Plant Functional Genomics. Science

更新时间:2023-06-02 05:21:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

PLANTBIOTECHNOLOGY:FOODANDFEED

PlantFunctionalGenomics

ChrisSomerville*andShaunaSomerville

NucleotidesequencingoftheArabidopsisgenomeisnearingcompletion,sequencingofthericegenomehasbegun,andlargeamountsofexpressedsequencetaginformationarebeingobtainedformanyotherplants.Therearemanyopportunitiestousethiswealthofsequenceinformationtoaccelerateprogresstowardacomprehensiveunderstandingofthegeneticmechanismsthatcontrolplantgrowthanddevelopmentandresponsestotheenvironment.

Therecentcompletionofthegenomese-quencesofanumberofbacterialspeciesandseveraleukaryotes(1)hasdemonstratedthefeasibilityandutilityofsequencinglargege-nomes.Mostbiologistsnowenvisionthedaywhenthecompletegenomesequenceoftheirfavoriteorganisms,oraproxythereof,willbeavailableinpowerfulelectronicdatabases.Accesstothisinformation,andnewtoolsthatexploitit,willprofoundlyalterthewaysweselectandapproachquestionsinbiology.This,inturn,willdirectlyaffecttheapplica-tionofgeneticmethodsforimprovingeco-nomicallyimportantspecies.Althoughfuturedevelopmentsinarapidlyemergingfieldaredifficulttopredict,webelievemanyofthemajordevelopmentsingenomicsthatwillinfluencebasicresearchinplantbiologyandplantimprovementduringthenextdecadecanbeanticipated.Someofthesepossibili-tiesaresummarizedhereaswellasinrecentarticles(2,3).

nomesequenceofArabidopsiswillbeavail-ablebytheendoftheyear2000.

BecauseArabidopsisisonlydistantlyre-latedtothecerealcropsthatprovidethebulkoftheworld’sfoodsupply,thegenomeofricewillalsobesequencedduringthenextdecade(6).Ricewaschosenbecause,inad-ditiontoitsimportanceasafoodsourceforaboutone-quarterofthehumanpopulation,ithasoneofthemostcompactgenomesamongthecereals.Itcontainsabout3.5timesasmuchDNAasArabidopsisbutonlyabout20%asmuchDNAasmaizeandabout3%asmuchDNAaswheat(7).However,thege-nomeorganizationofthecerealsappearstobeveryhighlyconserved;rice,wheat,maize,sorghum,millet,andothercerealsexhibitahighdegreeofsynteny(8).Thedifferencesingenomesizeareprimarilyduetoamplifica-tionofinterspersedrepetitivesequences(9);thereisnoevidencethatangiospermswithlargeamountsofDNApercellhavesubstan-tiallygreaternumbersoffunctionalgenesthan

angiospermswithrelativelysmallamountsofDNA.Becauseofextensivesyntenyamongthecerealgenomes,knowledgeofgeneorderandorganizationinricemaybeusedtoisolateandcharacterizethecorrespondinggenesinothercereals(8,10).Thus,forinstance,ifageneticlocuswhereausefultraitisencodedismappedbetweenapairofcloselylinkedmolecularmarkersinwheat,itmaybepossibletoiden-tifycandidategenesforthericeorthologbyanalyzingthericegenomesequencelocatedbetweenthericeorthologsofthemolecularmarkers.

ThesequencesofArabidopsisandricewillprovidetwofocifromwhichthegenomecontentsofotherhigherplantscanbeextrap-olated.Itappearslikelythat,asthecostsofDNAsequencingcontinuetodecrease,addi-tionalplantgenomesmayeventuallybese-quenced.However,duringthenextdecadeadditionalcompleteplantgenomesequencesprobablywillnotbepubliclyavailablebe-causeofthehighcostofsequencingthewholegenomeofanyofthemajorcrops.Forinstance,thecostofsequencingthemaizegenomeisexpectedtobeaboutthesameasthecostofsequencingthehumangenome.However,extensivepartialcDNAsequenceinformationwillbepubliclyavailableformostofthegenesfrommanyimportantplantspecies(11).Therearecurrentlymorethan

