2010届中考数学动点问题专项训练1 - 图文

更新时间:2023-10-01 12:41:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

动点问题专题训练

1、(09包头)如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与

△CQP是否全等,请说明理由;

A ②若点Q的运动速度与点P的运动速度不相等,当点Q多少时,能够使△BPD与△CQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来点B同时出发,都逆时针沿△ABC三边运动,求经过多B 点Q第一次在△ABC的哪条边上相遇?

解:(1)①∵t?1秒, ∴BP?CQ?3?1?3厘米,

∵AB?10厘米,点D为AB的中点, ∴BD?5厘米.

又∵PC?BC?BP,BC?8厘米, ∴PC?8?3?5厘米, ∴PC?BD. 又∵AB?AC, ∴?B??C,

D Q P 的运动速度为

的运动速度从长时间点P与C ∴△BPD≌△CQP. ············································································· (4分) ②∵vP?vQ, ∴BP?CQ,

又∵△BPD≌△CQP,?B??C,则BP?PC?4,CQ?BD?5, ∴点P,点Q运动的时间t?∴vQ?BP4?秒, 33CQ515································································· (7分) ??厘米/秒. ·

44t3(2)设经过x秒后点P与点Q第一次相遇, 由题意,得解得x?15x?3x?2?10, 480秒. 380?3?80厘米. ∴点P共运动了3∵80?2?28?24,

∴点P、点Q在AB边上相遇,

80秒点P与点Q第一次在边AB上相遇. ········································· (12分) 332、(09齐齐哈尔)直线y??x?6与坐标轴分别交于A、B两点,动点P、Q同时从O点出

4∴经过

发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.

(1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;

48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四5个顶点M的坐标. y (3)当S?

解(1)A(8,0)B(0,6) ················ 1分 (2)?OA?8,OB?6 ?AB?10

B P x 8?点Q由O到A的时间是?8(秒)

16?10?2(单位/秒) ·· 1分 ?点P的速度是8O Q A 当P在线段OB上运动(或0≤t≤3)时,OQ?t,OP?2t

S?t2 ········································································································· 1分

当P在线段BA上运动(或3?t≤8)时,OQ?t,AP?6?10?2t?16?2t, 如图,作PD?OA于点D,由

PDAP48?6t?,得PD?, ····························· 1分 BOAB51324?S?OQ?PD??t2?t ······································································ 1分

255(自变量取值范围写对给1分,否则不给分.)

(3)P?,? ···························································································· 1分

?824??55???824??1224??1224?···················································· 3分 I1?,?,M2??,?,M3?,?? 5??55??55??5

3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B

两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;

(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

解:(1)⊙P与x轴相切.

∵直线y=-2x-8与x轴交于A(4,0),

与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k.

在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P

时,作PE⊥CD于E.

13∵△PCD为正三角形,∴DE=CD=,PD=3,

22 ∴PE=33. 2在线段OB上

∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB, ∴

33AOPE4?,即=2, ABPB45PB315, 2315, 2∴PB?∴PO?BO?PB?8?∴P(0,315?8), 2∴k?315?8. 2315-8), 2当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315-8, 2∴当k=形.

315315-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角224(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,

点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

解:

5(09河北)在Rt△ABC中,∠C=90°,AC = 3,

B

AB E Q D A P

C 图16

=

5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).

(1)当t = 2时,AP = ,点Q到AC的距离是 ; (2)在点P从C向A运动的过程中,求△APQ的面积S与

t的函数关系式;(不必写出t的取值范围)

(3)在点E从B向C运动的过程中,四边形QBED能否成

为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. ..

解:(1)1,;

(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP?3?t. 由△AQF∽△ABC,BC?52?32?4, 得

QFt4?.∴QF?t. 45585∴S?(3?t)?t,

B 1245即S??t2?t.

(3)能.

①当DE∥QB时,如图4.

∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. AQAP由△APQ ∽△ABC,得, ?ACABE Q A D P

C 2565图4

B 即?t33?t9. 解得t?. 58Q D A P

E C ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.

此时∠APQ =90°. AQAP由△AQP ∽△ABC,得 , ?ABACt3?t15即?. 解得t?. 538

图5

B (4)t?545或t?. 214Q G ①点P由C向A运动,DE经过点C.

连接QC,作QG⊥BC于点G,如图6.

34PC?t,QC2?QG2?CG2?[(5?t)]2?[4?(5?t)]2.

55A P D C(E) B G 图6 Q D 由PC2?QC2,得t2?[35(5?t)]2?[4?45(5?t)]2,解得t?52.

②点P由A向C运动,DE经过点C,如图7. (6?t)2?[35(5?t)]2?[4?45(5?t)]2,t?45】

14

6(09河南))如图,在Rt△ABC中,?ACB?90°,?B?60°,BC?2.点O是AC的中点,过E l C 线l从与AC重合的位置开始,绕点O作逆时针旋转,交O 点D.过点C作CE∥AB交直线l于点E,设直线l的旋

? ?. A D B (1)①当?? 度时,四边形EDBC是等腰梯形,的长为 ; C ②当?? 度时,四边形EDBC是直角梯形,O 的长为 ;

(2)当??90°时,判断四边形EDBC是否为菱形,并说A B

(备用图)

解(1)①30,1;②60,1.5; ????????4分 (2)当∠α=900

时,四边形EDBC是菱形. ∵∠α=∠ACB=900

,∴BC//ED.

∵CE//AB, ∴四边形EDBC是平行四边形. ????????6分 在Rt△ABC中,∠ACB=900

,∠B=600

,BC=2,

∴∠A=300.

∴AB=4,AC=23. ∴AO=

12AC=3 . ????????8分 在Rt△AOD中,∠A=300

,∴AD=2. ∴BD=2. ∴BD=BC.

