Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group
更新时间:2023-05-02 03:59:01 阅读量: 教育文库 文档下载
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
8
2
ay
M
8
2
]
h
t
-
ep
h
[
3
v
9
9
2
.
5
8
:0v
i
XraInvestigatingtheUltravioletPropertiesofGravitywithaWilsonianRenormalizationGroupEquationAlessandroCodello Institutf¨urPhysik,Johannes-Gutenberg-Universit¨at,Staudingerweg7,D-59099Mainz,GermanyRobertoPercacci InstituteforTheoreticalPhysics,UtrechtUniversity,Leuvenlaan4,NL-3584,TheNetherlandsandSISSA,viaBeirut4,I-34014Trieste,ItalyChristophRahmede SISSA,viaBeirut4,I-34014Trieste,Italy,andINFN,SezionediTrieste,Italy
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
Abstract
Wereviewandextendinseveraldirectionsrecentresultsontheasymptoticsafetyapproachtoquantumgravity.ThecentralissueinthisapproachisthesearchofaFixedPointhavingsuitableproperties,andthetoolthatisusedisatypeofWilsonianrenormalizationgroupequation.Webeginbydiscussingvariouscuto schemes,i.e.waysofimplementingtheWilsoniancuto procedure.Wecomparethebetafunctionsofthegravitationalcouplingsobtainedwithdi erentschemes,studying rstthecontributionofmatter eldsandthentheso–calledEinstein–Hilberttruncation,whereonlythecosmologicalconstantandNewton’sconstantareretained.Inthiscontextwemakeconnectionwitholdresults,inparticularwereproducetheresultsoftheepsilonexpansionandtheperturbativeoneloopdivergences.WethenapplytheRenormalizationGrouptohigherderivativegravity.Inthecaseofageneralactionquadraticincurvaturewerecover,withincertainapproximations,theknownasymptoticfreedomofthefour–derivativeterms,whileNewton’sconstantandofthecosmologicalconstanthaveanontrivial xedpoint.Inthecaseofactionsthatarepolynomialsinthescalarcurvatureofdegreeuptoeightwe ndthatthetheoryhasa xedpointwiththreeUV–attractivedirections,sothattherequirementofhavingacontinuumlimitconstrainsthecouplingstolieinathree–dimensionalsubspace,whoseequationisexplicitlygiven.Weemphasizethroughoutthedi erencebetweenscheme–dependentandscheme–independentresults,andprovideseveralexamplesofthefactthatonlydimensionlesscouplingscanhave“universal”behavior.
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
I.INTRODUCTIONItiswellknownthatgeneralrelativitycanbetreatedasane ectivequantum eldtheory
[1,2,4].Thismeansthatitispossibletocomputequantume ectsduetogravitonloops,aslongasthemomentumoftheparticlesintheloopsiscuto atsomescale.Forexample,inthiswayithasbeenpossibletounambiguouslycomputequantumcorrectionstotheNewtonianpotential[2].Theresultsareindependentofthestructureofany“ultravioletcompletion”,andthereforeconstitutegenuinelowenergypredictionsofanyquantumtheoryofgravity.Whenonetriestopushthise ective eldtheorytoenergyscalescomparabletothePlanckscale,orbeyond,well-knowndi cultiesappear.Itisconvenienttodistinguishtwoordersofproblems.The rstisthatthestrengthofthegravitationalcouplinggrowswithoutbound.Foraparticlewithenergypthee ectivestrengthofthegravitational couplingismeasuredbythedimensionlessnumber
1Strictlyspeakingonlytheessentialcouplings,i.e.thosethatcannotbeeliminatedby eldrede nitions,needtoreachaFP.See[3]forarelateddiscussioninagravitationalcontext.
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
InordertoaddressthesecondproblemwehavetoinvestigatethesetofRGtrajectoriesthathavethisgoodbehaviour.WewanttousetheconditionofhavingagoodUVlimitasacriterionforselectingaQFTofgravity.IfalltrajectorieswereattractedtotheFPintheUVlimit,wewouldencounteravariantofthesecondproblem:theinitialconditionsfortheRG owwouldbearbitrary,sodeterminingtheRGtrajectoryoftherealworldwouldrequireinprincipleanin nitenumberofexperimentsandthetheorywouldlosepredictivity.Attheotherextreme,thetheorywouldhavemaximalpredictivepoweriftherewasasingletrajectoryendingattheFPintheUV.However,thismaybetoomuchtoask.AnacceptableintermediatesituationoccurswhenthetrajectoriesendingattheFPintheUVareparametrizedbya nitenumberofparameters.Atheorywiththesepropertiesissaidtobe“asymptoticallysafe”[5].