REVIEW

ADNASequenceTransect

OneofthefirsteukaryoticorganismsthatwillbecompletelysequencedisthesmallmustardspeciesArabidopsisthaliana(4)(Fig.1).Duringthepastdecade,Arabidopsishasemergedasoneofthemostwidelyusedmodelorganismsforstudyingthebiologyofhigherplants.Asamemberofthemustardfamily,itiscloselyrelatedtomanyfoodplantssuchascanola,cabbage,cauliflower,broccoli,turnip,rutabaga,kale,brusselssprouts,kohlrabi,andradish.Itwaschosenforsequencingbecauseithasahighlycom-pactgenomeofabout130MbwithlittleinterspersedrepetitiveDNA.SixresearchgroupsinJapan,Europe,andtheUnitedStatesarecollaboratingonthesequencing.About59%ofthegenomesequenceiscur-rentlyavailableinpublicdatabasesandalargeproportionofthegenesarealsorepre-sentedbypartialcDNAsequences(4,5).Itiscurrentlyanticipatedthatthecompletege-CarnegieInstitutionofWashington,DepartmentofPlantBiology,260PanamaStreet,StanfordCA94305,USA.

*Towhomcorrespondenceshouldbeaddressed.E-mail:crs@andrew2.stanford.edu

Fig.1.StatusoftheArabidopsisgenomesequencingproject.The vechromosomesarerepresentedbyrectangles;lengthisapproximatelytoscale.GreenregionsrepresentannotatedsequencesavailableinGenBank;yellowrepresentsregionscompletedandlargelyavailableinvariousdatabases;orangeindicatesregionsthatarecurrentlybeingsequenced;grayindicatesregionsinpreparationforsequenc-ing.FromtheArabidopsisdatabaseAtDB(http://genome-www3.stanford.edu/cgi-bin/AtDB/Schrom)withpermission.

PLANTBIOTECHNOLOGY:FOODANDFEED

127,000expressedsequencetag(EST)se-quencesfrom19plantspeciesinpublicda-tabasesandthenumberisexpectedtogrowrapidlyduringthenextseveralyears.Thesesequenceswillprovideisomorphismsbe-tweenthemodelgenomesandotherspecies,formingakindoftransectthroughgenomediversityinhigherplantsthatisanchoredincomprehensiveknowledgeofthetworepre-sentativespecies.Thus,asgenesassociatedwithfunctionsortraitsinoneplantarecloned,itusuallywillbepossibletoidentifytheorthologsresponsibleforthetraitinotherplantspeciesbyadatabasesearchorbyusingthesequenceinformationtoclonethecorre-spondinggenefromthespeciesofinterest.

ofprobablegenefunction,ifitisknown,inanyhigherplant.Thisisillustratedbyacomparisonofsequenceidentityofaran-domsampleofputativelyorthologousriceandArabidopsisproteins(Fig.2).Becauseoftherelativelyrecentradiationoftheangiosperms,weconsideritlikelythattherewillbeveryfewprotein-encodingangiospermgenesthatdonothaveor-thologsorparalogsinArabidopsisorrice.Therefore,understandingthegeneticbasisfordiversitymaydevolvetoidentifyingtherelevantdifferencesinthecontrolofex-pressionorthefunctionofessentiallythesamesetofgenes.Indeed,ithasbeenhypothesizedthatthedevelopmentaldiver-sityofhigherplantsmaybelargelyduetochangesinthecis-regulatorysequencesoftranscriptionalregulators(12).

Amajorchallengetounderstandingthegeneticbasisofinterspeciesdiversityisthat,inatleastsomecases,minorchangesinthestructureorexpressionofagenemayleadtomajorchangesinphenotype.Thiswasrecentlyillustratedforthegenesthatcontrolmodificationsoffattyacidsinplants(13).Higherplantscollectivelypro-ducemorethan200fattyacids,whichac-cumulateasstorageoilsinseeds.Thesefattyacidsdifferprimarilybecauseofthepresenceofdoublebonds,hydroxyls,ep-oxygroups,triplebonds,orsecondarymodificationsofthesefunctionalgroupsatvariouscarbonsalongthefattyacylchains.Ithasrecentlybecomeapparentthatthesefunctionalgroupsareproducedbyafamilyofcloselyrelatedfattyacyldesaturase-likeenzymes(14).Theobservationthatasfewasfouraminoacidsubstitutionscancon-vertadesaturasetoahydroxylaseillus-trateshownewchemicalconstituentscanaccumulatewithouttheevolutionofanob-viouslydistinctenzyme(13).Largegenefamilieshavealsobeenobservedforcyto-chromeP450s,enzymesinvolvedinpoly-saccharidebiosynthesis,disease-relatedgenes,transcriptionfactors,proteinkinases,andphos-phatasestonameafew.Thus,amajorchal-lengeassociatedwithexploitingtheexplosionofgenomeinformationwillbeindeducingrulesthatcanpredicttheprecisefunctionofmembersofgenefamilies.

