统计学案例

更新时间:2023-10-14 06:23:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

?

统计学案例

总量指标与相对指标

案例1:指出下面的统计分析报告摘要错在哪里?并改正:

1、 本厂按计划规定,第一季度的单位产品成本应比去年同期降低10%,实际执行结果是, 单位产品成本较去年同期降低8%,仅完成产品成本计划的80%(即8%?10%=80%)。

2、 本厂的劳动生产率(按全部职工计算)计划在去年的基础上提高8%,计划执行结果仅 提高4%,劳动生产率的计划任务仅实现一半(即4%?8%=50%)。

3、 该车间今年1月份生产老产品的同时,新产品首次小批投产,出现了2件废品(按计算, 车间废品率为1.2%)。2月份老产品下马,新产品大批投产,全部制品1000件,其中废品8件,废品量是1月份的4倍,因此产品质量下降了。

4、 在组织生产中,本厂先进小组向另一组提出高产优质的挑战竞赛。本月先进小组的产量

超过了另一小组的1倍,但是在两组废品总量中该组却占了60%,所以在产品质量方面,先进小组明显地落后了。 案例11

某公司皮鞋产量如下: 单位:万双 皮鞋产量 成年的 儿童的 合计 2010年 64 51 115 2011年 计划 88 57 145 实际 94 61 155 重点企业产量 43 23 66 试计算所有可能计算的相对指标。

案例2:根据下表资料分析哪个企业对社会贡献更大?

上缴税金情况表 甲企业 乙企业

2004年 10万元 10亿元 2005年 15万元 12亿元 发展速度(%) 150 120 增长1%的绝对值(万元) 平均指标与变异指标

案例3、以组平均数补充说明总平均数 按地势 分组 旱地 水田 甲村 播种面积(亩) 210 90 总产量 (斤) 132300 117000 平均亩产 (斤) 630 1300 播种面积(亩) 200 300 乙村 总产量 (斤) 120000 375000 平均亩产 (斤) 600 1250 合计 300 249300 831 500 495000 990 根据上表资料分析哪个村成绩更好?为什么?

案例4:某单位有10个人,其中1人月工资为10万元,9人每人月工资为1000元。该单位职工月平均工资为10900元。即:

100000?1000?9?10900(元)

10你认为这个平均数有代表性吗?如果缺乏代表性应如何改正?

案例5:以下是各单位统计分析报告的摘录

1、 本局所属30个工厂,本月完成生产计划的情况是不一致的。完成计划90%的有3个,完

成96%的有5个,完成102%的有10个,完成110%的有8个,完成120%的有4个。平均全局生产计划完成程度为104.33%。 即:

90%?3?96%?5?102%?10?110%?8?120%?4=104.33%

302、 本厂开展增产节约运动以后,产品成本月月下降,取得显著的成绩,根据财务部门的报

告,1 月份开支总成本15000元,平均单位产品成本为15元,2月份开支总成本25000元,平均单位产品成本下降为10元,3月份开支总成本45000元,平均单位产品成本仅

8元。这样,第一季度平均单位产品成本只为11元(

15?10?8?11元)。

3 以上报告所用平均指标是否恰当?如果不恰当应如何改正?

案例6、变异指标与平均指标的结合运用 销售额平均计划完成程度(%) 执行计划的标准差系数(%) 情况一 108 17.5 情况二 108 2.8 情况三 92 2.8 根据上表资料分析哪种情况最好?哪种情况最差?

案例6-1:根据下表资料分析哪个企业平均工资更有代表性? 甲企业 乙企业 案例7、录取中有无歧视?

某高校只有两个系---------财经系(文科)和工程系(理科)。该校报考及录取的总体情况如表2.1所示

表2.1某高校的报考及录取情况 录取 未录取 报考人数 男生 3500 4500 8000 女生 2000 4000 6000 平均工资(元) 4000 2000 标准差(元) 1000 800 标准差系数(%) 如果我们只看该校男女生录取的比率,即男生为3500/8000=44%,女生为2000/8000=33%。这时我们不免会问,是男同学的成绩比女同学好,还是在录取中存在着性别的歧视?