Tobetterunderstandthisproperty,imagine,inthespiritofe ective eldtheories,ageneralQFTwithallpossibletermsintheactionwhichareallowedbythesymmetries.Wecanparametrizethe(generallyin nitedimensional)“spaceofalltheories”,Q,bythedimensionlesscouplingsg i.Weassumethatredundanciesinthedescriptionofphysicsduetothefreedomtoperform eldrede nitionshavebeeneliminated,i.e.allcouplingsare“essential”(suchcouplingscanbede nede.g.intermsofcrosssectionsinscatteringexperiments).WethenconsidertheRenormalizationGroup(RG) owinthisspace;itisgivenbythebetafunctions
βi=kdg i
dk
where=Mij( gj g j ),
Mij= βi(3)
2RGtransformationsleadtowardslowerenergies,andthetrajectorieslyinginCarerepelledbytheFPunderthesetransformations.Forthisreason,Cisalsocalledthe“unstablemanifold”.SinceweareinterestedinstudyingtheUVlimit,itismoreconvenienttostudythe owforincreasingk.
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
TheattractivitypropertiesofaFParedeterminedbythesignsofthecriticalexponents i,de nedtobeminustheeigenvaluesofM.Thecouplingscorrespondingtonegativeeigenvalues(positivecriticalexponent)arecalledrelevantandparametrizetheUVcriticalsurface;theyareattractedtowardstheFPfork→∞andcanhavearbitraryvalues.Theonesthatcorrespondtopositiveeigenvalues(negativecriticalexponents)arecalledirrelevant;theyarerepelledbytheFPandmustbesettozero.
Afreetheory(zerocouplings)hasvanishingbetafunctions,sotheorigininQisaFP,calledtheGaußianFP.IntheneighborhoodoftheGaußianFPonecanapplyperturbationtheory,andonecanshowthatthecriticalexponentsarethenequaltothecanonicaldimen-sions( i=di),sotherelevantcouplingsaretheonesthatarepower–countingrenormalizable3.Inalocaltheorytheyareusually niteinnumber.Thus,aQFTisperturbativelyrenor-malizableandasymptoticallyfreeifandonlyifthecriticalsurfaceoftheGaußianFPis nitedimensional.PointsoutsideC owtoin nity,ortootherFP’s.Atheorywiththesepropertiesmakessensetoarbitrarilyhighenergies,becausethecouplingsdonotdivergeintheUV,andispredictive,becauseallbuta nitenumberofparametersare xedbytheconditionoflyingonC.Asymptoticsafetyisaformofnonperturbativerenormalizability.Itgeneralizesthispicture,replacingtheGaußianFPbyanarbitraryFP.Anasymptoticallysafetheorywouldhavethesamegoodpropertiesofarenormalizableandasymptoticallyfreeone:thecouplingswouldhavea niteUVlimitandtheconditionoflyingonCwouldleaveonlya nitenumberofparameterstobedeterminedbyexperiment.Ingeneral,studyingthepropertiesofsuchtheoriesrequirestheuseofnonperturbativetools.IfthenontrivialFPissu cientlyclosetotheGaußianone,itspropertiescanalsobestudiedinperturbationtheory,butunlikeinasymptoticallyfreetheories,theresultsofperturbationtheorydonotbecomebetterandbetterathigherenergies.
Inordertoestablishwhethergravityisasymptoticallysafe,severalauthors[5,6,7]ap-pliedthe expansionaroundtwodimensions,whichisthecriticaldimensionwhereNewton’sconstantisdimensionless.ThebetafunctionofNewton’sconstantthenhastheform
2βG = G+B1G,(5)
=Gk andB1<0[5,6],sothereisaFPatG = /B1>0.UnfortunatelythiswhereG
resultisonlyreliableforsmall anditisnotclearwhetheritwillextendtofourdimensions.