Onepromisingavenue,termedphylo-genomics,exploitstheuseofevolutionaryinformationtofacilitateassignmentofgenefunction(15).Theapproachisbasedontheideathatfunctionalpredictionscanbegreatlyimprovedbyfocusingonhowgenesbecamesimilarinsequenceduringevolutioninsteadoffocusingonthesequencesimilarityitself.Becausethepoweroftheanalysisincreasesinproportiontothenumberofsequencesthatareavailable,thismethodshouldbecomemoreusefulasthedatabaseofplantsequenc-esexpands.

FloweringPlantsContaintheSameGenes

Althoughfloweringplantshaveevolveddur-ingthepast150millionyearsorsoandthereforemightbeexpectedtobeverysimi-laratthegeneticlevel,substantialdevelop-mentalandmetabolicdiversityexists.Under-standingthebasisforthisdiversityisakeytounderstandinghowtoeffectrationalim-provementsintheproductivityandutilityofcropspecies.Knowledgeofthegeneticbasisforintraspeciesvariationinspecifictraitsshouldbeusefulforselectingorcreatingusefulvariationwithinaspecies.

TheavailabilityofextensiveESTinfor-mationformanyspecies,inconjunctionwiththecompletesequencesofriceandArabidopsis,willallowunambiguousin-sightintothequestionofhowsimilarthegenomesofhigherplantsare.WhentheArabidopsisandricesequencesarecom-plete,itwillbepossibletodirectlycomparealltheESTandotheravailablesequencesfromvariousplantswiththegenomicse-quencesfromthemodelgenomes.Ourpre-liminaryanalysisofavailablesequencessuggeststhatmostgeneproductsfromhigherplantsexhibitadequatesequencesimilaritytodeducedaminoacidsequencesofotherplantgenestopermitassignment

AssigningFunctiontoGenes

Oneofthemajorefficienciesthathasemergedfromplantgenomeresearchtodateisthatabout54%ofhigherplantgenescanbeassignedsomedegreeoffunctionbycomparingthemwiththesequencesofgenesofknownfunction(16)(Fig.3).Ineffect,auniversalbiologyhascoalescedfromthecommonlanguageofgeneandproteinsequences.Unfortunately,knowingthegeneralfunctionfrequentlydoesnotprovideaninsightintothespecificroleintheorganism.Forinstance,onthebasisofsequenceanalysis,about13%ofArabidop-sisgenesareinferredtobeinvolvedintranscriptionorsignaltransduction(16).However,knowingthatageneencodesakinaseortranscriptionfactordoesnotpro-videanyusefulinformationaboutwhatpro-cessesarecontrolledbythesegenes.Thus,completionofthegenomesequencesofAra-bidopsisandricewillbefollowedbyasec-ondphaseoflarge-scalefunctionalgenomicsinwhichallofthe20,000to25,000genesthatmakeupthebasicangiospermgenomewillbeassignedfunctiononthebasisofexperimentalevidence.Consideringthatthecombinedeffortsoftheplantbiologycom-

Fig.2.SequenceidentityofArabi-dopsisandriceproteins.Percentsequenceidentityoverthefulllengthoftheproteinswascalcu-latedfor64randomlyselectedproteinsforwhichtheprobablefunctionwasknownandforwhichfull-lengthornear-full-lengthse-quenceswereavailable.Toavoidcomparingmembersoflargemul-tigenefamilies,wedidnotincludeaproteininthecomparisonifse-quenceswereavailableformorethantwoapparentlyrelatedpro-teinsfromeitherofthespecies.Becauseitisuncertainwhether

other,morecloselyrelatedproteinsareencodedintheunsequencedregionsoftheArabidopsisorricegenome,thisanalysisunderestimatesthedegreeofidentitybetweenthesequencesofArabidopsisandriceproteins.

