Zhou, S.; Wu, Z.; Rong, J.; Wang, S.; Yang, G.; Zhu, X.; Zhang, L. Highly Efficient Hydrophosphonylation of Aldehydes and Unactivated Ketones Catalyzed by Methylene-Linked Pyrrolyl Rare

Earth Metal Amido Complexes[J]. Chem. Eur. J. 2012, 18, 2653-2659. (b) Zhou S.; Wang, H.; Ping, J.; Wang, S.; 575 Zhang L.; Zhu, X.; Wei, Y.; Wang, F.; Feng, Z.; Gu, X.; Yang, S.; Miao, H. Synthesis and Characterization of Organolanthanide Complexes with a Calix[4]-pyrrolyl Ligand and Their Catalytic Activities toward Hydrophosphonylation of Aldehydes and Unactivated Ketones[J]. Organometallics 2012, 31, 1696-1702.

本文来源:https://www.bwwdw.com/article/1zyq.html

Top