Semantic Role Labelling of Prepositional Phrases
更新时间:2023-05-28 19:16:01 阅读量: 实用文档 文档下载
- semantic推荐度:
- 相关推荐
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
SemanticRoleLabellingofPrepositionalPhrases
PatrickYeandTimothyBaldwin
DepartmentofComputerScienceandSoftwareEngineering
UniversityofMelbourne,VIC3010,Australia
{jingy,tim}@cs.mu.oz.au
Abstract.Inthispaper,weproposeamethodforlabellingpreposi-tionalphrasesaccordingtotwodi erentsemanticroleclassi cations,ascontainedinthePenntreebankandtheCoNLL2004SemanticRoleLabellingdataset.Ourresultsillustratethedi cultiesindeterminingprepositionsemantics,butalsodemonstratethepotentialforPPseman-ticrolelabellingtoimprovetheperformanceofaholisticsemanticrolelabellingsystem.
1Introduction
Prepositionalphrases(PPs)arebothcommonandsemanticallyvariedinopenEnglishtext.WhilePPscanoccurasbothcomplementsandadjunctstoverbs
[1]andalsoascomplementstonouns[2],thesemanticsofagivenPPcanof-tenbepredictedwithreasonablereliabilityindependentofcontext.Consider,forexample,thePPtothecar:ourexpectationwouldbeforittooccurasadirectionaladjunct,andonlyininstancessuchasrefertothecarwouldweseeasigni cantdivergencefromthissemantics,althoughhere,theimmediatecontextofthePPwouldgiveusanimmediatesenseofthesemanticshift.Basedonthisobservation,wemayconsiderthepossibilityofconstructingasemantictaggerspeci callyforPPs,whichusestheimmediatecontextofthePPtoarriveatasemanticanalysis.ItisthistaskoftargetedPPsemanticrolelabellingthatwetargetinthispaper.
APPsemanticrolelabellerwouldallowustotakeadocumentandidentifyalladjunctPPswiththeirsemantics.Wewouldexpectthistoincludealargeportionoflocativeandtemporalexpressions,e.g.,inthedocument,providingvaluabledatafortaskssuchasinformationextractionandquestionanswering.IndeedourinitialforayintoPPsemanticrolelabellingrelatestoaninterestingeoparsing,andtherealisationoftheimportanceofPPsinidentifyingandclassifyingspatialreferences.
ThecontributionsofthispaperaretoproposeamethodforPPsemanticrolelabelling,andevaluateitsperformanceoverboththePenntreebank(includingcomparativeevaluationwithpreviouswork)andalsothedatafromtheCoNLLSemanticRoleLabellingsharedtask.Aspartofthisprocess,weidentifythelevelofcomplementarityofadedicatedPPsemanticrolelabellerwithaconven-tionalholisticsemanticrolelabeller,suggestingPPsemanticrolelabellingasapotentialavenueforboostingtheperformanceofexistingsystems.
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
Fig.1.AnexampleoftheprepositionsemanticrolesinPennTeebank
2PrepositionSemanticRoleDisambiguationinPenn
Treebank
Signi cantnumbersofprepositionalphrases(PPs)inthePenntreebank[3]aretaggedwiththeirsemanticrolerelativetothegoverningverb.Forexample,Figure1,showsafragmentoftheparsetreeforthesentence:[Japan’sreservesofgold,convertibleforeigncurrencies,andspecialdrawingrights]fellbyahefty$1.82billioninOctoberto$84.29billion[theFinanceMinistrysaid],inwhichthethreePPsgovernedbytheverbfellaretaggedas,respectively:PP-EXT“extend”,meaninghowmuchofthereservefell;PP-TMP“temporal”,meaningwhenthereservefell,andPP-DIR“direction”,meaningthedirectionofthefall.