继续收集数据并得到两个系各自录取的男女生数据,如表2.2所示。

表2.2两个系的报考及录取情况 录取 未录取 报考人数 有了各系的录取数据,不难看到工程系录取的人数比较多,男女生录取的比率都是50%。而财经系招生名额较少,男女生录取的比率都是25%。由于女生报财经系的人多男生报工程系的人多,因而导致男生的整个录取率偏高,而女生的偏低。这个例子告诉我们对数据一是要从不同角度进行分析,二是要注意权数的影响。

工程系(理科) 男生 3000 3000 6000 女生 1000 1000 2000 财经系(文科) 男生 500 1500 2000 女生 1000 3000 4000 动态分析

案例8:下面动态分析指标的应用,有哪些不恰当?应该如何改正?

1、 某企业1月份实际完成产值50万元,刚好完成计划;2月份实际产值为6102万元,超

额完成2%;3月份实际产值为8302万元,超额完成4%,则第一季度平均超计划完成2%,

即:

0?2%?4%?2%

32、 某校学生人数逐年有所增加,2001年比2000年增加10%,2002年比2001增加15%,2003

年比2002年增加20%,则三年来学生人数总共增加了45%, 即:10%+15%+20%=45%

3、 某生产企业某产品的废品率逐月下降,1月份生产125000件,废品率为2.4‰;2月份

生产138000件,废品率为2.2‰;3月份生产158000件,废品率为2.0‰,则第一季度平均废品率为2.2‰

即:

0.24%?0.22%?0.20%?0.22%

34、 某工厂1月份平均工人数为190人,2月份平均工人数为215人,3月份平均工人数为

220 人,4月份工人数为230人,则第一季度平均工人数为215人, 即:

190230?215?220?22?215(人)

3

统计指数

案例9:资料A :日常生活中,我们经常听到或看到各种具体统计数字。例如,《中国统计年鉴2004》提供的数字表明,与2002年相比,2003年居民消费价格指数为101.2%,商品零售价格指数为99.9%,工业品出厂价格指数为102.3%,原材料、燃料价格指数为102.2%,固定资产投资价格指数为104.8%,房屋销售价格指数为104.8%。那么什么是指数?它可以

反映什么问题?它是如何计算出来的?它有什么用途?

资料B:假设某商店销售的三种商品价格和销售量资料如表 11.1所示 表11.1 商品价格和销售量资料 商品 甲 乙 丙 合计 计量单位 基期 公斤 米 件 -- 500 750 1000 -- 销售量 报告期 525 937 1100 -- 20 10 5 -- 价格(元) 基期 报告期 22 8 5 -- 根据表11.1资料,试指出报告期与基期相比 : (1) 每种商品的销售量增长百分之几?

(2) 每种商品的价格上升或下降了百分之几?

(3) 上述三种商品的销售量综合起来增长百分之几? (4) 上述三种商品的价格综合起来增长百分之几?

(5) 上述三种商品的销售额的变动中,受销售量因素和价格因素变动的影响各有多大?

抽样推断

案例10:假定10亿人口的大国和100万人口的小国的居民年龄变异程度相同。现在各自用重复抽样的方法抽取本国的1%人中计算平均年龄,问两国平均年龄抽样平均误差是否相同,或哪国比较大?

