线性代数复旦版课后习题标准答案

更新时间:2024-04-24 14:25:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

线性代数习题及答案

习题一

1. 求下列各排列的逆序数.

(1) 341782659; (2) 987654321;

(3) n(n?1)…321; (4) 13…(2n?1)(2n)(2n?2)…2. 【解】

(1) τ(341782659)=11; (2) τ(987654321)=36;

(3) τ(n(n?1)…32221)= 0+1+2 +…+(n?1)=

n(n?1)2;

(4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1).

5x1x2121x23232xx1x4. 本行列式D4?的展开式中包含x3和x4的项.

解: 设 D4??i1i2i3i4(?1)?(i1i2i3i4)ai11ai22ai33ai44 ,其中i1,i2,i3,i4分别为不同列中对应元素

的行下标,则D4展开式中含x3项有

(?1)4?(2134)?x?1?x?2x?(?1)?(4231)?x?x?x?3??2x?(?3x)??5x

333D4展开式中含x项有

(?1)?(1234)?2x?x?x?2x?10x.

45. 用定义计算下列各行列式.

020000100τ

0004(2314)

1200032400051(1)

030; (2)

030.

【解】(1) D=(?1)4!=24; (2) D=12.

6. 计算下列各行列式.

21?120?1b1042360?1c15?1?1?2?200?1d0?1206236?2?1?2?2?0;

(1)

315aab?accd?cf234134124123?ae?de; ?ef; (2) ?bd?bf1(3)

100; (4)

234.

【解】(1) Dr1?r23151?11?1?1?1??4abcdef; ?112(2) D?abcdef?1?1b(3)D?a10?1c10?1c1?1?(?1)0d0?c?1?a?b?1d0?1d?10?1???cd?1 d??abcd?ab?ad?cd?1;10c1?c2234134124123r2?r1r3?r1r4?r110?000212?131?2?14?3?2?1r3?2r2r4?r210?000210031?404?34?4?160.

(4)D?101010c1?c3c1?c47. 证明下列各式.

a2aba?b1b22(1) 2a12b?(a?b); 12222a2222(a?1)(b?1)(c?1)(d?1)abc222(a?2)(b?2)(c?2)(d?2)2222(a?3)(b?3)(c?3)(d?3)12222(2)

bcd?0;

1abc333abcabc222 (3) 11?(ab?bc?ca)11

a?00?b(4) D2n?00?cacbd?00?(ad?bc);

n00d1?a111?a2?1??11?1?an???1??n(5)

1?1?i?11?n??ai. ai?i?1【证明】(1)

c1?c3(a?b)(a?b)2(a?b)0b(a?b)a?b0b2左端?c2?c32b12

b1ac3-2c2c4?3c22222?(a?b)(a?b)2(a?b)a2222b(a?b)a?b?(a?b)a?b2?(a?b)?右端.32a?12b?12c?12d?14a?44b?44c?44d?46a?96b?96c?96d?9?2a?12b?12c?12d?122226666?0?右端.

(2) 左端?c2-c1bcdbcdc3?c1c4?c1(3) 首先考虑4阶范德蒙行列式:

1f(x)?111xabcxabc2222xabc3333?(x?a)(x?b)(x?c)(a?b)(a?c)(b?c)(*)

从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为

1(ab?bc?ac)(a?b)(a?c)(b?c)?(ab?bc?ac)11abca22b,

c2但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故

1(?1)1?1abc222a3113b,

c3(4) 对D2n按第一行展开,得

a?aD2n?a?c0cbd??b00a?abd??b?b?d00d0cc0c d0?ad?D2(n?1)?bc?D2(n?1)?(ad?bc)D2(n?1),据此递推下去,可得

D2n?(ad?bc)D2(n?1)?(ad?bc)D2(n?2)???(ad?bc)?(ad?bc)?D2n?(ad?bc).

nn?1D2?(ad?bc)n?1(ad?bc)

n(5) 对行列式的阶数n用数学归纳法.

当n=2时,可直接验算结论成立,假定对这样的n?1阶行列式结论成立,进而证明阶数为n时结论也成立.