Fig.3.Functionalclassi cationofpredictedgenesina1.9-MbregionoftheArabidopsisgenome.Proteinrelatedreferstogeneproductsinvolvedinsynthesis,degradation,modi ca-tion,storage,andtargetingofproteinsandinintracellulartraf cking.Analysiswasbasedon389predictedorknowngenes.From(16).

SCIENCEVOL28516JULY1999381

munityhaveresultedindirectfunctionalanalysisofonlyabout1000genestodate(5),thismayseemlikeatallorder.However,itappearslikelythattheefficiencygainedby“reversegenetics”rgecollectionsofinsertionmutantsareavailableforArabidopsis,maize,petunia,andsnapdragon,andcollectionsofinsertionmutantswillprobablybecreatedinseveralotherspeciesincludingrice.Thesecollectionscanbescreenedforaninsertionalinactivationofanygenebyusingthepoly-merasechainreaction(PCR)primedwitholigonucleotidesbasedonthesequencesofthetargetgeneandtheinsertionalmutagen(3,17).ThepresenceofaninsertioninthetargetgeneisindicatedbythepresenceofaPCRproduct.BymultiplexingDNAsam-ples,hundredsofthousandsoflinescanbescreenedandthecorrespondingmutantplantscanbeidentifiedwithrelativelysmalleffort.Inaddition,severalgroupsareembarkingonsequencingthegenomicDNAflankingalargenumberofinsertionssothataninsertioninvirtuallyanygenecanbeidentifiedbyacomputersearch(2,18).Analysisofthephe-notypeandotherpropertiesofthecorre-spondingmutantwillfrequentlyprovideaninsightintothefunctionofthegene.

AmajorlimitationtotheanalysisofgenefunctionbymutationisthatahighdegreeofgeneduplicationisapparentinArabidopsis(16)andis,therefore,probablyacommonfeatureofplantgenomes.BecausemanyofthegeneduplicationsinArabidopsisareverytightlylinked,itusuallywillnotbefeasibletoproducedoublemutantsbygeneticrecom-bination.Apossiblesolutionmaybetousehomologousrecombinationtoeliminatetan-demgenessimultaneouslybygenereplace-ment(19).Alternatively,amethodforpro-ducingpointmutationsbyusingRNA-DNAhybridsmaybeuseful(20).Bytargetingmutagenicsequencesthatintroducestopco-donstoregionsthatareconservedamongallduplicatesitmaybepossibletogenerateallcombinationsofnullmutationsinallmem-bersofamultigenefamilyfromoneexperi-ment.Althoughthesemethodsareamenabletoagene-by-geneapproach,theyarenotwellsuitedtoahighthroughputapproachbecauseoflowefficiencyorbecauseofthenecessityofregeneratingplantsfromsingleculturedcells.BecauseoftheeasewithwhichlargenumbersoftransgenicArabidopsisplantscanbegeneratedbyinfectingflowerswithAgrobacteriumtumefacienscontaininganin-sertionalmutagen(21),amethodofgenesilencingbasedonproducingdouble-strand-edRNAfrombidirectionaltranscriptionofgenesintransgenicplantsmaybebroadlyusefulforhigh-throughputgeneinactivation(22).Thismethodcould,inprinciple,bede-signedtousepromotersthatareexpressedinonlyafewcelltypesorataparticulardevel-opmentalstageorinresponsetoanexternalstimulus.Thiscouldsignificantlyobviateproblemsassociatedwiththelethalityofsomemutations.Althoughthemechanismisnotyetunderstood,itbearssomeresem-blancetodouble-strandedRNA–mediatedgenesilencinginnematodes(23).