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
Inthee ective eldtheoryapproach(ind=4),Bjerrum-Bohr,DonoghueandHolsteinhaveproposedinterpreting
aclassofoneloopdiagramsasgivingthescaledependenceofNewton’sconstant[4].Theycalculate
G(r)=G01 167
r2 ,
whereristhedistancebetweentwogravitatingpointparticles.Ifweidentifyk=1/ar,withaaconstantoforderone,thiswouldcorrespondtoabetafunction
2167 βG=2G a
.ThiscalculationwasbasedonperturbativemethodsandsincetheFPoccurs
,itisnotclearthatonecantrusttheresult.WhatwecanatanotverysmallvalueofG167a2
saywithcon denceisthattheonsetoftherunningofGhastherightsignforasymptoticsafety.Clearlyinordertomakeprogressonthisissueweneeddi erenttools.
InthispaperwewilldiscusstheapplicationofWilsonianrenormalizationgroupmethodstotheUVbehaviorofgravity.InsectionIIwewillintroduceaparticularlyconvenienttool,calledthe“ExactRenormalizationGroupEquation”(ERGE)whichcanbeusedtocalculatethe“betafunctional”ofaQFT.Renormalizabilityisnotnecessaryandthetheorymayhavein nitelymanycouplings.InsectionIIIweillustratetheuseoftheERGEbycalculatingthecontributionofminimallycoupledmatter eldstothegravitationalbetafunctions.Inthissimplesetting,wewillreviewthetechniquesthatareusedtoextractfromthebetafunctionalthebetafunctionsofindividualcouplings,emphasizingthoseresultsthatare“schemeindependent”inthesensethattheyarethesameirrespectiveoftechnicaldetailsofthecalculation.InsectionIVweapplythesametechniquestothecalculationofthebetafunctionsforthecosmologicalconstantandNewton’sconstantinEinstein’stheoryinarbitrarydimensions,extendinginvariouswaystheresultsofearlierstudies[8,9,10,11,12].WealsoshowthattheFPthatisfoundinfour–dimensionalgravityisindeedthecontinuationfor →2oftheFPthatisfoundinthe2+ expansion.Wecomparevariouswaysofde ningtheWilsoniancuto and ndtheresultstobequalitativelystable.InsectionsVandVI
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
wemakeconnectionwitholdresultsfromperturbationtheory.InsectionVwerederivethe’tHooft–VeltmanoneloopdivergencefromtheERGEandweshowittobescheme–independent.WealsodiscusswhytheGoro –Sagnottitwoloopdivergencecannotbeseenwiththismethodandwediscussthesigni canceofthisfact.InsectionsVIandVIIweconsiderhigherderivativegravity.InsectionVIwederivetheexistenceoftheFPinthemostgeneraltruncationinvolvingfourderivativesatoneloop,andwehighlightthedi erencesbetweentheWilsonianprocedure[13]andearliercalculations.InsectionVIIweconsiderhigherpowersofcurvaturebutrestrictingourselvestopolynomialsinthescalarcurvature.Wegivemoredetailsofourrecentcalculations[14]andextendthemtopolynomialsofordereight.InsectionVIIIweassessthepresentstatusoftheasymptoticsafetyapproachtoquantumgravityanddiscussvariousopenproblems.
II.THEERGEANDITSAPPROXIMATIONS
ThecentrallessonofWilson’sanalysisofQFTisthatthe“e ective”(asin“e ective eldtheory”)actiondescribingphysicalphenomenaatamomentumscalekcanbethoughtofastheresultofhavingintegratedoutall uctuationsofthe eldwithmomentalargerthank
[15].Atthisgenerallevelofdiscussion,itisnotnecessarytospecifythephysicalmeaningofk:foreachapplicationofthetheoryonewillhavetoidentifythephysicallyrelevantvariableactingask4.Sincekcanberegardedasthelowerlimitofsomefunctionalintegration,wewillusuallyrefertoitastheinfraredcuto .Thedependenceofthe“e ective”actiononkistheWilsonianRG ow.