按Dn的最后一列,把Dn拆成两个n阶行列式相加:

1?a1Dn?1?111?a2?1????11?111?1?1?a11?1111?a2?11?????11?1?an?1100?0an

?a1a2?an?1?anDn?1.但由归纳假设

Dn?1??a1a2?an?1?1??n?1?i?11??, ai?从而有

Dn?a1a2?an?1??ana1a2?an?1?1??nn?1?i?1n1??ai?1???ai.ai?i?1n??a1a2?an?1an?1???i?11?????1?ai??

?i?18. 计算下列n阶行列式.

x1x?1yx?00121?00??11?12222?2223?2?????222; ?n(1) Dn?1?1x0 (2) Dn?2?200?x0000?12?0y?00012?00?????x?????000?2100?. (4)Dn?aij其中aij?i?j(i,j?1,2,?,n) ; yx(3)Dn??0y21(5)Dn?0?00.

【解】(1) 各行都加到第一行,再从第一行提出x+(n?1),得

1Dn?[x?(n?1)]1?11x?1???11?x,

将第一行乘(?1)后分别加到其余各行,得

1Dn?[x?(n?1)]1?011r2?r11?10??(x?n?1)(x?1)n?1x?1??0?.

x?120210?0202?0????200?n?2??2(n?2)!.

2000?02010?02002?0????2000?(2) Dn?11?1r3?r1 ?rn?r1按第二行展开?0?0?n?2(3) 行列式按第一列展开后,得

x0Dn?x?0y?x?xnyx?00(n?1)0y?00?????00?x0(n?1)00??y(?1)yx?y(n?1)n?1yx0?00yx?000y?0???000?000?y?x?y?(?1)n?1

?x?(?1)y.n(4)由题意,知

a111aa?1222??aa?0n1n2101?n?22?1?1?11?????210?n?3n?2?1?1??11???n?1n?2n?3 ? Dn?a2?1?2?n?1an1an2?ann01?n?1?1?1??1?101?11?11n?1?10?00后一行减去前一行1?11自第三行起后一行减去前一行

010?001?12?002?10?00?????n?2?10?0212按第一列展开??0?0202?0????n?200?2n?100?0

2按第n-1列展开(?1)n?102?0000???00??(?1)n?1(n?1)0?0(n?1)2n?2.

?000?12?2010?00121?00012?00?????000?21000?1221121?00012?00???000?000?12?210?00021?00012?00???(5) Dn?0?00

??21??21?2Dn?1?Dn?2.

即有 Dn?Dn?1?Dn?1?Dn?2???由 ?Dn?Dn?1???Dn?1?Dn?2???D2?D1 ?1?1n ? 得

??D2??D1 Dn?D1?n?1, Dn?n?1?9. 计算n阶行列式.

1?a1Dn?a1?a1a21?a2?a2?n2?n?. 1??anan?1?an

【解】各列都加到第一列,再从第一列提出1??ai,得

i?11?Dn??1??na2a2?a2a210?0a301?0a3a31?a3?a3??????ananan?1?an,

?i?1?ai?1??11?a21?将第一行乘(?1)后加到其余各行,得

1?Dn??1??nan00?1??n?i?1?ai?0??00?a.

ii?1?110. 计算n阶行列式(其中ai?0,i?1,2,?,n).

a1a1Dn?n?1a2n?1a3n?1??ann?1n?2b1a2b2?a2b2b2n?2n?1n?2a3b3?a3b3b3n?2n?2anbn?n?2?a1b1b1n?2n?1.

n?2??anbnbnn?1n?1【解】行列式的各列提取因子aj(j?1,2,?,n),然后应用范德蒙行列式.

n?11b1a1Dn?(a1a2?an)n?121b2a2?b2????a2??n?121b3a3?b3????a3??n?12??1bnan?bn????an?2?b1????a1???b1????a1??n?1??bn????an?n?1

?b2????a2??b3????a3???(a1a2?an)n?1?bibj???a?a?.1?j?i?n?ij?11. 已知4阶行列式

1D4?311235134624472;

试求A41?A42与A43?A44,其中A4j为行列式D4的第4行第j个元素的代数余子式. 【解】

2A41?A42?(?1)4?134644?(?1)74?213134644?3?9?12. 735同理A43?A44??15?6??9. 12. 用克莱姆法则解方程组.