Formanyapplications,particularlyinspe-ciesotherthanArabidopsiswhereproductionoftensofthousandsoftransformantsisslowandtime-consuming,virus-inducedgenesi-lencingmaybethemostfacilemethodforsuppressinggenefunction(24).Thismethodexploitsthefactthatsomeorallplantshaveasurveillancesystemthatcanspecificallyrecognizeviralnucleicacidsandmountasequence-specificsuppressionofviralRNAaccumulation.Byinoculatingplantswitharecombinantviruscontainingpartofaplantgene,itispossibletorapidlysilencetheendogenousplantgene(25).

Itisexpectedthatapplicationoftheseandrelatedmethodswillleadtotheassignmentofsomedegreeofgenefunctiontoallgenesinthebasicangiospermgenomewithinthenextdecade.Inaddition,parallelstudiesofthefunctionofgenesinother,nonplant,organ-ismswillcontributeagreatdealtounder-standinggenefunction.Thiscomprehensiveapproachtounderstandinggenefunctionwillgreatlyfacilitatethecreationofplantim-provementsthatarebasedonknowledgeoftheentiresysteminsteadofonagene-by-genebasis.

rolesofthegeneaffectedbythemutation(27).

Thesedatabasesofgeneexpressioninfor-mationwillprovideinsightsintothe“path-ways”ofgenesthatcontrolcomplexresponsesandwillbeafirststeptowardanecologyofthegenomeinwhichthegenomeisviewedasawholeandtherelationshipsofgeneproductstoeachotherwillbeconsideredfromatleastoneperspective(relativelevelofexpression).Per-hapsthetypesofmodelsthatecologistscurrent-lyuseforunderstandingtheinteractionsineco-systemswillproveuseful(28).Indeed,becausemicroarrayscanbemadeforanyorganismforwhichcomplementaryDNAscanbeisolateditseemslikelythatecologicalapplicationswillbefound.ItisnotnecessarytoknowthesequenceofthegenesonaDNAmicroarraybefore-hand—thiscanbedeterminedafterthearrayshavebeenusedtoidentifygenesthatmaybeofinterestbysomecriterion.

TheaccumulationofDNAmicroarrayorgenechipdatafrommanydifferentexperi-mentswillcreateapotentiallyverypowerfulopportunitytoassignfunctionalinformationtogenesofotherwiseunknownfunction.Thecon-ceptualbasisoftheapproachisthatgenesthatcontributetothesamebiologicalprocesswillexhibitsimilarpatternsofexpression.Thus,byclusteringgenesbasedonthesimilarityoftheirrelativelevelsofexpressioninresponsetodi-versestimuliordevelopmentalorenvironmen-talconditions,itshouldbepossibletoassignhypotheticalfunctionstomanygenesbasedontheknownfunctionofothergenesinthecluster(29).Workwithplantmicroarraysisjustbegin-ningbutthereiseveryreasontobelievethatthisapproachwillsoonbeastandardcomponentoftherepertoireofplantbiologists(30).Theprin-cipalchallenge,atpresent,istodevelopmeth-odsfordatabasingandinterrogatingthemas-siveamountsofdatathatresultfromthistypeofexperiment.

Oneofthemostimportantadvancesinplantimprovementwasthediscoveryofhybridvigorandtheexploitationofthisphenomenoninmodernbreedingprograms.Inspiteofexten-sivespeculationaboutthemechanisticbasisforhybridvigor,itispoorlyunderstood(31).Itwillbeveryinterestingtocomparewholegenomemicroarraysofinbredparentallineswiththeheterotichybrids.Wespeculatethatthehybridswillexhibitsignificantdifferencesintheex-pressionofclustersoffunctionallyrelatedgenesandthatdifferenthybridswillhavedif-ferentpatternsofexpression.Ifthisprovestobethecase,itmaybepossibletoprogresstowardmorepredictivedevelopmentofheterotichy-bridsbybreedingforcertainpatternsofgeneexpression.Itmayalsoprovideamuchneededlinkagebetweenthebreedingofdifferentplants—thatis,ifitisfoundthatvariationintheexpressionofcertainpathwaysorprocessesisassociatedwithenhancedyieldorqualityinonespecies,thismayprovidetestabletargetsfor

