热学秦允豪第二版答案及解析
更新时间:2023-05-03 20:31:01 阅读量: 实用文档 文档下载
- 热学秦允豪答案pdf推荐度:
- 相关推荐
4.21预测二氧化碳气体的粘滞系数,可将它贮存于容积为V=1.01 的烧瓶内,压强保持为p1=1600mmHg,然后打开活门,让二氧化碳经由长L=10cm,直径d=0.1mm的细管自烧瓶流出,经过t=22分钟后,烧瓶中的压强降低至p3=1350mmHg。试由这些数据计算二氧化碳的粘滞系数。已知外界大气压p2=735mmHg,整个过程可视为在15℃时发生的等温过程。
4.22设法使在平行板电容器两板间的带电油滴所受的电场力与其重力平衡。,则可以求到油滴的带电量,这就是历史上有名的密立根油滴实验的基本原理,由这实验首次测定了电子电荷。实验中油滴的密度是已知的,但为求得其重力,还应知道它的半径r,为此,考虑到不加外电场,当油滴的重力和它所受到的周围空气的粘滞力相等时,油滴将以匀速v下降。若空气的密度p’和粘滞系数也为已知,试问怎样求r?
2.B.4 设想在远离地球的太空中有一宇宙飞船,飞船内有一真空实验舱。内中有一质量为M的试管,它被质量为m的隔板分隔为体积相等的两部分。被隔板封闭的那部分空间中有温度为T,摩尔质量为M m,物质的量为 的单原子理想气体。隔板被放开后,隔板无摩擦的向上移动。在隔板离开试管顶端后气体才开始从试管中逸出。设试管开始运动时试管静止。试求试管的最终速度。
设气体、试管、隔板三者之间的热量交换可以忽略,在隔板离开试管前,气体经历的是准静态过程。
【分析】由于试管外部为真空,开始时整个系统都是静止的,隔板被放开后气体将膨胀,但整个过程都是绝热的准静态过程,我们可以利用绝热过程方程来解这个问题。在绝热膨胀过程中,气体内能减少,温度降低。但是由于不存在重力,气体不对整个系统以外的部分做功,所减少的内能全部转化为隔板和试管的动能以及气体的整体定向运动动能,由于整个系统的总动量守恒,所以隔板向上运动的动量等于试管以及所装气体的向下运动的动量,这样就可以确定隔板离开试管时试管以及所装气体的向下运动的速度u1,以上称为过程“1”。
当隔板离开试管以后(这称为过程“2”)气体将陆续逸出(最终将全部逸出)试管。虽然系统仍然绝热,但是它不是准静态过程,绝热过程方程不能适用。详细分析:(1)在气体还没有逸出试管时,特别是隔板被固定时,由于气体分子的无规则运动,平均来说,分别有一半分子以平均速率撞击隔板和试管底,因而给隔板和试管底分别施以相等的动量。在隔板没有固定时,给以隔板动量使得气体做绝热膨胀;给以试管底的动量使得试管以u1速度向下运动。正如上面分析的,计算u1的关键是整个系统的总动量守恒。(2)当隔板离开试管时,气体已经以速度u1和试管一起向下运动。但是在隔板离开试管以后,气体给以试管底的动量仍然存在,这个动量使得试管向下的运动速度又增加了u2,我们可以在以u1速度向下运动的参考系中来求u2,而在地面参考系中试管的速度应该是u1+u2.
【解】(1)过程“1”:正如上面分析的,这是一个准静态绝热过程,设开始时以及隔板即将离开试管时气体的温度和体积分别是(T,V)和(T f,V f)则应该有如下关系:
11--=γγf f V T TV 其中国Vf=2V ,γ=5/3(单原子理想气体),则有 3
22
T T f =
气体内容减少了 )(2
3,f m v Y Y R
T C U -??
=?=?νν 隔板、试管和气体的总的定向运动动能为
2
)
(2212M M u mv E m k ++=ν 其中v 为隔板离开试管时,隔板向上运动的速度,u1是试管向下运动时的速度。气体内能的减少转变为定向运动动能,所以 k E U =?
另外,根据整个系统的总动量守恒,有 1)(u M M mv m +=ν 由上述各式可以解得
????