Thereareseveralwaysofimplementingthisideainpractice,resultinginseveralformsoftheRGequation.Inthespeci cimplementationthatweshalluse,insteadofintroducingasharpcuto inthefunctionalintegral,wesuppressthecontributionofthe eldmodeswithmomentalowerthank.Thisisobtainedbymodifyingthelowmomentumendofthepropagator,andleavingalltheinteractionsuna ected.Wedescribeherethisprocedureforascalar eld.WestartfromabareactionS[φ],andweaddtoitasuppressionterm Sk[φ]thatisquadraticinthe eld.In atspacethistermcanbewrittensimplyinmomentumspace.Inordertohaveaprocedurethatworksinanarbitrarycurvedspacetimewechoose
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
asuitabledi erentialoperatorOwhoseeigenfunctions n,de nedbyO n=λn n,canbetakenasabasisinthefunctionalspaceweintegrateover:
φ(x)= n n n(x),φ
naregeneralizedFouriercomponentsofthe eld.(Wewilluseanotationthatiswhereφ
suitableforanoperatorwithadiscretespectrum.)Then,theadditionaltermcanbewrittenineitherofthefollowingforms:
Sk[φ]=1
2 n 2Rk(λn).φn(7)
ThekernelRk(O)willalsobecalled“thecuto ”.Itisarbitrary,exceptforthegeneralrequirementsthatRk(z)shouldbeamonotonicallydecreasingfunctionbothinzandk,thatRk(z)→0forz kandRk(z)=0forz k.Theseconditionsareenoughto
ncorrespondingguaranteethatthecontributiontothefunctionalintegralof eldmodesφ
toeigenvaluesλn k2aresuppressed,whilethecontributionof eldmodescorrespondingak-dependentgeneratingfunctionalofconnectedGreenfunctionsby
e Wk[J]=Dφexp S[φ] Sk[φ] dxJφtoeigenvaluesλn k2areuna ected.Wewillfurther xRk(z)→k2fork→0.Wede ne
andamodi edk-dependentLegendretransform
Γk[φ]=Wk[J] dxJφ Sk[φ],
where Sk[φ]hasbeensubtracted.ThefunctionalΓkissometimescalledthe“averagee ectiveaction”,becauseitcanbeinterpretedasthee ectiveactionfor eldsthathavebeenaveragedovervolumesoforderk d(dbeingthedimensionofspacetime)[17].The“classical elds”δWk/δJaredenotedagainφfornotationalsimplicity.Inthelimitk→0thisfunctionaltendstotheusuale ectiveactionΓ[φ],thegeneratingfunctionalofone-particleirreducibleGreenfunctions.ItissimilarinspirittotheWilsoniane ectiveaction,butdi ersfromitinthedetailsoftheimplementation.
Theaveragee ectiveactionΓk[φ],usedattreelevel,givesanaccuratedescriptionofprocessesoccurringatmomentumscalesoforderk.Inthespiritofe ective eldtheories,weshallassumethatΓkexistsandisquasi–localinthesensethatitadmitsaderivative
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
expansionoftheform∞
Γk(φ,gi)=
whereg(n) g(n)(n)i(k)Oi(φ),(8)n=0i(n)
i(k)arecouplingconstantsandO iareallpossibleoperatorsconstructedwiththe eldφandnderivatives,whicharecompatiblewiththesymmetriesofthetheory.Theindexiisusedheretolabeldi erentoperatorswiththesamenumberofderivatives.Fromthede nitiongivenabove,itiseasytoshowthatthefunctionalΓksatis esthefollowing“ExactRenormalizationGroupEquation”(orERGE)[18,19]
kdΓk
2Tr Γ(2)+Rk 1kdRk
k
δφδφfortheinversepropagatorofthe eldφde nedbythefunctionalΓk.Ther.h.s.of(9)canberegardedasthe“betafunctional”ofthetheory,givingthek–dependenceofallthecouplingsofthetheory.Infact,takingthederivativeof(8)onegets
kdΓk
(n)dk=dgi
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
TheERGEcanbeseenformallyasaRG–improvedoneloopequation.Toseethis,recallthatgivenabareactionS(forabosonic eld),theoneloope ectiveactionΓ(1)is
1Γ(1)=S+.δφδφ
LetusaddtoSthecuto term(7);thefunctional
Γk=S+(1)(12)1
δφδφ+Rk, (13)
maybecalledthe“oneloopaveragee ectiveaction”.Itsatis estheequation
k(1)dΓk
2Tr δ2S
dk,(14)
whichisformallyidenticalto(9)exceptthatinther.h.s.therenormalizedrunningcou-plingsgi(k)arereplacedeverywherebythe“bare”couplingsgi,appearinginS.Thusthe“RGimprovement”intheERGEconsistsinreplacingthebarecouplingsbytherunningrenormalizedcouplings.Inthisconnection,notethatingeneralthecuto functionRkmaycontainthecouplingsgiandthereforethetermkd
dkRkinther.h.s.goestozeroformomentagreaterthankand
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
makestheintegrationconvergent.So,wecanregardthederivationgivenaboveasmerelyformalmanipulationsthatmotivatetheformoftheERGE,butthentheERGEitselfisperfectlywellde ned,withouttheneedofintroducinganUVregulator.IfweassumethatatagivenscalekphysicsisdescribedbyarenormalizedactionΓk,theERGEgivesusawayofstudyingthedependenceofthisfunctionalonk,andthebehaviorofthetheoryathighenergycanbestudiedbytakingthelimitofΓkfork→∞(whichneednotcoincidewiththebareactionS).