ImpactofGeneChipsandMicroarrays

Oneofthemostimportantexperimentalapproachesfordiscoveringthefunctionofgenespromisestobegenechipsandmi-croarrays.Inprinciple,DNAsequencesrepresentingallthegenesinanorganismcanbeplacedonminiaturesolidsupportsandusedashybridizationsubstratestoquantitatetheexpressionofallthegenesrepresentedinacomplexmRNAsample(26).Thus,wemayexpecttohaveexten-sivedatabasesofquantitativeinformationaboutthedegreetowhicheachgenere-spondstopathogens,pests,drought,cold,salt,photoperiod,andotherenvironmentalvariation.Similarly,wewillhaveextensiveinformationaboutwhichgenesrespondtochangesindevelopmentalprocessessuchasgerminationandflowering.Inaddition,wewillsoonknowwhichgenesrespondtothephytohormones,growthregulators,safeners,herbicides,andrelatedagrichemi-cals.Perhapslessobviously,wemayex-pecttohavesimilarinformationformanymutantsornaturalaccessionsthatdifferinsomewaythatcannotbereadilyassignedtogeneticvariationbyothercriteria.Knowl-edgeofwhichgenesexhibitchangesinexpressionofamutantofinterestwillbeusefulforformulatinghypothesesaboutthe

rationalimprovementinotherspecies.

Incontrasttomicroarrays,whicharepro-ducedbydirectlyspottingDNAonamatrix,genechipsareproducedbysynthesizingoligo-nucleotidesonasolidsupportbyphotolithog-raphyorothermethods(32).Thismethodhasthepotentialtoproducearraysthatcontainsev-eralhundredthousandoligonucleotides.Thus,assumingfurtherimprovementsofthetechnol-ogy,itispossibletoenvisiongenechipswithsufficientcomplexitytorepresentanentireplantgenome.Genechipshavebeenusedtomeasuretheexpressionofallgenesintheyeastgenomewithminimalconcernaboutcrosshy-bridizationofstructurallyrelatedgenes(33).ByhybridizingyeastgenomicDNAtosuchchips,3714single-nucleotidepolymorphismsbe-tweentwogenotypescouldbeidentifiedinasinglehybridization(34).Althoughthechipsarecurrentlytoocostlyforroutineuseinmanybreedingprograms,itseemslikelythattechni-calinnovationsandtheefficienciesassociatedwithexpandedusewilldrivethecostsdown.Theapplicationofsuchchipsorotheroligonu-cleotidearraytechnologiestogenotypingindi-vidualsinsegregatingpopulationswillrevolu-tionizegeneticmappingandmarker-assistedbreeding.

explorethegeneticbasisofcomplextraits.Inprinciple,itmaybepossibletoidentifythegenesforusefulpathwaysortraitsbyfragmentingadonorgenomeintolargepieces—say50genesegments—andthenintroducingthemintoarecipientplantsuchasArabidopsisandtestingforcomponentsofthephenotypeofinterest.Thiswillbeusefulonlyifthepresenceoftheintro-ducedgeneconfersadominantorsemi-dominantphenotypesuchasthepresenceofanewenzymeactivity,analtereddiseasereaction,ormodificationofadevelopmen-talprocess.Byintroducing50genesatatimeintoArabidopsis,onlyabout500transgenicplantswouldneedtobeassayedinordertoexploretheentiregenomeofatypicaldiploidangiospermat1Xcoverage.Itseemslikelythatthistypeofanalysiswillbeaccomplishedbymakingplantarti-ficialchromosome(PLAC)librariesofanumberofplantspecieswithdivergentpropertiesandsmallgenomes.Thecentro-meresinArabidopsishavebeenmapped(35)andcurrentgenomesequencingeffortswillsoonextendthroughtheseregions,facilitatingidentificationandmanipulationofcentromere-containingregionsofchro-mosomes.Althoughthereissubstantialun-certaintyaboutwhatfactorsotherthanDNAsequencemayberequiredtorecon-stituteafunctionalplantcentromere,itmaybepossibletodevelopnewvectorsthatcontainbothyeastandArabidopsiscentro-meres.BecauseArabidopsistelomeresareverysimilartothoseinyeast(36)itmaybepossibletouseahybridsequenceofalter-natingplantandyeastsequencesthatfunc-tioninbothtypesoforganisms.Thus,itmaybepossibletodevelopyeastartificialchromosome–PLAClibrariesofmanyplantsinyeastandthenintroducethemintoasuitableplanthosttoevaluatethepheno-typicconsequences.Byprovidingadefinedchromosomalenvironmentforclonedgenes,theuseofPLACsmayalsoenhanceourabilitytoreproduciblyproducetrans-genicplantswithdefinedlevelsofgeneexpression.