参数估计

案例11:2004年底北京市私家车拥有量巳达到129.8万辆,位居全国之首,据业内人士分析其中国产中低档汽车的比例较大,为了估计目前北京市场个人购车的平均价格,调查人员于某日在北京最大的车市随机抽取36位私人消费购车者,得到他(她)们所购汽车的价格如下,(单位:万元)

6.88 11.22 19.98 13.6 10.6 14.8 6.88 11.78 20.98 24.4 12.3 14.8 6.88 13.68 13.6 30.3 14.6 14.8 8.28 14.98 14.7 9.6 14.6 17.4 9.6 15.68 15.8 9.6 12.9 5.38 10.18 15.68 20.5 10.6 14.8 7.38

根据这些调查数据怎样估计总体的平均消费价格?如果要进一步推断所购买车辆在15万元以上的消费占有多大比例,应当如何分析呢?

相关与回归

案例13:商业中心是城市中商业机构较集中的地区,它集购物、娱乐等功能于一身。城市可以有多个商业中心,它们分布在城市的各个方位。它们各具特色,有的具有悠久的历史,有的更富有现代气息。比如北京的王府井、前门大街中心属于前者,而燕莎中心则属于后者。这些商业中心究竟哪些经营好、哪些经营不好;它们的竞争力如何;哪些具有进一步的发展

潜力,这些问题都是城市管理者及投资商所关心的。因此如何测评商业中心的经营状况成了一个关键问题。

商业中心的经营好坏受多方面影响,比如商业中心周边的交通状况、人流状况、消费者的消费水平、商品的丰富程度等许多因素。对商业中心的竞争力评价需要综合考虑这些因素。但是这些因素之中哪些因素对商业中心的经营状况影响强、哪些影响弱、哪些根本没有影响,这些问题只能通过定量的方法得到答案。而研究诸多因素(变量)间关系的最常用的一种定量分析工具就是相关分析与回归分析。

案例14:在自然界以及经济、社会活动领域,普遍存在着随着时间变化而不断发生变化的现象,在日常生活和工作中,我们经常接触到按时间顺序将某一现象在各期的观测值排序形成的序列,大多数经济数据都是以这种形式给出的,例如: 表10.1 1990—2003 国内生产总值(当年价) (亿元) (1) 年主要经济指标

年底总人口数 (万人) (4) 年平均 人口数 (万人) (5) 出生率 ‰ 年份 城镇居民家能源生产庭人均可总量(万吨支配收入标准煤) (元) (2) (3) (6) 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74462.6 78345.2 82.67.5 89468.1 97314.8 10.572.3 117251.9 1373.9 1510.2 1700.6 2026.6 2577.4 3496.2 4838.9 5160.3 5425.1 5854.0 6280.0 6859.6 7702.8 8472.2 101639 103922 104844 107256 111059 118729 132616 132410 124250 109126 106988 120900 138639 160300 112704 114333 115823 117171 118517 119850 122389 123626 124761 125786 126743 127627 128453 129227 113519 115078 116497 117844 119184 121120 113519 123008 124194 125274 126265 127185 128040 128840 21.58 21.06 19.68 18.24 18.09 17.70 16.98 16.57 15.64 14.64 14.03 13.38 12.86 12.41 资料来源:《中国统计年鉴2004》中国统计出版社

讨论题

X、Y、Z股票组合的未来回报率可以用如表2.34所示的概率分布进行描述: 表2.34 X、Y、Z股票组合的回报率与概率分布 股票组合X 回报率% 0.20 0.15 概率% 0.05 0.15 股票组合Y 回报率% 0.15 0.10 概率% 0.10 0.20 股票组合Z 回报率% 0.25 0.20 概率% 0.05 0.10

0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 0.26 0.20 0.15 0.10 0.05 0.03 0.01 0.05 0.00 -0.05 -0.10 -0.15 0.30 0.20 0.10 0.07 0.03 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 0.25 0.20 0.15 0.10 0.07 0.05 0.03 1、 计算每一种组合的μ和σ。在一张图上表示出每一种组合的均值和标准差。 2、 你选择哪一种组合?并说明理由。

3、 估计食品的平均重量(参数估计) 一家食品生产企业以生产袋装食品为主,每天的产量大约为8000袋左右。按规定,每袋的重量应不低于100克,否则即为不合格。为对产品质量进行监测,企业设有质量检查科专门负责质量检验 ,并经常向企业高层领导提交质检报告。质检的内容之一就是每袋重量是否符合要求。