Inmostcasesitisimpossibletofollowthe owofin nitelymanycouplingsandacommonprocedureistoconsideratruncationofthetheory,namelytoretainonlya nitesubsetoftermsinthee ectiveactionΓk.Forexampleonecouldconsiderthederivativeexpansion(8)andretainalltermsuptosomegivenordern.Whateverthechoice,onecalculatesthecoe cientsoftheretainedoperatorsinther.h.s.of(9)andinthiswaythecorrespondingbetafunctionsarecomputed.IngeneralthesetofcouplingsthatonechoosesinthiswaywillnotbeclosedunderRGevolution,sooneisneglectingthepotentiale ectoftheex-cludedcouplingsontheonesthatareretained.Still,inthiswayonecanobtaingenuinenonperturbativeinformation,andthisprocedurehasbeenappliedtoavarietyofphysicalproblems,sometimeswithgoodquantitativeresults.Forreviews,see[22,23,24].
Ifwetruncatethee ectiveactioninthisway,thereisusuallynosmallparametertoallowustoestimatetheerrorwearemaking.Oneindirectwaytoestimatethequalityofatruncationreliesonananalysisofthecuto schemedependence.Thee ectiveactionΓkobviouslydependsonthechoiceofthecuto functionRk.Thisdependenceissimilartotheschemedependenceoftherenormalizede ectiveactioninperturbativeQFT;onlyphysicallyobservablequantitiesderivedfromΓkmustbeindependentofRk.Thisprovidesanindirectcheckonthequalityofthetruncation.Forexample,thecriticalexponentsshouldbeuniversalquantitiesandthereforecuto –independent.Inconcretecalculations,usuallyinvolvingatruncationoftheaction,criticalexponentsdodependonthecuto scheme,andtheobserveddependencecanbetakenasaquantitativemeasureofthequalityoftheapproximation.Ultimately,thereisnosubstituteforperformingcalculationswithtruncationsthatcontainmoreterms.Notethatagoodtruncationisnotnecessarilyoneforwhichthenewtermsaresmall,butoneforwhichthee ectofthenewtermsontheoldonesissmall.Inotherwords,insearchofanontrivialFP,wewanttheadditionofnewtermsnottoa ecttoomuchtheFPvalueofthe“old”couplings,northe“old”criticalexponents.
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
III.MATTERFIELDSANDCUTOFFSCHEMES
Inthissectionweillustratethemethodthatisusedtocomputethetraceinther.h.s.of
(9)inagravitationalsettingandtoevaluatethebetafunctionsofthegravitationalcouplings.Quitegenerally,wewillconsiderthecontributionof eldswhoseinversepropagatorΓ(2)isadi erentialoperatoroftheform = 2+E,where isacovariantderivative,bothwithrespecttothegravitational eldandpossiblyalsowithrespecttoothergaugeconnectionscoupledtotheinternaldegreesoffreedomofthe eld,andEisalinearmapactingonthequantum eld.Ingeneral,Ecouldcontainmasstermsortermslinearincurvature.Forexample,inthecaseofanonminimallycoupledscalar,E=ξR,whereξisacoupling.Apriori,nothingwillbeassumedaboutthegravitationalactionandalsothespacetimedimensiondcanbeleftarbitraryatthisstage.