? x1? x2? x3 ??2x1? x2? x3? x4(1) ?? x1?2x2? x3? x4? x?2x?3x234??5x1?6x2 ?1,?5,? x1?5x2?6x3 ?0,??1,? (2) ? x2?5x3?6x4 ?0, ?2,? x?5x?6x?0,345??3.?? x4?5x5?1.【解】方程组的系数行列式为

1D?21011211?1?120113?10001?1111?3?220113?1?11?3?221?1?3?5?112?18?0; 41?0305D1?1231D3?210112111211?1?12512301130113?36;D4??18;D2?12101210512311211?1?121?1?1201135123??18.?36;

故原方程组有惟一解,为

x1?D1D?1,x2?D2D?2,x3?D3D?2,x4?D4D??1.

2)D?665,D1?1507,D2??1145,D3?703,D4??395,D5?212.?x1?1507665,x2??229133,x3?3735,x4??79133,x5?212665.

13. λ和μ为何值时,齐次方程组

??x1?x2?x3?0,??x1??x2?x3?0, ?x?2?x?x?023?1有非零解?

【解】要使该齐次方程组有非零解只需其系数行列式

?11111?0, 1?2?即

?(1??)?0.

故??0或??1时,方程组有非零解. 14. 问:齐次线性方程组

?x1?x2?x3?ax4?0,??x1?2x2?x3?x4?0, ?x?x?3x?x?0,234?1?x?x?ax?bx?0234?1有非零解时,a,b必须满足什么条件?

【解】该齐次线性方程组有非零解,a,b需满足

1111121111?3aa11b?0,

即(a+1)2=4b.

15. 求三次多项式f(x)?a0?a1x?a2x2?a3x3,使得

f(?1)?0,f(1)?4,f(2)?3,f(3)?16.

【解】根据题意,得

f(?1)?a0?a1?a2?a3?0;f(1)?a0?a1?a2?a3?4;f(2)?a0?2a1?4a2?8a3?3;f(3)?a0?3a1?9a2?27a3?16.

这是关于四个未知数a0,a1,a2,a3的一个线性方程组,由于

D?48,D0?336,D1?0,D2??240,D3?96.

故得a0?7,a1?0,a2??5,a3?2 于是所求的多项式为

f(x)?7?5x?2x

2316. 求出使一平面上三个点(x1,y1),(x2,y2),(x3,y3)位于同一直线上的充分必要条件. 【解】设平面上的直线方程为

ax+by+c=0 (a,b不同时为0)

按题设有

?ax1?by1?c?0,??ax2?by2?c?0, ?ax?by?c?0,3?3则以a,b,c为未知数的三元齐次线性方程组有非零解的充分必要条件为

x1x2x3y1y2y311?0 1上式即为三点(x1,y1),(x2,y2),(x3,y3)位于同一直线上的充分必要条件.

?a1?a?2??a3b1b2b3c1??0??c20??c3??0??0010??0??2?0???3????00010??a1??a2??2?3????a3b1b2b3c1??c2, ?c3??可得

?0?0???0c1c2c32b1?3c1??0??2b2?3c2?2a3??2b3?3c3????a2?3a302b3b2?3b3??2c3.

?c2?3c3??0由此又可得

c1?0,2b1?3c1?0,2a3?0,a2?3a3?0,c2?2b3,c3?b2?3b3,2b2?3c2?2c3,2b3?3c3?c2?3c3,

所以

a2?a3?b1?c1?0,c2?2b3,c3?b2?3b3.

?a1?即与A可交换的一切方阵为0???00b2b3??2b3其中a1,b2,b3为任意数.

?b2?3b3??014. 求下列矩阵的逆矩阵.

?1?22??5?(1) ??1?; (2) 0???0?1???2; (4) ??1??00850??0?; (6) 3??2??1?1??2??121002123??2; ?1??00310??0?; 0??4??1?(3)3???5?5?2(5) ??0??024?42100?a1?????a2?????a,a,?,a?0?,

12n??an?未写出的元素都是0(以下均同,不另注). 【解】

?5(1) ???2?1?2???; (2) ?01???0?2101???2; ?1????121??7(3) ?6???3264140???1??2???1?1???2; (4) ?1???2?1??8?1?a?1?; (6) ???????012??16524?00131120??0???; 0??1??4??1??2(5) ??0??0?2500002?50??0??3??8?1a2??????. ???1?an??15. 利用逆矩阵,解线性方程组

?x1?x2?x3?1,??2x2?2x3?1, ?x?x?2.12??1?【解】因0???112?11??x1??1?1?????2x2?1,而0?????0?1???2???x3???12?112?0 0故

?x1??1???x?0?2????1?x3???12?11??2?0???1?1?1?????1????0???2?????1??12121??1?0??1??2???????. 13?1????????2??2??????1?2??16. 证明下列命题:

(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*. (2) 若A可逆,则A*可逆且(A*)?1=(A?1)*. (3) 若AA′=E,则(A*)′=(A*)?1.