??????+++?-=))((2)12(33
21M M m M M mRT u m m ννν (2)过程“2”:隔板离开试管以后,我们把正在向下运动的试管作为参考系。
正如上面分析的,平均来说,可以认为有一半的分子向试管底撞击,这些分子的
数量为 2
A N
N ν=?
分子撞击速率应该是平均速率,现在已方均根速率代替它,有 分子
m RT v f 3≈
其中m 分子为分子的质量,T f 为隔板离开试管以后气体的温度。
一个分子对试管底撞击产生v m 分子2的冲量,一半分子的撞击给以试管底的总冲量为
f m f A
RT M m RT m N v m N I 3322
2νν=?
?≈
??=?分子
分子分子
这个冲量使得试管产生动量的改变,从而得到附加速度
M
I
u ?=2
其中M 为试管的质量。考虑到分子m N M A m =,并且利用(1)式,将(7)(8)式代入(9) 得
RT M M u m 32231
ν
=
由此得到试管的最终运动速度为:
RT M M M M m M M mRT u u u m m m 32))((2)12(3312
1323221νννν+????
??????+++?-=+=
3.3.7 半径a =0.1m 的铀球,在原子裂变过程中以体积热产生率H =
5.5 x 103W· m -3均匀地、恒定不变地散发出热量.已知铀的导热系数κ=46 W·m -3·K -1,试问达稳态时,铀球的中心一与外表面间的温度差是多少?
【分析】对于球体内部有恒定不变地均匀散发出热量的传热问题,它达到 稳态的条件是;单位时间内,从半径为r~r+dr :的球壳向外传递的热量,应该等于单位时间内以r 为半径的球内所产生的总的热量。假如前者小于后者,铀球内部温度会升高,稳态尚末达到;假如后者小于前者,铀球内部温度会降低,稳态仍然未达到.
〖解〗:现在以半径为r~r+dr 的球壳为研究对象,设r 及r~r+dr 处的温度分别为。由于球壳内、外表面之间存在温度梯度,有热量从球壳向外传输,球壳通过的热量
达到稳态时球壳在单位时间内透过的热流应该等于以r 为半径的铀球在单位时间内产生的热量(假如前者小于后者,铀球内部温度会升高,稳态尚未达到),所以
3.4.1 两个同样大小经过黑化的小球,一个是铜的,一个是铝的。用丝线把它们吊在一正在熔化的冰块的大空洞里,发现铝的温度从3℃降到1℃用了10min,而铜球经同样的温度变化则用了14.2min 。问铝和铜的比热容之比是多少?铝和铜的密度分别为2.7×10103kg ?m ?3和8.9×103kg ?m ?3.
【解】(1)物体表面总辐射照度E ,来自空腔的总辐射出射度
(1)
物体单位时间、单位表面上吸收的辐射能量为:,
发射的能量为: (2)
物体净能量流密度为 (3)
由 (为热容量) ……(4) T r T r T d )(),(+2
π4d d d d d d r r T A z T t Q ??-=??-=κκ23π4d d π34r r T r H ?-=?κr r H T a T T a
d 3d 00
κ??=K 20.06)0(213220-≈-=-?-=-κκHa a H T T a B M 141W B T M E σ==4W T E ασα=4T M ασ=()42T T J W T -=ασdT C dT mc dQ p p ==p C
... (5)
(2)依题意:把(5)式中,(为比热)
铝: (6)
,
铜: (7)
(7)÷(8):
3.8.1气体的平均自由程可通过实验测定(例如由测量气体的粘度算出气体的平
均自由程).现在测得t=2 0℃,压强为51.010Pa ?时氩和氮的平均自由程分别为
889.910,27.510A N m m λλ--=?=?.试问:(l)氮和氩的有效直径之比是多少?
(2)t=-20℃,52.010Pa ?时的A λ是多少?(3)t=--40℃,51.010Pa ?时的N λ是多少?
【解】p nkT = 在压强和混度相同时有如下关系:
2
2
A N A N
d n d d λλ??
=
- ???
则有 12
2
889.9103
527.510N A A N d d λλ--?????=== ? ? ??????