由于产品的数量大,进行全面的检验是不可能的,可行的办法自然是抽样,然后用样本数据估计平均每袋的重量。质检科从某天生产的一批食品中随机抽取了25袋,下面的表5.1是对每袋食品重量检验的结果。

表5.1 食品重量检验结果 1 2 3 4 5 6 112.5 102.6 100.0 116.6 136.8 101.0 107.5 123.5 95.4 102.8 A B C 25袋食品的重量/g 103.0 95.0 102.0 97.8 101.5 102.0 108.8 101.6 108.6 98.4 100.5 115.6 102.2 105.0 93.3 D E 根据表5.1的数据,质检估计出该天的食品每袋 的平均重量在101.38---109.34克之间,其中,估计的置信水平为95%,估计误差不超过4克。产品的合格率在73.93%---96.07%之间,其中估计的置信水平为95%,估计误差不超过16%。

质检报告提交后,企业高层领导人提出几点意见:一是抽取的样本太小是否合适,能不能用一个更大的样本进行估计;二是能否将估计的误差再缩小一点,比如估计平均重量时估计误差不超过3克,估计合格率时误差不超过10%;三是总体平均重量的方差是多少,因为 方差的大小说明了生产过程的稳定程度,过大或过小的方差都意味着应对生产过程进行调整。为此,质检科抽取了由40袋食品构成的一个样本,检验的结果如表5.2所示。

那么,质检科是怎样根据表5.1的数据进行估计的?他们怎样根据管理层的要求估计总体的方差呢?他们又是怎样根据表5.2这个更大的样本进行估计的?如果要求估计平均重量时误差不超过3克,估计合格率时误差不超过10%,由40袋食品构成的样本是否合适?

表5.1 240袋 食品的重量检验结果 1 2 3 A 112.5 102.6 113.6 103.6 103.0 93.5 104.0 105.0 B C D 4 5 6 7 8 9 10 11

100.0 116.6 136.8 101.0 107.5 123.5 105.0 102.8 101.0 117.8 138.2 100.5 108.6 124.7 99.2 103.8 102.0 97.8 101.5 102.0 93.3 101.6 108.6 98.4 103.0 96.8 102.5 101.0 109.9 102.6 106.0 104.2 居民消费价格指数(CPI)计算表

类别及名称 总指数 一、食品类 二、衣着类 三、家庭设备及用品 四、医疗保健 五、交通和通讯工具 1、交通工具 摩托车 自行车 三轮车 2、通讯工具 电话机 手机 六、文教娱乐用品 七、居住项目 八、服务项目 规格计量等级 单位 100型 平均价格(元) 基期 8450 336 540 198 900 计算期 8580 360 552 176 840 指数(%) 权数(%) 指数×权数 102.69 104.15 95.46 102.70 110.43 98.53 104.37 101.54 107.14 102.22 89.77 88.88 93.33 101.26 103.50 108.74 100 42 15 11 3 4 (60) 〈45〉 〈50〉 〈5〉 (40) 〈80〉 〈20〉 5 14 6 43.743 14.319 11.297 3.313 3.941 62.622 45.693 53.57 5.111 35.908 71.104 18.666 5.063 14.49 6.524 标准 普通 中档 部 中档 部 交通工具价格指数: Ip=(101.54%×45+107.14%×50+102.22%×5)/100=104.37% 通讯工具价格指数:

IP=(88.88×?+93.33%×20) /100=89.77% 交通和通讯工具大类价格指数:

(104.37%×60+89.77%×40) /100=98.53% CPI:

(104.15%×42+95.46%×15+102.7%×11+110.43%×3+98.53%×4+101.26%×5+103.5%×14+108.74×%6)/100=102.69

本文来源:https://www.bwwdw.com/article/1kmf.html

Top