InordertowritetheERGEwehavetode nethecuto .Fortheoperatortobeusedinthede nitionof(7),severalpossiblechoicessuggestthemselves.LetussplitE=E1+E2,whereE1doesnotcontainanycouplingsandE2consistsonlyoftermscontainingthecouplings.Wecallacuto oftypeI,ifRkisafunctionofthe“bareLaplacian” 2,oftypeIIifitisafunctionof 2+E1andoftypeIIIifitisafunctionofthefullkineticoperator = 2+E.Thesubstantialdi erencebetweenthe rsttwotypesandthethirdisthatinthelattercase,duetotherunningofthecouplings,thespectrumchangesalongthe ow.Forthisreasonthesecuto saresaidtobe“spectrallyadjusted”[25].6
LetusnowrestrictourselvestothecasewhenE2=0,i.e.thekineticoperatordoesnotdependonthecouplings;thenthereisonlyachoicebetweencuto softypeIandII.ThederivationofthebetafunctionsistechnicallysimplerwithatypeIIcuto .InthiscasewechoosearealfunctionRkwiththepropertieslistedinsectionIIandde neamodi edinversepropagator
Pk( )= +Rk( ).(15)
IftheoperatorEdoesnotcontaincouplings,using(A10)thetraceinther.h.s.oftheERGE
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
reducessimplyto:
∞
Tr tRk( )
(4π)d/2 QdB2i( )(16)
i=0Pk
whereB2i( )aretheheatkernelcoe cientsoftheoperator andtheQ-functionals,de nedin(A14,A15)aretheanalogsofmomentumintegralsinthiscurvedspacetimesetting.Wehavewritten tRktodenotethederivativewithrespecttotheexplicitdependenceofRkonk;whentheargumentofRkdoesnotcontaincouplingsthiscoincideswiththetotalderivatived
Pk( 2)+E.SinceEislinear
incurvature,inthelimitwhenthecomponentsofthecurvaturetensorareuniformlymuchsmallerthank2,wecanexpand
tRk
P +1.
k
Eachoneofthetermsonther.h.s.canthenbeevaluatedinawayanalogousto(A10),sointhiscasewegetadoubleseries:
Tr tRk( 2)
(4π)d/ ∞2 ∞Qd
i=0 =0Pk +1 dx√
Pkm
appearingin(16)and(18)willbeequaltok2(n m+1)timesanumberdependingonthepro le function.AsdiscussedinAppendixA,theintegralswithm=n+1areindependentoftheshapeofRk.Thus,ineven-dimensionalspacetimeswithacuto oftype
thecoe cientoftheterminthesum(16)withi=d
Pk II,andusing(A19),Bd( )=2Bd( ).On
theotherhandwithatypeIcuto ,using(A18),(A19)and(A5)thetermswith =d
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
addupto
d/2 =0Q
=2
=2Bd( 2+E) tRkg( 1) trE b2i( 2)Ed/2b0( 2) dx√(d/2)!
Therefore,inadditiontobeingindependentoftheshapeofthecuto function,thesecoef- cientsarealsothesameusingtypeIortypeIIcuto s.
Asanexamplewewillnowspecializetofour-dimensionalgravitycoupledtonSscalar elds,nDDirac elds,nMgauge(Maxwell) elds,allmasslessandminimallycoupled:
√¯µ µψ+1 µφ µφ+ψγΓk(gµν,φ,ψ,Aµ)=d4x2
d;E(M)=Ricci;E(gh)=0.(20)
Here“Ricci”standsfortheRiccitensorregardedasalinearoperatoractingonvectors:Ricci(v)µ=Rµνvν.Forthegauge eldswehavechosentheLorentzgauge,and (gh)istheoperatoracting
onthescalarghost.(Itcanbeshownthattheresultsdonotdependonthechoiceofgauge[26].)
WithatypeIIcuto ,foreachtypeof eldwede nethemodi edinversepropagatorPk( (A))= (A)+Rk( (A)).Then,theERGEreducessimplyto
(S)dΓk tRk( ) tRk( (D))Tr(S)Tr(D)22 tRk( (M))Tr(M)2Pk( (gh))
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
=1
(4π)2
+
+11 d4x√ Pk Pk
32π2 d4x√
dt=nS
2Tr(M)Pk( 2) tRk( 2) nDPk( 2)+R
Pk( 2) .(22)
Expandingeachtraceasin
(A10),collectingtermswiththesamenumberofderivativesofthemetric,andkeepingtermsuptofourderivativesweget
dΓk1 tRkg(nS 4nD+2nM)Q22
tRk tRkQ1Q1nD263Pk 1 tRk+ Q2Pk 180
+5nSR2+12(nS+nD 3nM) 2R +.... (3nS+18nD+36nM)C2 (nS+11nD+62nM)E(23)
Weseethatthetermslinearincurvature,whichcontributetothebetafunctionofNew-ton’sconstant,havechanged.However,thetermsquadraticincurvaturehavethesame
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
coe cientsasbefore,con rmingthatthebetafunctionsofthedimensionlesscouplingsarescheme–independent.