【证明】(1) 因对任意方阵c,均有c*c=cc*=|c|E,而A,B均可逆且同阶,故可得

|A|2|B|2BA=|AB|E(BA)

=(AB) *AB(B*A*)=(AB) *A(BB*)A*

=(AB)A|B|EA=|A|2|B|(AB).

∵ |A|≠0,|B|≠0,

∴ (AB) *=B*A*.

(2) 由于AA*=|A|E,故A*=|A|A?1,从而(A?1) *=|A?1|(A?1)?1=|A|?1A. 于是

*

*

*

*

*

*

*

A* (A?1) *=|A|A?12|A|?1A=E,

所以

(A?1) *=(A*)?1.

?1

(3) 因AA′=E,故A可逆且A=A′. 由(2)(A*)?1=(A?1) *,得

(A*)?1=(A′) *=(A*)′.

17. 已知线性变换

?x1?2y1?2y2?y3,??x2?3y1?y2?5y3, ?x?3y?2y?3y,123?3求从变量x1,x2,x3到变量y1,y2,y3的线性变换. 【解】已知

?x1??2???X?x2?3?????3?x3???2121??y1????5y2?AY, ???3????y3??且|A|=1≠0,故A可逆,因而

??7?1?Y?AX?6???3?4329???7X, ??4??所以从变量x1,x2,x3到变量y1,y2,y3的线性变换为

?y1??7x1?4x2?9x3,??y2?6x1?3x2?7x3, ?y?3x?2x?4x,123?318. 解下列矩阵方程.

(1) ??1?12??4X=??3??2?6??; 1??2?(2)X2???111?1?1??2??0?2??1????111?1?1??0; ?1??1??; ?1?(3) ??1??14??2X??2???10??3?=?1??0?0?(4) 1???01000??1??0X0??1????00010??0??1?2??0????1?40?23???1. ?0??【解】(1) 令A=??1?12??4;B=??3??2?6??3?1.由于A???1???1?2?? 1?故原方程的惟一解为

?3X?AB????1?1?2??4??1??2?6??8???1???2?20??. 7?同理 ?1(2) X=?0???00100??1?0; (3) X=?1??1??4??21??; (4) X=?0?0????1?1300???4. ??2??19. 若Ak=O (k为正整数),证明:

(E?A)?1=E+A+A+?+A2k?1.

【证明】作乘法

(E?A)(E+A+A+?+A?E+A+A+?+A?E?A?E,k2k?12k?1)2k?1?A?A???A?A

k从而E?A可逆,且

(E?A)?1=E+A+A+?+A2k?1

20.设方阵A满足A2-A-2E=O,证明A及A+2E都可逆,并求A?1及(A+2E)?1. 【证】因为A2?A?2E=0,

A?A?2E?212(A?E)A?E.

由此可知,A可逆,且

A?1?12(A?E).

同样地

A?A?2E?0,A?A?6E??4E,(A?3E)(A?2E)??4E, ?14(A?3E)(A?2E)?E.22由此知,A+2E可逆,且

(A?2E)?1??14(A?3E)?14(A?E).

2?4?21. 设A=1????12123??0,AB=A+2B,求B. ?3??【解】由AB=A+2B得(A?2E)B=A.

2A?2E?1?12?1230??1?0, 1即A?2E可逆,故

?2?1?B?(A?2E)A?1????1?1??1????1?4?56?3??4???31??4?????12?122123??0?1???1?4?1????1212?8?9123??0?3???6???6.?9??