(2)温度t=-20℃,压强为52.010Pa ?时平均自由程可表示为
()()
()()()T T AT T T T T T T A T T A A J dt dQ W W W W W W T -≈-++=-=ασασασ4)3(22
44()dt
T T AT dT C W W p -3
4)4(ασ??-=21304T T W W p t T
T dT
T A C dt ασ???? ??--=
213ln 4T T T T T A C t W W W p
ασc C p ρ=c
R W Rt W T T T T t T A C A A W W A W A A 107103.2ln 41
214==???? ??--=ρασρ???? ??--=21ln T T T T W W ω4
4W
T A R ασ=R W Rt W C u u u 2.14109.813?==ρ32.27.29.82.1410109.82.14107.2103
3=?=??=
W R W R
C C u A
'A kT λ=在温度都是t=20℃情况下,氩氛的平均自由程和压强成反比,也就是说
8'
57'49.910 1.010 5.0102.010
A A A A p m m p λλ--?=?=??=??
(3)同样对于压强相同而温度不同的氮气,其平均自由程和温度成正比 8''727.510233 2.210293N N N N T m m T λλ--?=?=?=?
(2)因为
,,33v m m C nmv nmv M λλκη=
=,所以 ,3v m
m C nmv M λκη=
则有 112221M M κηκη=?
(3)因为
,,33v nmv D nm λληρ===,所以 1D ηρ=
而 M V ρ=,所以
则有
112
221D M D M ηη=?
(4)由(1)式可以得到
212112 1.0103A m N ση-=?=??
212222 2.8103A m N ση-=
?=??
3.8.2 标准状态下氦气的粘度为1η,氩气的粘度为2η,他们的摩尔质量分别为M 1和M 2.。试问:(1)氦原子和氦原子碰撞的碰撞截面1σ和氩原子与氩原子的碰撞截面2σ之比等于多少?(2)氦的导热系数1κ与氩的导热系数2κ之比等于多少?(3)氦的扩散系数1D 与氩的扩散系数2D 之比等于多少?(4)此时测得氦气的粘度2311087.1--???=m s N η和氩气的粘度2321011.2--???=m s N η。用这些数据近似的估算碰撞截面21,σσ。 【解】(1)因为m kT
v n
v nm πσλλη8,21,3=
==
则有 σ
σ
πσ
ση2
1212
1212
132
23M
T m
T T km v m ∝
∝
?==
在温度相同情况下,原子和氦原子碰撞的碰撞截面1σ和氩原子与氩原子的碰撞
截面2σ之比为
2
1
122
12
12
1
M M M M ?
=
=ηηηησσ (2)因为3,3,λ
ηλκv nm M C v nm m m V =
?= 所以 m m V M C ,?=ηκ 则有
1
2
2121M M ?=ηηκκ (3)应为mn v nm v D ===
ρλ
ηλ,3
,3所以ρη1=D
而V
M
=
ρ所以122121M M D D ?=ηη
(4)由(1)可以得到
2
2122
22
2111
1108.232
100.132
m N RTM m N RTM A
A
--÷=?
=
÷=?
=
ηπ
σηπ
σ
3.B.1 若旋转粘度计(如图3-1左图所示)中的A 的半径为R2,它和B 的半径}1之差为δ令(R2-R1=δ),而δ与R1相比不是很小. 试问当扭丝扭转力矩为G ,圆筒旋转速度为ω时所测得的流体的粘度是多少?
【分析】 注意R2-R1=δ与R1相比不是很小,在两圆筒之间沿半径方向的速度梯度不能认为是处处相同的.怎样应用牛顿枯性定律解本题?
设当圆筒旋转速度为ω时,夹层内气体的运动已经达到稳态,夹层内气体受到的合力矩应该为零.现在在待测气体中隔离出一层其中心轴与圆筒中心轴相同,其内径为R ,厚度为dR ,长度为L 的薄圆筒,如图3-1右图所示.当圆筒以角速度ω匀速转动时,这一层薄圆筒状气体也必做匀速转动.由于这层气体对圆筒中心轴的角动量是守恒的,于是根据角动量守恒定理可以知道这层气体所受到的相对于圆筒中心轴的合外力矩等于零.因此应该对这一层气体所受到的力矩进行分析.