1.R.D.Fleischmannetal.,Science269,496(1995);C.J.Bultetal.,ibid.273,1058(1996);F.R.Blattneretal.,ibid.277,1453(1997);S.T.Coleetal.,Nature393,537(1998);H.W.Mewesetal.,ibid.387(suppl.),7(1997);A.Goffeauetal.,Science274,546(1996);TheC.elegansSequencingConsortium,ibid.282,2012(1998).

2.D.BouchezandH.Ho¨fte,PlantPhysiol.118,725(1998).

3.R.A.Martienssen,Proc.Natl.Acad.Sci.U.S.A.95,2021(1998).

4.D.W.Meinke,J.M.Cherry,C.Dean,S.D.Rounsley,M.Koornneef,Science282,662(1998);S.Rounsley,X.Y.Lin,K.A.Ketchum,Curr.Opin.PlantBiol.1,136(1998).

5.S.D.Rounsleyetal.,PlantPhysiol.112,1177(1996).6.S.A.Goff,Curr.Opin.PlantBiol.2,86(1999);T.Sasaki,Proc.Natl.Acad.Sci.U.S.A.,95,2027(1998).7.M.D.BennettandJ.B.Smith,Philos.Trans.R.Soc.LondonSer.B334,309(1991).

8.M.D.GaleandK.M.Devos,Science282,656(1998).9.J.L.Bennetzenetal.,Proc.Natl.Acad.Sci.U.S.A.95,1975(1998).

10.S.McCouch,ibid.,p.1983.

11.E.Pennisi,Science1998282,652(1998).

12.J.DoebleyandL.Lukens,PlantCell10,1075(1998).13.P.Broun,J.Shanklin,E.Whittle,C.Somerville,Science

282,1315(1998).

14.M.Leeetal.,ibid.280,915(1998).15.J.A.Eisen,GenomeRes.8,163(1998).

16.TheEUArabidopsisGenomeProject,Nature391,485

(1998).

17.E.C.McKinneyetal.,PlantJ.8,613(1995);P.J.

Krysan,J.C.Young,F.Tax,M.R.Sussman,Proc.Natl.Acad.Sci.U.S.A.93,8145(1996);R.G.Winkler,M.R.Frank,D.W.Galbraith,R.Feyereisen,K.Feldmann,PlantPhysiol.118,743(1998);M.Montanaetal.,Science274,1537(1996).

18.A.F.Tissieretal.,PlantCell,inpress.

19.S.A.Kempinetal.,Nature389,802(1997).

20.A.Cole-Straussetal.,Science273,1386(1996);B.T.

Kren,P.Bandyopadhyay,C.J.Steer,NatureMed.4,285(1998);V.AlexeevandK.Yoon,NatureBiotech-nol.16,1343(1998).

21.S.J.CloughandA.F.Bent,PlantJ.17,735(1999).22.P.M.Waterhouse,M.W.Graham,M.B.Wang,Proc.

Natl.Acad.Sci.U.S.A.95,13959(1998).

23.A.Fireetal.,Nature391,806(1998);M.K.Mont-gomery,S.Q.Xu,A.Fire,Proc.Natl.Acad.Sci.U.S.A.95,15502(1998).

24.D.C.Baulcombe,Curr.Opin.PlantBiol.2,109

(1999).

25.S.Kjemtrupetal.,PlantJ.14,91(1998);M.T.Ruiz,

O.Voinnet,D.C.Baulcombe,PlantCell10,937(1998).

26.M.Schena,D.Shalon,R.W.Davis,P.O.Brown,

Science270,467(1995);J.L.DeRisi,V.R.Iyer,P.O.Brown,ibid.278,680(1997).

27.F.C.P.Holsteteetal.,Cell95,717(1998).28.R.F.Service,Science284,83(1999).