Accordingtoouranalysis,thereare143prepositionsemanticrolesinthetree-bank.However,manyofthesesemanticrolesareverysimilartooneanother;forexample,thefollowingsemanticroleswerefoundinthetreebank:PP-LOC,PP-LOC-1,PP-LOC-2,PP-LOC-3,PP-LOC-4,PP-LOC-5,PP-LOC-CLR,
PP-LOC-CLR-2,PP-LOC-CLR-TPC-1.Inspectionofthedatarevealednosystem-aticsemanticdi erencesbetweenthesePPtypes.Indeed,formostPPs,itwasimpossibletodistinguishthesubtypesofagivensuperclass(e.g.PP-LOCinourexample).WethereforedecidedtocollapsethePPsemanticrolesbasedontheir rstsemanticfeature.Forexample,allsemanticrolesthatstartwithPP-LOCarecollapsedtothesingleclassPP-LOC.Table1showsthedistributionofthecollapsedprepositionsemanticroles.
[4]describeasystemfordisambiguatingthesemanticrolesofprepositionsinthePenntreebankaccordingto7basicsemanticclasses.Intheirsystem,O’HaraandWeibeusedadecisiontreeclassi er,andthefollowingtypesoffeatures:–POStagsofsurroundingtokens:ThePOStagsofthetokensbeforeandafterthetargetprepositionwithinaprede nedwindowsize.InO’HaraandWiebe’swork,thiswindowsizeis2.–POStagofthetargetpreposition–Thetargetpreposition–Wordcollocation:Allthewordsinthesamesentenceasthetargetprepo-sition;eachwordistreatedasabinaryfeature.–Hypernymcollocation:TheWordNethypernyms[5]oftheopenclasswordsbeforeandafterthetargetprepositionwithinaprede nedwindowsize(setto5words);eachhypernymistreatedasabinaryfeature.
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
Table1.Penntreebanksemanticroledistribution(top-20roles)
O’HaraandWiebe’ssystemalsoperformsthefollowingpre-classi cation lteringonthecollocationfeatures:
–Frequencyconstraint:f(coll)>1,wherecolliseitherawordfromthewordcollocationorahypernymfromthehypernymcollocation
–Conditionalindependencethreshold:p(c|coll) p(c)
1PleasenotethatNisthenumberoffeaturefrequencybinsandnotthenumberoffeatures,andthatitispossibleformorethanonefeaturetooccurwithagivenfrequency.
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
1.
2.
3.
4.LetsbethelistthatcontainsthefrequencyofallthecollocationfeaturesSortsindescendingorderminFrequency=s[N]DiscardallfeatureswhosefrequencyislessthanminFrequency
RankingAccuracy(%)
O’Hara&Wiebe85.8
2
3Webuildourclassi erusingtheJ48decisiontreeimplementationinWEKA,fordirectcomparabilitywithO’HaraandWiebe.O’Hara’ssystemwasalsoevaluatedusingstrati ed10-foldcrossvalidation
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
methodwithaholisticSRLsystemtodemonstratetheabilityofPPsemanticrolelabellingtoenhanceoverallsystemperformance.
SincethefocusoftheCoNLLdataisonSRLrelativetoasetofpre-determinedverbsforeachsentenceinput,4ourprimaryobjectiveistoinves-tigatewhethertheperformanceofSRLsystemsingeneralcanbeimprovedinanywaybyanindependentprepositionSRLsystem.Weachievethisbyembed-dingourPPclassi cationmethodwithinanexistingholisticSRLsystem—thatisasystemwhichattemptstotagallsemanticroletypesintheCoNLL2004data—throughthefollowingthreesteps:
1.PerformSRLoneachprepositionintheCoNLLdataset;2.MergetheoutputoftheprepositionSRLwiththeoutputofagivenverbSRLsystemoverthesamedataset;3.PerformstandardCoNLLSRLevaluationoverthemergedoutput.
ThedetailsofprepositionSRLandcombinationwiththeoutputofaholisticSRLsystemarediscussedbelow.