【解】作用于夹层中R~R+dR 这层气体的外力有:内、外表面所受的压力,它们对轴的力矩均为零;内表面所受的粘性力F ,它对轴作用的力矩为-FR 其中“-”号表示其方向与圆筒转动方向相反:外表面所受的粘性力为F 十dF ,它对轴的力矩为+(F+dF)×(R+dR),“+”号表示其方向是与圆筒转动方向一致的。由角动量守恒定理得
(F+dF)(R+dR)-FR=0
则有 d(FR)=0 (1) (这里忽略了二级无穷小项)根据牛顿粘性定律得
2du F RL dR
η
π=? (2) (2)式代人(l)式得 2220d u d u R dR dR
+= 令du u dR =,得'2'0'du R u u +=
即
'2'du dR
u R
=- 积分得21
'C u R
=
则 21C du dR R
=
再积分得到
1
1
C u C R
=-
+ (3)
其中C 1,C 2为积分常数.由边界条件:在R=R l 处,u=0;R=R 2处,u= ωR 2 可以得到
1
21
122
0,C C R C C R R ω+=-+= (4)
2
1212122
221
R R C R R R
C R R ωω=
-=
- (5)
将(5)中的两个式了代人到(3)式,就得到待测气体中气体流速随半径变化的规 律为
22
12122121
1R R R R u R R R R R ω=+-- (6)
将(6)式代入(2)式(应该注意到,(2)式中只有R 是变星).即可求得薄圆筒所受到
的粘性力对中心轴的力矩为
2
1112
1221
22du G F R L R dR
R R L R R πωηπωη
===- (7)
由此解得被测气体的粘性系数等于
()
212
122G R R LR R ηπω-=
3.B.2 一个均匀的非金属环形圆柱,它的内、外半径分别为r 1,r 2其长度为l (l >> r 2),如图3-2所示.它的内、外表面分别保持T 1和T 2温度不变,试求它达到稳态时的内部温度分布.
【解】由于l >> r 2,在忽略上、下表面和外界之间的热传递的情况下,在离开环形圆柱中心轴r 处的温度是处处相等的(因为材料是均匀的),设其导热系数为κ,考虑从r 到r+dr 那一壳层空间,它的温度从T 变到T+dT.对这一壳层应用傅里叶定律
2dQ dT rl dt dr
κπ=-? (1) 达到稳态时上式应该是一个常量,设它等于C ,则
2C Adr dT dr rl r
πκ=-= 两边积分,得到
()ln T r A r B =+ (2)
将边界条件::当r=r 1时,T(r 1)=T 1时; 当r=r 2时,T(r 2)=T 2一起分别代入(2)式,得到
1122ln ,ln T A r B T A r B
=+=+ (3) 联立(3)式中的两个式子,解得
2121
1221
2
1,ln ln ln ln T T A r r T r T r B r r -=-= (4)
将(4)式中的两个式子代入到(2)式,可以解得在非金属环形圆柱中半径r 处的温度为
12221112()ln ln ln ()ln n T T r T r T r T r r l r -+-=
-
3.B.9如图3-5所示,利用一直径为d=0.1m ,焦距为f=0.5的凸透镜B 在一粗糙的黑色薄圆盘A 上形成一个太阳C 的聚焦像,像的大小与薄圆盘正好一样大.假定太阳的黑体温度是T 日=6000K ,太阳中心与地球中心间距离为a=1.5×1011m ,太
阳半径为a=1.4×109m 试问盘可能达到的最高温度是多少?