3??3??0?2??3?????222. 设P?1??1AP=?. 其中P=??1?1?4???1?,?=?1??00?10?, 求A. 2?【解】因P?1可逆,且P得

A10?1?1?3??14??1,故由 A=P?P??1??(P?P??1???1?110)?P(?)P0??2?1010?1?4???1??1??0?1?3???1??34?3??1??3??4?3??1??3??1364??.?340???1???1?4??1??1??0?10??3?10?2??1???3

121??1?2??3?1?21012?4?2??1365??10?4?2???341mm23. 设m次多项式f(x)?a0?a1x???amx,记f(A)?a0E?a1A???amA,f(A)称为方阵A的m次多项式.

??1(1)A=????, 证明 ?2?

??1kA=??k??f(?1),f(A)??k??2????; f(?2)?(2) 设A=P?1BP, 证明Bk=PAkP?1,f(B)?Pf(A)P?1. 【证明】 ??12(1)A???02??130?3,A??2??2??00?即k=2和k=3时,结论成立. 3??2?今假设

??1kA???0k0?, k??2?那么

Ak?1??1k?AA=??0k0???1k???2??00???1k?1????2??00?, k?1??2?所以,对一切自然数k,都有

??1kA???0k0?, k??2?而

f(A)?a0E+a1A+?+amA?1?a0????1??a1??1??m???1m?+?+am??2??0?m??2??a0?a1?1+?+am?1m??0??f(?1)?????.f(?2)?? m?a0?a1?2+?+am?2?(2) 由(1)与A=P ?1BP,得

B=PAP ?1.

Bk=( PAP ?1)k= PAkP ?1,

f(B)?a0E?a1B???amB?a0E?a1PAP?1mm?1???amPAPm?1

?P(a0E?a1A+??amA)P?Pf(A)P.?a?c?124. A=?b?2x?(a?d)x?ad?bc?0. ,证明矩阵满足方程?d?【证明】将A代入式子x2?(a?d)x?ad?bc得

A?(a?d)A?(ad?bc)E?a???cb??a??(a?d)?d??c22b??1??(ad?bc)?d??00??1?? ?ad?bc?0?a2?bc???ac?cd?0???02ab?bd??a?ad??2?cb?d??ac?cdab?bd??ad?bc??2?0ad?d??0???0.0?故A满足方程x2?(a?d)x?ad?bc?0. 25. 设n阶方阵A的伴随矩阵为A?,

证明:(1) 若|A|=0,则|A?|=0;

(2) A??An?1.

【证明】(1) 若|A|=0,则必有|A|=0,因若| A|≠0,则有A( A)?1=E,由此又得

A=AE=AA( A)?1=|A|( A)=0,

这与| A|≠0是矛盾的,故当|A| =0,则必有| A|=0. (2) 由A A*=|A|E,两边取行列式,得

|A|| A*|=|A|n,

若|A|≠0,则| A*|=|A|n?1 若|A|=0,由(1)知也有

| A*|=|A|n?1.

26. 设

?5?2A=??0??021000075k

*

*

*

*

*?1

*

*

*

*

0??3??04?,B???03???2??0250000460??0?. 1??2?求(1) AB; (2)BA; (3) A?1;(4)|A| (k为正整数). 【解】 ?23?10(1)AB=??0??0209000046320??19??030?; (2) BA=??013???9??0813000033520??0?; 14??22?(3) A?1?1??2=??0??02500002000?250000?250??0?; (4)A3???7?kk?(?1).

27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.

?1?2?(1)?0??0??0?2?0?(3)?0??0??0003001010000010010100??0?0??00?; (2)??2?0????21??2??3?0?. ?0?1??00133200?1??1?; 0??0??A1【解】(1) 对A做如下分块 A???00?? A2?其中

?1A1???2A1,A2的逆矩阵分别为

2??;5??3?A2?0???00100??0, ?1???5?1A1????2?2??;1?A2?1?1?3???0?0?010?0??, 0?1??所以A可逆,且

?5??2?????0?1?A2???0?0??21000001300000100??0??0?. ?0?1??A?1?A1?1???同理(2)

A?1????A2A1????1????1?A1??0??0?1A2???????1?5?2???5001535381400?1?8??1?4??. 0???0??(3)

?1?2??0???0??0??0012000?120?12??1??3??2?. ?0?0??1? A?10100010

习题 三

1. 略.见教材习题参考答案. 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 略.见教材习题参考答案.