29.S.Chuetal.,ibid.282,699(1998);M.B.Eisen,P.T.

Spellman,P.O.Brown,D.Botstein,Proc.Natl.Acad.Sci.U.S.A.95,14863(1998);V.R.Iyeretal.,Science283,83(1999).

30.D.Baldwin,V.Crane,D.Rice,Curr.Opin.PlantBiol.2,

96(1999);D.M.Kehoe,P.Villand,S.Somerville,TrendsPlantSci.4,38(1999);Y.Ruan,J.Gilmore,T.Conner,PlantJ.15,821(1998).

31.B.V.Milborrow,J.Exp.Bot.49,1063(1998).

32.S.P.AFodoretal.,Science251,767(1991);R.J.

Lipshutz,S.P.A.Fodor,T.R.Gingeras,D.J.Lockhart,NatureGenet.21,20(1999).

33.L.Wodicka,H.Dong,M.Mittmann,M.H.Ho,D.J.

Lockhart,NatureBiotechnol.15,1359(1997).34.E.A.Winzeleretal.,Science281,1194(1998).35.G.P.Copenhaver,W.E.Browne,D.Preuss,Proc.Natl.

Acad.Sci.U.S.A.95,247(1998);G.P.CopenhaverandD.Preuss,Curr.Opin.PlantBiol.2,104(1999).36.E.J.RichardsandF.M.Ausubel,Cell53,127(1988).37.WethankR.Beachy,J.Ecker,C.Gasser,P.Gilna,R.

Hangarter,S.Kay,K.Keegstra,R.Martienssen,S.McCouch,D.Meinke,E.Meyerowitz,J.Verbeke,E.Ward,andS.Wesslerforstimulatingdiscussion.

ReferencesandNotes

Arti cialPlantChromosomes

AsthegenomicsofArabidopsisandriceprogress,oneoftheprincipalchallengeswillbetodevelopthemethodsbywhichad-vancedknowledgeabouttheseorganismsistranslatedintousefulinsightsaboutthehun-dredormoreplantspeciesofeconomicim-portance.Atthesinglegenelevel,excellenttoolsarebeingdevelopedforcomparingthefunctionsofplantgenes.ItiseasytoproducelargenumbersofstabletransgenicplantsofArabidopsis.Thus,totestthefunctionofaclonedgenefromahigherplant,afacilemethodistodeterminewhetheritcomple-mentsamutationinthecorrespondingAra-bidopsisgeneorinanotherhost.Althoughtheresultsmaysometimesbedifficulttointerpretwhenthetraitcontrolledbythegeneishighlydivergentbetweenthehostandthegenedonor,thisshouldbeabroadlyusefulmethod.Itseemslikelythat,whentheanal-ysisofthericegenomeismorefullydevel-oped,acomprehensivecollectionofricemu-tationsmayprovideasimilarlyusefulalter-nativehostforanalyzinggenefunction.Inadditiontothegene-by-geneap-proach,itwouldbeusefultotransferlargenumbersofgenesamongplantspecies.Forinstance,becauseofthelargenumbersofgenesthattypicallyencodeseedstorageproteinsinplants,itmaybenecessarytomanipulatedozensofmodifiedseedstorageproteingenesinordertobeabletotailortheaminoacidcontentofseeds.Itmayalsobeusefultobeabletosimultaneouslyin-troducelargenumbersofgenesinorderto

RationalPlantImprovement

Theimplicationsofgenomicswithrespecttofood,feed,andfiberproductioncanbeenvi-sionedonmanyfronts.Atthemostfunda-mentallevel,theadvancesingenomicswillgreatlyacceleratetheacquisitionofknowl-edgeandthat,inturn,willdirectlyaffectmanyaspectsoftheprocessesassociatedwithplantimprovement.Knowledgeofthefunc-tionofallplantgenes,inconjunctionwithfurtherdevelopmentoftoolsformodifyingandinterrogatinggenomes,willleadtode-velopmentofarobustgeneticengineeringdisciplineinwhichrationalchangescanbedesignedandmodeledfromfirstprinciples.

SCIENCEVOL28516JULY1999383

本文来源:https://www.bwwdw.com/article/1qz1.html

Top