Inordertohavemoreexplicitformulae,andinnumericalwork,oneneedstocalculatealsothescheme–dependentQ-functionals.Thisrequires xingthepro leRk.Inthispaperwewillmostlyusetheso–calledoptimizedcuto (A21)inwhichtheintegralsarereadilyevaluated,seeequations(A22,A23,A24).Thiscuto hastheveryconvenientpropertythatQ n tRk
dt= tRk+ R′ E
k
i
dt=a(n)
ik4 n,
wherea(n)areconstants.Then,thebetafunctionsofthedimensionlessvariablesg (n)
ii=
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
kn 4gi(n)are
dg i(n)
4 n,
1(25)inparticularwritingg(0)=2ZΛandg(2)= Z=
dt dG +8πa(0)G +16πa(2)G Λ ,= 2Λ
4nS 4nD+2nM
dependingonwhethertherearemoreNotethattheFPoccursforpositiveornegativeΛ
,ontheotherhand,willbebosonicoffermionicdegreesoffreedom.TheFPvalueofG
positiveprovidedtherearenottoomanyscalar elds.Forn=4,(24)givesalogarithmicrunning
gi(k)=gi(k0)+ailn(k/k0),
implyingasymptoticfreedomforthecouplings1/gi.ThisisthesamebehaviorthatisobservedinYang–Millstheoriesandisinaccordancewithearlierperturbativecalculations
[29,30].Asnoted,itfollowsfrom(A24)thatwiththeoptimizedcuto ,forn>4,g i =0.ThecriticalexponentsatthenontrivialFPareequaltothecanonicaldimensionsoftheg(n)’s,soΛandGareUV–relevant(attractive),1/gi(4)(n)(4)(4)(4)(4) nS+2nD+4nM.(27)aremarginalandallthehighertermsareUV–irrelevant.NotethatinperturbationtheoryGisirrelevant.AtthenontrivialFPthequantumcorrectionsconspirewiththeclassicaldimensionsofΛandGtoreconstructthedimensionsofg(0)andg(2).Thismusthappenbecausethecriticalexponentsforg(0)andg(2)areequaltotheircanonicaldimensionsandthecriticalexponentsareinvariantunderregularcoordinatetransformationsinthespaceofallcouplings;thetrasformationbetween andgG (2)isregularatthenontrivialFP,butitissingularattheGaußianFP.
Thissimple owisexactinthelimitN→∞,butisalsoaroughapproximationwhengravitone ectsaretakenintoaccount,asweshalldiscussinsectionsIV-GandVI.Itisshownin gure1.
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
G
FIG.1:Thegenericformofthe owinducedbymatter elds.
IV.EINSTEIN’STHEORY
Asa rststeptowardstheinclusionofquantumgravitationale ects,wediscussinthissectiontheRG owforEinstein’sgravity,withorwithoutcosmologicalconstant.Thistruncationhasbeenextensivelydiscussedbefore[8,10].Herewewillextendthoseresultsinvariousdirections.Sincethedependenceoftheresultsonthechoiceofgaugeandpro lefunctionRkhasalreadybeendiscussedin[10,11]hereweshall xourattentiononaparticulargaugeandpro lefunction,andanalyzeinsteadthedependenceoftheresultsondi erentwaysofimplementingthecuto procedure.Thesimplicityofthetruncationwillallowustocomparetheresultsofdi erentapproximationsandcuto schemes,aluxurythatisprogressivelyreducedgoingtomorecomplicatedtruncations.
ThetheoryisparametrizedbythecosmologicalconstantΛandNewton’sconstantG=1/(16πZ),sothatwesetg(0)=2ΛZandg(2)= Zinequation(8).Allhighercouplingsareneglected.Thenthetruncationtakestheform
√Γk=dx
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
ofthetype:
SGF(g(B),h)=
whereZg(B)χµg(B)µνχν,1+ρ(29)χν= µhµν
2
includingthegauge xingterm,canbewrittenintheform
1
containingtheminimaloperator:
Γk
where8(2)µνρσ 1,whichleadstoconsiderablesimpli cation.Theinversepropagatorofhµν,ghµνΓk(2)µνρσhρσ µν µν=ZKρσ( 2 2Λ)+Uρσ,
;µνδρσ=(30)µνKρσ=1
2
1µνPρσ 1dgµνgρσ;µνµνUρσ=RKρσ+
gh.dµνUsingthatK=1
2
equation(30)ineitherofthefollowingforms:
Γk(2) P,ifd=2wecanrewrite=ZK( 2 2Λ1+W)Z=2 P 2 2Λ1 4
2(d 2)(Rρσgµν+gρσRµν Rgρσgµν).