又∵四边形EDBC是平行四边形,

∴四边形EDBC是菱形 ????????10分

7(09济南)如图,在梯形ABCD中,

AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动

A D N B M C

点O的直AB边于转角为此时AD此时AD明理由.

M从

点B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒. (1)求BC的长.

(2)当MN∥AB时,求t的值.

(3)试探究:t为何值时,△MNC为等腰三角形.

解:(1)如图①,过A、D分别作AK?BC于K,DH?BC于H,则四边形ADHK是矩形

∴KH?AD?3. ················································································ 1分

在Rt△ABK中,AK?AB?sin45??42.2?4 2BK?AB?cos45??42?2························································· 2分 ?4 ·

2在Rt△CDH中,由勾股定理得,HC?52?42?3

∴BC?BK?KH?HC?4?3?3?10 ················································· 3分 B

A

D

A

D

N

C

B

C

K

H

G

M

(图①) (图②)

(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BG?AD?3 ∴GC?10?3?7 ············································································· 4分 由题意知,当M、N运动到t秒时,CN?t,CM?10?2t. ∵DG∥MN

∴∠NMC?∠DGC 又∠C?∠C

∴△MNC∽△GDC

CNCM? ··················································································· 5分 CDCGt10?2t即? 5750解得,t? ···················································································· 6分

17∴

(3)分三种情况讨论:

①当NC?MC时,如图③,即t?10?2t

∴t?10 ·························································································· 7分 3D N A A D

N

B B C

M

(图④) (图③)

②当MN?NC时,如图④,过N作NE?MC于E 解法一:

由等腰三角形三线合一性质得EC?M H E

C

11MC??10?2t??5?t 22EC5?t?在Rt△CEN中,cosc? NCtCH3? 又在Rt△DHC中,cosc?CD55?t3? ∴t525解得t? ······················································································· 8分

8解法二:

∵∠C?∠C,?DHC??NEC?90? ∴△NEC∽△DHC

NCEC? DCHCt5?t即? 5325∴t? ·························································································· 8分

811③当MN?MC时,如图⑤,过M作MF?CN于F点.FC?NC?t

22∴

解法一:(方法同②中解法一)

1tFC3cosC??2?

MC10?2t560解得t?

17解法二:

∵∠C?∠C,?MFC??DHC?90? ∴△MFC∽△DHC ∴

B

A D

N F C

H M

(图⑤)

FCMC? HCDC1t10?2t即2?

3560∴t?

17256010综上所述,当t?、t?或t?时,△MNC为等腰三角形 ··············· 9分

8173

8(09江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB?4,BC?6,∠B?60?. (1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过P作PM?EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP?x.

①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

A E B

图1 A E B

D F C

B

A E P N D F C B

A E P D N F

C

M D F C

图4(备用)

图2

D

M

图3

(第25题) A

E B

图5(备用)

F C

85?16.···································································· 10分 ?点C的坐标为0,??12(09太原)问题解决 F M D 上一点如图(1),将正方形纸片ABCD折叠,使点B落在CD边A CE1E(不与点C,D重合)?,压平后得到折痕MN.当时,求

CD2E

AM的值. BNB C N

方法指导: 图(1)

AM 为了求得的值,可先求BN、AM的长,不妨设:AB=2

BN

类比归纳

AMAMCE1CE1?,?,在图(1)中,若则的值等于 ;若则的值等

BNBNCD3CD4CE1AM?(n为整数),则于 ;若的值等于 .(用含n的式子表示) CDnBN联系拓广

如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),

AMAB1CE1??m?1?,?,压平后得到折痕MN,设则的值等于 .(用含m,n的

BNBCmCDn式子表示)

F

M D A

E

B C N

图(2)

解:方法一:如图(1-1),连接BM,EM,BE.

B

N 图(1-1)

C E

A M F D 由题设,得四边形ABNM和四边形FENM关于直线MN对称.

∴MN垂直平分BE.∴BM?EM,BN?EN. ···································· 1分 ∵四边形ABCD是正方形,∴?A??D??C?90°,AB?BC?CD?DA?2. ∵

CE1NC?2?x.?,?CE?DE?1.设BN?x,则NE?x,

CD2222 在Rt△CNE中,NE?CN?CE.

22 ∴x??2?x??1.解得x?255,即BN?. ········································· 3分 44 在Rt△ABM和在Rt△DEM中,

AM2?AB2?BM2,

DM2?DE2?EM2,

····························································· 5分 ?AM2?AB2?DM2?DE2.2222 设AM?y,则DM?2?y,∴y?2??2?y??1.

11 解得y?,即AM?. ····································································· 6分

44AM1?. ∴ ····················································································· 7分 BN55 方法二:同方法一,BN?. ······························································· 3分

4 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.

F G M A D

E

B C N

图(1-2)

∵AD∥BC,∴四边形GDCN是平行四边形. ∴NG?CD?BC. 同理,四边形ABNG也是平行四边形.∴AG?BN?5. 4??EBC??BNM?90°. ∵MN?BE, ??MNG??BNM?90°,??EBC??MNG. ?NG?BC,

在△BCE与△NGM中

??EBC??MNG,? ?BC?NG,∴△BCE≌△NGM,EC?MG. ························· 5分

??C??NGM?90°.?∵AM?AG?MG,AM=51?1?. ···················································· 6分 44∴

类比归纳

AM1?. ··················································································· 7分 BN52n?1?249?(或);; ······························································· 10分

51017n2?1联系拓广

n2m2?2n?1 ······················································································ 12分 22nm?1

本文来源:https://www.bwwdw.com/article/1ovd.html

Top