5.?1??1??2,?2??2??3,?3??3??4,?4??4??1,证明向量组?1,?2,?3,?4线性相关.

【证明】因为

?1??2??3??4?2(?1??2??3??4)??1??2??3??4?2(?1??3) ??1??2??3??4?0所以向量组?1,?2,?3,?4线性相关.

6. 设向量组?1,?2,?,?r线性无关,证明向量组?1,?2,?,?r也线性无关,这里?i??1??2????i.

【证明】 设向量组?1,?2,?,?r线性相关,则存在不全为零的数k1,k2,?,kr,使得

k1?1?k2?2???kr?r?0.

把?i??1??2????i代入上式,得

(k1?k2???kr)?1?(k2?k3???kr)?2???kr?r?0.

又已知?1,?2,?,?r线性无关,故

?k1?k2???kr?0,??k2???kr?0, ? ?????kr?0.?该方程组只有惟一零解k1?k2???kr?0,这与题设矛盾,故向量组?1,?2,?,?r线性无关.

7. 略.见教材习题参考答案.

8. ?i?(?i1,?i2,?,?in),i?1,2,?,n.证明:如果aij?0,那么?1,?2,?,?n线性无关. 【证明】已知A?aij?0,故R(A)=n,而A是由n个n维向量?i?(?i1,?i2,?,?in),

i?1,2,?,n组成的,所以?1,?2,?,?n线性无关.

n?19. 设t1,t2,?,tr,是互不相同的数,r≤n.证明:?i?(1,ti,?,ti),i?1,2,?,r是线性无关

的.

【证明】任取n?r个数tr+1,…,tn使t1,…,tr,tr+1,…,tn互不相同,于是n阶范德蒙行列式

1?11?1t1?trtr?1?tntt12?t1n?1?tr?tn22???trtn?1n?1r?12r?1?0,

??tnn?1从而其n个行向量线性无关,由此知其部分行向量?1,?2,?,?r也线性无关.

10. 设?1,?2,?,?s的秩为r且其中每个向量都可经?1,?2,?,?r线性表出.证明:?1,?2,?,?r为?1,?2,?,?s的一个极大线性无关组.

【证明】若 ?1,?2,?,?r (1) 线性相关,且不妨设

?1,?2,?,?t (t

是(1)的一个极大无关组,则显然(2)是?1,?2,?,?s的一个极大无关组,这与?1,?2,?,?s的秩为r矛盾,故?1,?2,?,?r必线性无关且为?1,?2,?,?s的一个极大无关组. 11. 求向量组?1=(1,1,1,k),?2=(1,1,k,1),?3=(1,2,1,1)的秩和一个极大无关组. 【解】把?1,?2,?3按列排成矩阵A,并对其施行初等变换.

?1?1A???1??k11k11??1??20????01???1??01??1??010????0k?10???1?k1?k??011??1??010????0k?10???01?k??011k?1001??0? 1??0?当k=1时,?1,?2,?3的秩为2,?1,?3为其一极大无关组. 当k≠1时,?1,?2,?3线性无关,秩为3,极大无关组为其本身.

12. 确定向量?3?(2,a,b),使向量组?1?(1,1,0),?2?(1,1,1),?3与向量组?1=(0,1,1), ?2=(1,2,1),?3=(1,0,?1)的秩相同,且?3可由?1,?2,?3线性表出.

【解】由于

?0?A?(?1,?2,?3)?1???1?1?B?(?1,?2,?3)?1???01211111??1??0?0????1???02??1??a?0???b???01102?100???1;?0??2??,b?a?2??

而R(A)=2,要使R(A)=R(B)=2,需a?2=0,即a=2,又

?0?c?(?1,?2,?3,?3)?1???112110?12??1??a?0???b???0210010??, 2?b?a?2??a要使?3可由?1,?2,?3线性表出,需b?a+2=0,故a=2,b=0时满足题设要求,即?3=(2,2,0). ?1,?2,?,?n线性无关的充要条件是任一n维向13. 设?1,?2,?,?n为一组n维向量.证明:

量都可经它们线性表出.

【证明】充分性: 设任意n维向量都可由?1,?2,?,?n线性表示,则单位向量?1,?2,?,?n,

当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组?1,?2,?,?n的秩为n,因此线性无关.