【分析】这是一个辐射传热和几何光学相结合的复合题一所有射到凸透镜上的太阳光线都聚焦到薄圆盘上,薄圆盘是一个黑体,所以射到凸透镜上的太阳光线的能量能全部被薄圆盘吸收、薄圆盘又向外发射热辐射能,达到稳定状态时,其能量的收和支相等,温度不再上升。
【解】按照斯忒藩一玻耳兹曼定律,太阳作为黑体,它在单位时间内.在单 位面积的表面上向外发射的热辐射能为
4B B M T σ= (1)
其中,σ为斯忒藩一玻耳兹曼常量.太阳表面在单位时间内向外发射的总的热辐 射能为 244B B PB R T πσ=? (2)
显然,在以太阳中心为球心,以a(即太阳中心与地球中心间的距离)为平径的球 面上甲也有和(2)式相等的热功率透过.如果不考虑地球的大气层对太阳光的吸收.则根据比例关系就知道凸透镜所接收到的太阳能的热功率为 2
244B d P P a ππ=
(3) 其中2
4d π为凸透镜的面积,24a π是以太阳的中心为圆心,太阳中心与地球中心间距离为半径的球面面积。
这一热功率通过凸透镜聚焦到薄圆盘上并且全部被薄圆盘吸攻(因为薄圆盘是黑体,其吸收系数等于1).同时薄圆盘也向外发射热辐射一按照斯忒藩一玻耳兹曼定律,它向外发射的热辐射功率为
24'2P r T πσ=? (4)
其中T 为薄圆盘的温度,r 是薄圆盘的半径.而因子2是因为薄圆盘有正、反两个面而乘上的.达到稳定状态时(3)式应该和(4)式相等。
至于薄圆盘的半径要通过几何光学的成像关系来得到,从图3-5可以看到 B R r f a
= (5) 由(2)式、(5)式。以及〔3)式等于(4)式.可以得到薄圆盘的温度为
24215958B d T T K f =?=
这个温度是最高的,因为它不考虑大气层对太阳能的吸收(平均说米大气层对太 阳能的吸收率为25%),也不考虑薄圆盘的对流传热等热损失,
4.7.2 某空调器是由采用可逆卡诺循环的制冷机所制成。它工作于某房间(设其温度为)及室外(设其温度为)之间,消耗的功率为P ,试问:
(1)若在1秒内它从房间吸取热量,向室外放热,则是多大?(以,表
示之)。(2)若室外向房间的漏热遵从牛顿冷却定律,即
,其中是与房屋的结构有关的常数。试问制冷机长期连续运转后,房间所能达到的最低温度是
多大?(以、P 、表示之)。(3)若室外温度为,温度控制器开关使其间断运转的时间(例如开了3分钟就停7分钟,如此交替开停),发现这时室内保持温度不变。试问在夏天仍要求维持室内温度
,则该空调器可允许正常运转的最高室外温度是多少?(4)在冬天,致冷机从外界吸热,向室内放热,制冷机起了热泵的作用,仍要求维持室内为,则它能正常运转的最低室外温度是多少?
〖分析〗:这是现在正在广泛使用的热泵,它既能在夏天用来降温,又能在冬天用来取暖的一个理想模型(认为制冷机是可逆卡诺制冷机)。通常制冷机是采用交替开停的方法来控制温度,使房间达到基本恒温的。在达到稳定状态时,在相同时间内,冬天时制冷机向房间传递的热量应该等于房间向外的漏热;夏天时外界向房间的漏热应该等于制冷机从房间取出的热量。
〖解〗:(1)对于可逆卡诺制冷机,有: ,
经过变换可以得到
(1)
又由于 ,而
考虑到在运行稳定时,因而(1)式可表示为
, (2)
(2)当制冷机长期连续运转后,房间达到的最低温度
时制冷机的制冷功率应该等于房间的漏热功率。制冷机的制冷功率是由制冷机的效率公式决定的。房间的漏热功率是由牛
顿冷却定律决定的,因而利用(1)式,有 (3)
即:
2T 1T 2Q 1Q 2Q 1T 2T )()d /d (21T T D t Q --=D 2T 1T D C 300%
30C 200C 200C 200
)/()/(211211T T T Q Q Q -=-)/()/(212212T T T Q Q Q -=-W Q Q =-21t W P d /d =?=22d /d Q t Q P Q W Q //22?
=)/(/2122T T T P Q -=?
)/(2122T T P T Q -=?