3.1BreakdownofthePrepositionSemanticRoleLabellingProblemPrepositionsemanticrolelabellingovertheCoNLLdatasetisconsiderablymorecomplicatedthanthetaskofdisambiguatingprepositionsemanticrolesinthePenntreebank.TherearethreeseparatesubtaskswhicharerequiredtoperformprepositionSRL:
1.VerbAttachment:determiningwhichprepositionisattachedtowhichverb.2.PrepositionSemanticRoleDisambiguation3.Segmentation:determiningtheboundariesofthesemanticroles.
Thethreesubtasksarenottotallyindependentofeachother,aswedemon-strateintheresultssection,andimprovedperformanceoveroneofthesubtasksdoesnotnecessarilycorrelatewithanimprovementinthe nalresults.
3.2VerbAttachmentClassi cation
Verbattachment(VA)classi cationisthe rststepofprepositionsemanticrolelabellingandinvolvesdeterminingtheverbattachmentsiteforagivenpreposition,i.e.whichofthepre-identi edverbsinthesentencetheprepositionisgovernedby.Normally,thistaskwouldbeperformedbyaparser.However,sincetheCoNLLdatasetcontainsnoparsinginformation5andwedidnotwanttouseanyresourcesnotexplicitlyprovidedintheCoNLLdata,wehadtoconstructaVAclassi ertospeci callyperformthistask.
Thisclassi erusesthefollowingfeatures,allofwhicharederivedfrominfor-mationprovidedintheCoNLLdata:
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
None
-1
1
-2
2
3
-3
-630051454411402982160.7129.378.300.810.590.160.040.02
6http://homepages.inf.ed.ac.uk/s0450736/maxent
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
A1
A2
AM-TMP
AM-LOC
A0
AM-MNR
A3
AM-ADV
A4
AM-CAU
AM-PNC
AM-DIS
AM-DIR
AM-EXT
C-A1
R-A1
R-A0
C-V
C-A0
AM-PRD424355299188183125106714440323219742222221.7918.2415.369.669.406.425.453.652.262.061.641.640.970.360.210.100.100.100.100.10
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
SRDAUTO
SEGNP
VAAUTO
VAORACLESEGORACLESEGNPSRDORACLESEGORACLEPRFPRFPRFPRF38.774.588.255.126.9612.3662.687.4213.2791.4111.5320.4842.26.9611.9556.6410.3617.5171.6411.8120.2899.3718.1530.69
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
SRDAUTO
SEGNP
ORIG
VAAUTOS1PRF72.4366.7769.4972.0066.8469.32SEGORACLEPR72.4366.7772.0866.91F69.4969.40SEGNPPR72.4366.7772.1366.95SRDORACLESEGORACLEF69.4969.44PRF72.4366.7769.4972.3167.1169.61S3VAORACLE71.0166.1668.50VAAUTO70.1065.0067.4669.7865.2172.2566.8367.4269.4373.6868.6771.0873.1267.8470.3874.3569.5571.8777.1671.3974.16S2VAORACLE68.1864.5966.3368.9365.5767.21VAAUTO68.2163.5265.7968.3163.6465.8969.7566.0967.8770.5365.6868.0271.6568.1869.8771.8766.9469.32VAORACLE66.7963.2264.9669.5866.0567.7671.9868.1470.0177.8773.9375.85Table7.PrepositionSRLcombinedwith[10](P=precision,R=recall,F=F-score;above-baselineresultsinboldface)
SRDAUTO
SEGNP
ORIG
VAAUTOS1SEGORACLESEGNPSRDORACLESEGORACLEPRF71.8161.1166.0372.3463.8367.82PRFPRF71.8161.1166.0371.8161.1166.0370.2361.8765.7870.7462.4366.32PRF71.8161.1166.0371.1362.6566.62
S3VAORACLE69.1462.1965.4868.8462.3565.43VAAUTO69.0160.6664.5771.3162.5766.6572.7965.4768.9472.2463.4967.5874.8367.8271.1576.5467.1571.54
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
theirrespectivelimitsare,wealsousedoracledoutputsfromeachsubtaskincombiningthe naloutputsoftheprepositionSRLsystem.Theoracledoutputsarewhatwouldbeproducedbyperfectclassi ers,andareemulatedbyinspectionofthegold-standardannotationsforthetestingdata.