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
Notethattheoverallsignofthesecondterminthesecondlineof(31)isnegativewhend>2.ThisisthefamousproblemoftheunboundednessoftheEuclideanEinstein–teron,wewillneedthetraces:
tr1=d(d+1)
RµνRµν+3
d 22d 5d2+8d+4;trW=d(d 1)
Onthed-dimensionalspherewecanwrite
U=1 νµ¯µ 2δµgC RννC.R Pd 2
dR .d(d 1)
Then,usingthesecondlineof(31),wehave
Γk=(2)Z
d(d 1)R d 2
dR .
(33)
Wewillnowdiscussseparatelyvarioustypesofcuto schemes.
A.Cuto oftypeIa
Thisistheschemethatwasusedoriginallyin[8].Itisde nedbythecuto term
1√ Sk[hµν]=ghµνRk( 2)µνρσhρσ dx
dZ
Z
22=ZK tRk( )+ηRk( ).
dt(37)
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian r
Thecalculationin[8]proceededasfollows.ThebackgroundmetricischosentobethatofEuclideandeSitterspace.Themodi edinversepropagatorisobtainedfrom(33)justreplacing 2byPk( 2).Usingthepropertiesoftheprojectors,itsinversionistrivial:
Γ(2)+R 121
kk=P2
k 2Λ+d 3d+4d 2P (38)
dR
Decomposinginthesamewaythetermd
tRk+ηRk
dt=1
Pδ tRk
k 2Λ+d2 3d+42TrxLPν.
dR TrxLµ
d
Onecannowexpandto rstorderinR,usethetraces(32)andformula(A10)toobtain:
dΓk
(4π)d/2 dx√
Pk
d(d+ 2Λ dQd+1)tRk+ηRk
2 16Qd
d(d 1)
2 4Qd tRk+ηRk2 Pk Pk tRk
正在阅读:
Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group05-02
三行情书活动策划04-22
学位论文—健美操论文高校女生健美操之我见04-27
职业生涯提升检测作业含答案11-24
医学微生物学名词解释和问答题11-16
由纪录片的定义审视纪录片的真实性12-29
择日子的选用日课要诀10-26
关于认真贯彻落实《山东省工业生产建设项目安全设施监督管理办法06-07
YYUC开发手册06-21
- 1Investigating Connector Faults in the Time-Triggered Architecture
- 2Properties of Hadrons in the Nuclear Medium
- 37.1 Conditional Properties(part)
- 4Luminescence properties of defects in GaN
- 5order by、group by、having的用法区别
- 6The penultimate rate of growth for graph properties
- 7Microstructures and properties of high-entropy alloys
- 8Hay Group合益集团绩效分析
- 9Commercial Case Study on Processing Tahe Medium Gravity Cru
- 10Quantum Group Covariance and the Braided Structure of Deformed Oscillators
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- Renormalization
- Investigating
- Ultraviolet
- Properties
- Wilsonian
- Gravity
- Group
- with
- 猴宝宝起名字 精选50个经典创意好名字
- 招投标试题及答案
- 成语故事比赛主持词
- 2018工伤认定标准以及工伤赔偿标准
- 鲁教版2015年四年级品德与社会下册第三单元测试题(精品)
- 成人高考专升本政治复习资料
- 会计综合实训课程教学存在的问题及对策_王美荣
- 事业单位基本工资标准表_薪级工资套改表
- 第一章 计算机基础习题
- 2012广州一模理数
- 高压旋喷桩施工工艺流程
- 浅议图书馆微信—从微信营销看图书馆微信的发展
- 实验设计与数据处理第三四五章例题及课后习题答案
- 制药企业如何准备GMP认证
- 生猪生态养殖场环境影响报告书
- 趣味谜语技巧解答
- 2015_人力资源管理师二级教材复习整理笔记
- 健康教育学试题1
- 2015-2016学年北京课改版七年级语文下册期末测试卷及答案
- 铸造多晶硅中杂质对少子寿命的影响