必要性:设?1,?2,?,?n线性无关,任取一个n维向量?,则?1,?2,?,?n线性相关,所以?能由?1,?2,?,?n线性表示.

14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.

?1?证明:由已知条件,R1???10110??0?3,且向量组(1,0,0),(1,1,0),(1,1,1)?1??可由向量组α1,α2,α3线性表出,即两向量组等价,且

R(?1,?2,?3)?3,

又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向

量组等价,且

R(?1,?2,?3,?4)?3,

所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.

15. 略.见教材习题参考答案.

16. 设向量组?1,?2,?,?m与?1,?2,?,?s秩相同且?1,?2,?,?m能经?1,?2,?,?s线性表出.证明?1,?2,?,?m与?1,?2,?,?s等价.

【解】设向量组

?1,?2,?,?m (1)

与向量组

?1,?2,?,?s (2)

的极大线性无关组分别为

?1,?2,?,?r (3)

?1,?2,?,?r (4)

由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即

r?i??aj?1ij?j(i?1,2,?,r).

因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出?j(j?1,2,?,r),即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.

17. 设A为m3n矩阵,B为s3n矩阵.证明:

?A?max{R(A),R(B)}?R???R(A)?R(B).

?B?【证明】因A,B的列数相同,故A,B的行向量有相同的维数,矩阵??可视为由矩阵A扩

?B??A??B??A?充行向量而成,故A中任一行向量均可由??中的行向量线性表示,故

?A?R(A)?R??

?B?同理

?A?R(B)?R??

?B?故有

?A?max{R(A),R(B)}?R??

?B?又设R(A)=r,?i1,?i2,?,?ir是A的行向量组的极大线性无关组,R(B)=k, ?j1,?j2,?,?jk?A?是B的行向量组的极大线性无关组.设?是??中的任一行向量,则若?属于A的行向量

?B?组,则?可由?i1,?i2,?,?ir表示,若?属于B的行向量组,则它可由?j1,??A?性表示,故??中任一行向量均可由?i1,?i2,?,?ir,?j1,??B?j2,?,?jk线

j2,?,?jk线性表示,故

?A?R???r?k?R(A)?R(B), ?B?所以有

?A?max{R(A),R(B)}?R???R(A)?R(B).

?B?18. 设A为s3n矩阵且A的行向量组线性无关,K为r3s矩阵.证明:B=KA行无关的充分必要条件是R(K)=r.

【证明】设

A=(As,Ps3(n?s)),

因为A为行无关的s3n矩阵,故s阶方阵As可逆. (?)当B=KA行无关时,B为r3n矩阵.

r=R(B)=R(KA)≤R(K),

又K为r3s矩阵R(K)≤r,∴ R(K)=r. (?)当r=R(K)时,即K行无关, 由B=KA=K(As,Ps3(n?s))=(KAs,KPs3(n?s)) 知R(B)=r,即B行无关. 19. 略.见教材习题参考答案.

20. 求下列矩阵的行向量组的一个极大线性无关组.

?25?75(1)??75??25319494321753542043??1??0132?; (2)??2134???48??11201213025?141???1?. 3???1???1????2【解】(1) 矩阵的行向量组??的一个极大无关组为?1,?2,?3;

??3?????4???1????2(2) 矩阵的行向量组??的一个极大无关组为?1,?2,?4.

??3?????4?21. 略.见教材习题参考答案.

22. 集合V1={(x1,x2,?,xn)|x1,x2,?,xn∈R且x1?x2???xn=0}是否构成向量空间?为什么? 【

0,0,

,0

V1

V1

??(x1,x2,?,xn)?V1,??(y1,y2,?,yn)?V2,k?R)则

????(x1?y1,x2?y2,?,xn?yn)k??(kx1,kx2,?,kxn).

因为

(x1?y1)?(x2?y2)???(xn?yn)?(x1?x2???xn)?(y1?y2???yn)?0, kx1?kx2???kxn?k(x1?x2???xn)?0,所以????V1,k??V1,故V1是向量空间.

23. 试证:由?1?(1,1,0),?2?(1,0,1),?3?(0,1,1),生成的向量空间恰为R3.

【证明】把?1,?2,?3排成矩阵A=(?1,?2,?3),则

1A?101013

01??2?0, 1所以?1,?2,?3线性无关,故?1,?2,?3是R的一个基,因而?1,?2,?3生成的向量空间恰为R3.