Table5showstheresultsoftheprepositionSRLsystemsbeforetheyaremergedwiththeverbSRLsystems.TheseresultsshowthatthecoverageofourprepositionSRLsystemisrelativelylowrelativetothetotalnumberofargu-mentsinthetestingdata,evenwhenoracledoutputsfromallthreesubsystemsareused(recall=18.15%).However,thisisnotsurprisingbecauseweexpectedthemajorityofsemanticrolestobenounphrases.
InTables6,7and8,weshowhowourprepositionSRLsystemperformswhenmergedwiththetop3systemsunderthe3mergingstrategiesintroducedinSection3.6.Ineachtable,ORIGreferstothebasesystemwithoutprepositionSRLmerging.
Wecanmakeafewobservationsfromtheresultsofthemergedsystems.First,outofverbattachment,SRDandsegmentation,theSRDmoduleisboth:(a)thecomponentwiththegreatestimpactonoverallperformance,and(b)thecomponentwiththegreatestdi erentialbetweentheoracleperformanceandclassi er(AUTO)performance.Thiswouldthusappeartobetheareainwhichfuturee ortsshouldbeconcentratedinordertoboosttheperformanceofholisticSRLsthroughprepositionSRL.
Second,theresultsshowthatinmostcases,therecallofthemergedsystemishigherthanthatoftheoriginalSRLsystem.Thisisnotsurprisinggiventhatwearegenerallyrelabellingoraddinginformationtotheargumentstructureofeachverb,althoughwiththemoreagressivemergingstrategies(namelyS2andS3)itsometimeshappensthatrecalldrops,thoughtheextentofanargumentbeingaverselya ectedbyrelabelling.Itdoesseemtopointtoacomplementaritybetweenverb-drivenSRLandpreposition-speci cSRL,however.
Finally,itwassomewhatdisappointingtoseethatinnoinstancedidafully-automatedmethodsurpassthebasesysteminprecisionorF-score.Havingsaidthis,weareencouragebythesizeofthemarginbetweenthebasesystemsandthefullyoracle-basedsystems,asitsupportsourbasehypothesisthatprepositionSRLhasthepotentialtoboosttheperformanceofholisticSRLsystems,uptoamarginof10%inF-scoreforS3.
4AnalysisandDiscussion
Intheprevious2sections,wepresentedthemethodologiesandresultsoftwosystemsthatperformstatisticalanalysisonthesemanticsofprepositions,eachusingadi erentdataset.Theperformanceofthe2systemswasverydi er-ent.TheSRDsystemtrainedonthetreebankproducedalmostperfectresults,whereastheSRLsystemtrainedonConll2004SRLdatasetproducedsomewhatnegativeresults.Intheremainderofthissection,wewillanalyzetheseresultsanddiscusstheirsigni cance.
Thealmostperfectresultsonthetreebankdatasuggestthatthesemantictaggingofprepositionsintreebankishighlyarti cial.Thisisevidentinthreeways.First,theproportionofprepositionalphrasestaggedwithsemanticrolesissmall–around57,000PPsoutofthemillion-wordTreebankcorpus.This
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
smallproportionsuggeststhattheprepositionsemanticrolesweretaggedonlyincertainprototypicalsituations.Second,wewereabletoachievereasonablyhighresultsevenwhenweusedacollocationfeaturesetwithfewerthan200features.Thisfurthersuggeststhatthesemanticrolesweretaggedforonlyasmallnumberofverbsinrelatively xedsituations.Third,theprepositionSRDsystemfortheCoNLLdatasetusedaverysimilarfeaturesettothetreebanksystem,butwasnotabletoproduceanywherenearcomparableresults.SincetheCoNLLdatasetisaimedatholisticSRLacrossallargumenttypes,itincorporatesamuchlargersetofverbsandtaggingscenarios;asaresult,thesemanticrolelabellingofPPsisfarmoreheterogeneousandrealisticthanisthecaseinthetreebank.Therefore,weconcludethattheresultsofourtreebankprepositionSRDsystemarenotverymeaningfulintermsofpredictingthesuccessofthemethodatidentifyingandsemanticallylabellingPPsinopentext.