2T )/()(21221T T P T T T D -=-0)(2221=--P T T T D 0)2(212122=++-DT T P DT DT
因为,所以上式中只能取负号,所以有
(4) (3)当室外温度为
,制冷机长期运转时间并且达到稳态时,这时的房间温度为
。我们可以利用这一条件求出。因为在达到稳定状态时,单位时间内外界向房间的漏热应该等于制冷机从房间取出的热量,而后者可以
用(2)式来求出,不过其中的应该用来代替。这样,就有
(5)
将℃,℃代入(5)式,可以得到
(6)
到了夏天仍要求维持室内温度,若该空调器可允许正常运转的最高室外温度(设
为),而室内温度仍为。这时达到稳态的条件同样是:制冷机的制冷功率应该等于房间的漏热功率。但是现在空调器是不间歇地连续运转,在(5)式中的应改为,即
(6)
得到 ℃ (7)
(4)在冬天要求维持室内温度,设它能正常运转的最低室外温度为,
则参考(6)式,有
(8)
将(5)中的代入,可以得到
℃
5.B.2有三个热容都是C(C 为常量夕的相同物体A,B,D 其温度分TA=TB=300K,TD=100K.若外界不做功也不供给热量.利用热机将这三个物体作为热触,使二个物体中的某一温度升高,试向它所能达到的最高温度是多少?这时其他两物体的温度分别是多少?
【分析】 初看起来,要求出所能达到的最高温度,是不是要利用仁诺定理以及可逆卡诺热机效率公式来解本题了当然,要使得共中某物休的lJ 达到最高,必须利用可逆卜诺热机.但是注意到,本题中利用可逆卡诺热机以后,不仅效率最高,而且物体A ,B ,D 和卡诺热机所组成的系统是绝热的,而可逆的绝热过程其总熵是不变的,所以我们可以利用熵增加原理来解本题,其解题方法比较简,并且具有普遍意义.
【解】 设温度改变后三物体的最后温度分别为 。一因为外界不做功也不供热,所以系统的内能不变,在不考虑物体由于温度变化而发生体积改变的情况下,内能改变只和吸收或者释放热量有关,所以
'''()()()0A B D C T TA C T TB C T TD -+-+-=
可得 []D
DT D P DT P DT T 24)2()2(212112?-+±+=12T T <)4)(212(1212D P T D P D P T T +-+=C 300%30='2T C 200D )()d /d ('21T T D t Q --=P P 3.0)/(3.0)('21'2'
21T T T P T T D -?=-301=T 20'2=T P D 3.093.2?=C 200'1T C 200'2=T P P 3.0)/()('2'1'2'2'1T T T P T T D -?=-11.38K 26.311'1=≈T C 200''1=T ''2T )/()('
'2''1''2''2''1T T T P T T D -?=-P D 3.093.2?=59.1K 74.274''2=≈T
'''700A B D A B D T T T T T T K ++=++= (1)
又因为该过程属于可逆过程。故绝热.系统伏态改交前后的总熵不变.即
'''0A B D A B D T T T T T T dT dT dT S C T T T ?? ??=++= ??????
有 '''ln ln ln 0A B D A B D T T T T T T ++=
可得
'''62910A B D A B D T T T T T T K ==? (2) 若A 物体升到最高温度,则B,D 温度将相等且低于A 的温度,即
'''B D A T T T =< (3)
联立(l)式、(2)式、(3)式,解得
'''150,400B D A T T K T K === (4)
也可能出现如下的解:
(1)出现并立的两个最高温度('''B D A T T T =>)
'''150,400B D A T T K T K ===
其最高温度低于(4)中的数值而被舍去。
(2)出现负的温度数值,也被舍去.
所似能够达到温度最高的物体的温度是400K
6.5.7 如图6-5所示,一块高为a ,宽为b 的长方形钢板放在边长为c 的立方体的冰块上,钢板两侧分别各挂上一质量为m 的重物。整个系统及周边环境均在0℃温度以下。
(1)证明钢板下面冰的温度降低了。
(2)在钢板下面的冰熔解,在板上面的水又凝结,热量从钢板往下传,若在单位时间内从单位面积钢板下传的热量为
T J T κ=-??其中κ为常量。试证钢板
下坠速度为
1222()m mgT v v dy dt l abc κρ-=??
其中ρ为冰的密度,2v ,1v 分别为冰和水的比容,2m l 为单位质量冰的熔解热,κ
为钢板的热传导系数,忽略钢板的重量。
【分析】这是一个固体的热传导.克拉伯龙方程以及冰的熔解反常现象之问的复
合题.