AfewinterestingfactscameoutoftheresultsovertheCoNLLdataset.ThemostimportantoneisthatbyusinganindependentprepositionSRLsystem,theresultsofageneralverbSRLsystemcanbesigni cantlyboosted.Thisisevidentbecausewhentheoracledresultsofallthreesubtaskswereused,themergedresultswerearound10%higherthanthosefortheoriginalsystems,inallthreecases.Unfortunately,itwasalsoevidentfromtheresultsthatwewerenotsuccessfulinautomatingprepositionSRL.DuetothestrictnessoftheCoNLLevaluation,itwasnotalwayspossibletoachieveabetteroverallperformancebyimprovingjustoneofthethreesubsystems.Forexample,insomecases,worseresultswereachievedbyusingtheoracledresultsforVA,andtheresultsproducedbySRDclassi erthanusingtheVAclassi erandtheSRDclassi ersinconjunction.Thereasonfortheworseresultsisthatinourexperiments,theoracledVAalwaysidenti esmoreprepositionsattachedtoverbsthantheVAclassi er,thereforemoreprepositionswillbegivensemanticrolesbytheSRDclassi er.However,sincetheperformanceoftheSRDclassi erisnothigh,andthesegmentationsubsystemdoesnotalwaysproducethesamesemanticroleboundariesastheCoNLLdataset,mostoftheseadditionalprepositionswouldeitherbegivenawrongsemanticroleorwrongphrasalextent(orboth),therebycausingtheoverallperformancetofall.
Finally,itisevidentthatthemergingstrategyalsoplaysanimportantroleindeterminingtheperformanceofthemergedprepositionSRLandverbSRLsystems:whentheperformanceoftheprepositionSRLsystemishigh,amorepreposition-orientedmergingschemewouldproducebetteroverallresults,andviceversa.
5ConclusionandFutureWork
Inthispaper,wehaveproposedamethodforlabellingprepositionsemanticsanddeployedthemethodovertwodi erentdatasetsinvolvingprepositionsemantics.Wehaveshownthatprepositionsemanticsisnotatrivialproblemingeneral,andalsothathasthepotentialtocomplementothersemanticanalysistasks,suchassemanticrolelabelling.
OuranalysisoftheresultsoftheprepositionSRLsystemshowsthatsig-ni cantimprovementinallthreestagesofprepositionsemanticrolelabelling—namelyverbattachment,prepositionsemanticroledisambiguationandargu-
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
mentsegmentation—mustbeachievedbeforeprepositionSRLcanmakeasig-ni cantcontributiontoholisticSRL.TheunsatisfactoryresultsofourCoNLLprepositionSRLsystemshowthattherelativelysimplisticfeaturesetsusedinourresearcharefarfromsu cient.Therefore,wewilldirectourfutureworktowardsusingadditionalNLPtools,informationrepositoriesandfeatureengi-neeringtoimproveallthreestagesofprepositionsemanticrolelabelling.References
[1]Merlo,P.,Leybold,M.:Automaticdistinctionofargumentsandmodi ers:thecaseofprepositionalphrases.In:Proc.oftheACL/EACL-2001WorkshoponComputationalNaturalLanguageLearning(CoNLL-2001),Toulouse,France(2001)121–8
[2]Abney,S.,Schapire,R.E.,Singer,Y.:Boostingappliedtotaggingandppat-tachment.In:Proc.oftheJointSIGDATConferenceonEmpiricalMethodsinNaturalLanguageProcessingandVeryLargeCorpora.(1999)
[3]Marcus,M.P.,Marcinkiewicz,M.A.,Santorini,B.:BuildingalargeannotatedcorpusofEnglish:putationalLinguistics19(1993)313–330
[4]O’Hara,T.,Wiebe,J.:Prepositionsemanticclassi cationviatreebankandframenet.In:Proc.ofthe7thConferenceonNaturalLanguageLearning(CoNLL-2003),Edmonton,Canada(2003)
[5]Miller,G.A.:WordNet:municationsoftheACM38(1995)39–41
[6]Carreras,X.,M`arquez,L.:IntroductiontotheCoNLL-2004sharedtask:Semanticrolelabeling.In:Proc.ofthe8thConferenceonNaturalLanguageLearning(CoNLL-2004),Boston,USA(2004)89–97
[7]Berger,A.L.,Pietra,V.J.D.,Pietra,S.A.D.:put.Linguist.22(1996)39–71
[8]Briscoe,T.,Carroll,J.:Robustaccuratestatisticalannotationofgeneraltext.In:Proc.ofthe3rdInternationalConferenceonLanguageResourcesandEvaluation(LREC2002),LasPalmas,CanaryIslands(2002)1499–1504
[9]Hacioglu,K.,Pradhan,S.,Ward,W.,Martin,J.H.,Jurafsky,D.:Semanticrolelabelingbytaggingsyntacticchunks.In:Proc.ofthe8thConferenceonNaturalLanguageLearning(CoNLL-2004),Boston,USA(2004)
[10]Punyakanok,V.,Roth,D.,Yih,W.T.,Zimak,D.,Tu,Y.:Semanticrolelabeling
viageneralizedinferenceoverclassi ers.In:Proc.ofthe8thConferenceonNaturalLanguageLearning(CoNLL-2004),Boston,USA(2004)
[11]Carreras,X.,M`arquez,L.,Chrupa,G.:Hierarchicalrecognitionofpropositional
argumentswithperceptrons.In:Proc.ofthe8thConferenceonNaturalLanguageLearning(CoNLL-2004),Boston,USA(2004)
正在阅读:
Semantic Role Labelling of Prepositional Phrases05-28
英语单项选择题-词汇篇-答案详解06-18
五年级语文单元卷01-19
关于表彰2011年度吴江市共青团工作各类先进集体和个人的决定11-24
试卷版《列代数式、代数式的值》同步练习07-28
小学三年级上册体育教案(全册详案版)12-29
头雁工程学习心得03-14
第10章指针04-12
帮扶责任人访谈提纲01-20
卉原中学学习心得 Word 文档05-04
- 1The Positive Role of Songs In English Teaching
- 2The role of phytochelatins in constitutive and adaptive heav
- 3Extracting Semantic Roles from a Model of Eventualities
- 4Discussion about the Cultural and Semantic Difference of Col
- 5Learn new words and phrases2
- 6雅思口语连接词Useful phrases
- 7Closure of two dimensional turbulence the role of pressure gradients
- 8Closure of two dimensional turbulence the role of pressure gradients
- 92unit-5-key words and phrases
- 10Abstract The MediaMill TRECVID 2005 Semantic Video Search Engine
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Prepositional
- Labelling
- Semantic
- Phrases
- Role
- 消防安全网格化管理工作实施方案
- 中考二次函数经典习题课
- 巴厘岛乌布环游、京打马尼火山、圣泉寺、梯田下午茶
- 高空作业车使用管理制度
- 美国高校图书馆校友服务的典型案例研究及对我国的启示
- 外贸业务承包经营合同书
- 高中《体育与健康》课程 的实施方案
- 厦门二中2012届高三(上)文科数学期末练习卷(2)
- 浅析企业标准化管理体系的意义
- 机械检验工(技师)练习卷(D卷)
- 中国企业跨国经营战略选择研究的目的和意义
- 编排设计考试试题A
- 弱电布线基础知识
- 电子产品采购合同详细范本研究与分析
- 伦敦大学国王学院数学与管理和金融本科专业
- -ing做状语(讲解及练习)
- Win2K安装与服务器配置(上)
- 骨科手术护理记录单
- 2015北京电影学院基础部电影批评考研分数线及复试指导
- 2010年最新企业规章制度范本大全