本题环境温度恒定在冰的熔点0℃,冰不会熔解,但是挂有挂有重物的钢板下面承受了较大压强。由于冰有反常熔解现象.使钢板下面的冰的熔点降低了降低冰要熔解为水.这部分水就要被挤到钢扳上面,使钢板下降了dy 的高度.被挤到钢板上面的水不再承受重物所产生的压强,它的熔点又恢复正常数值0℃,这些水又重新结冰.从热量收支情况来看,熔点隆低了ΔT 以后,开始时冰熔解所需要吸收的熔解热,是依靠自己的温度降低ΔT ,由自己热容量的减少来提供的.达到稳态所要满足的条件是:单位时间内钢板上面的水结冰所所释放的热量恰好等于单位时间内钢板下面的冰熔解为水所吸收的热量,也等于单位时间内从钢板上面传递到钢板下面的热量.这样钢板就逐渐下沉。钢板就有了一个下坠速度。另外,冰熔解要吸收溶解热,结冰要释放溶解热。所以紧贴钢板下面的冰的温度要比钢板上面一层水的温度(也就是环境温度)低ΔT ,这样钢板沿着竖直向下方向会有热传导,它满足傅里叶定律。冰熔点降低要利用克拉伯龙方程。
【解】(l)在钢板下面的冰承受的压强要比环境压强大
2mg
p bc ?= (1)
设由此而导致冰熔点的降低为△T ,按照克拉拍龙方程,有
,,,()m m l m t m L p T T V V ?=?- (2)
由于冰有熔解时的反常膨胀现象(冰熔解时体积反而缩小),即V l,m
,2()
lm sm m m mgT v v T bcL -?= (3)
在上式的分子和分母上分别除以摩尔质量,(3)式可以表示为
122()
m
mgT v v T bcl -?=
(4)
(2)由于达到稳定状态时在钢板上、下表面之间存在△T 的温度差,而在dt 内从bc 面积的钢板上下传的热呈为dQ ,由傅里叶定律
T
dQ
bc
dt
a
κ?=-?
?
知道 Tdt
dQ bc a
κ?=-?
(5)
这部分热量使得bcdy ρ的质量的冰熔解,有
m dQ bcdy l ρ=?? (6)
由(4)式、(5)式、(6)式可以得到
1222()m mgT v v dy
dt l abc κρ-=??
正在阅读:
热学秦允豪第二版答案及解析05-03
工程流体力学课后习题答案 - 袁恩熙 - 流体力学第三章作业 - 图文12-05
公司办公室租房合同范本【最新9篇】03-26
2014年浙江省教师招聘考试资料 第三章 学校教育制度10-17
长江大学普通专升本考试经济学专业招生人数、考试科目、复习教材和试题及录取分数线05-27
第十三章整式的乘除测验题07-21
中小型企业绩效考核方案(实例)01-13
8月份模具钳工基础知识培训05-31
打破常规议论文五篇05-08
中国成语大会第九场选手成语描述 - 图文03-15
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 热学
- 解析
- 答案
- 秦允豪
- 《中层经理通用管理技能训练》-2天
- 数控重型车床项目可行性研究报告(2015年版)
- 2017_2018学年高中化学专题三物质的检验与鉴别3.1牙膏和火柴头中某些成分的检验教案苏教版选修6
- 2018年四川师范大学服装学院643综合美术理论之美术概论考研冲刺五套模拟题
- 唐雎不辱使命.试题及答案解析
- 2017年西南交通大学公共管理学院846经济学基础之西方经济学(微观部分)考研强化模拟题
- 我国网上银行的安全性问题分析
- 社会资源接入解决方案
- 13年浙江科研方法与论文写作试题与答案附案例
- 完整word唐雎不辱使命中考题汇编及答案 1推荐文档
- “粽叶飘香—话端午”主题班会
- 2016年东北大学文法学院805诉讼法学之《刑事诉讼法》考研冲刺模拟题及答案
- 苍龙逐日复刻版攻略心得与人物及武功简评
- 2018-2019年高中数学山东高考汇编测试试卷【92】含答案考点及解析
- 建筑材料租赁合同使用说明(doc 8页)
- 数据结构--员工管理信息系统代码
- 初中教师课件制作培训实施方案
- 2016-2017年黑龙江省牡丹江一高高一(下)期中物理试卷(解析版)
- 淄博论文网职称论文发表网-工程造价审核思考论文选题题目
- PMAC多轴运动控制卡学习(硬件)