24. 求由向量?1?(1,2,1,0),?2?(1,1,1,2),?3?(3,4,3,4),?4?(1,1,2,1)所生的向量空间的一组基及其维数. 【解】因为矩阵

A?(?1,?2,?3,?4,?5)?1?2???1??01112343411214??1??50????06???4??01?1023?2041?1114??1???30????02???4??01?1003?2001?1104???3 ?,2??0?∴?1,?2,?4是一组基,其维数是3维的.

25. 设?1?(1,1,0,0),?2?(1,0,1,1),?1?(2,?1,3,3),?2?(0,1,?1,?1),证明:

L(?1,?2)?L(?1,?2).

【解】因为矩阵

A?(?1,?2,?1,?2)?1?1???0??010112?1330??1??10????0?1????1??01?1002?3000??1 ?,0??0?由此知向量组?1,?2与向量组?1,?2的秩都是2,并且向量组?1,?2可由向量组?1,?2线性表出.由习题15知这两向量组等价,从而?1,?2也可由?1,?2线性表出.所以

L(?1,?2)?L(?1,?2).

26. 在R3中求一个向量?,使它在下面两个基

(1)?1?(1,0,1),(2)?1?(0,?1,1),?2?(?1,0,0)?2?(1,?1,0)?3?(0,1,1)?3?(1,0,1)

下有相同的坐标.

【解】设?在两组基下的坐标均为(x1,x2,x3),即

?x1??x1???????(?1,?2,?3)x2?(?1,?2,?3)x2,???????x3???x3???1?0???1?1000??x1??0????1x2??1????1????1?x3???1?101??x1????0x2???1????x3??

?1?1???0?210?1??x1????x?0, 1??2?0????x3??求该齐次线性方程组得通解

x1?k,x2?2k,x3??3k (k为任意实数)

??x1?1?x2?2?x3?3?(k,2k,?3k).

3

27. 验证?1?(1,?1,0),?2?(2,1,3),?3?(3,1,2)为R的一个基,并把?1?(5,0,7),

?2?(?9,?8,?13)用这个基线性表示.

【解】设

A?(?1,?2,?3),B?(?1,?2),

又设

?1?x11?1?x21?2?x31?3,?2?x12?1?x22?2?x32?3,

?x11?(?1,?2)?(?1,?2,?3)x21???x31x12??x22, ?x32??记作 B=AX.

?1?(A?B)??1???0?1?0???023021332231257?2507?9??r2?r1???8????13???1?0???0233?1?0???0342010557001?9?r2?r3????17?r?2?r3??13??23?13???3??2???9??作初等行变换??13???????4??

3

因有A?E,故?1,?2,?3为R的一个基,且

?2?(?1,?2)?(?1,?2,?3)3????13???3, ??2??即

?1?2?1?3?2??3,?2?3?1?3?2?2?3.

习题四

1. 用消元法解下列方程组.

?x1?4x2?2x3?3x4?6,?x1?2x2?2x3?2,??2x1?2x2?4x4?2,?(1) ? (2) ?2x1?5x2?2x3?4,

?3x1?2x2?2x3?3x4?1,?x?2x?4x?6;23?1?x?2x?3x?3x?8;234?1【解】(1)

?1?2(A?b)???3??1?1?0??0??0?1?0??0??0?1?0??0??042224?3?1?241?3?24100?2023?2225?2?225?2?21?434?3?33?1?9?639?1?63912266??1r2?22????1??8??1?1??3??14122?202332?3?36??r4?r11r2?r1?????r3?3r21??8?6???5?1)?r2?r3??(?????2??2?6??23?3r2??r???r4?2r2?5??2?6??24?4r3??r???6??1??1?0??0??0?1?0??0??041004100?2?210?2?2?413912743926126??24?r3??r???1??6?6??2?,6??25?

?x1?4x2?2x3?3x4?? x2?2x3?9x4?? x3?12x4? 74x?4?6?2?6?25

所以

187?x??,?174??x?211,?274 ??x?144,3?74?25?x4?.74?(2)

?x1?2x2?2x3?2??2x1?5x2?2x3?4 ?x?2x?4x?623?1① ② ③ 解②?①32得 x2?2x3=0 ③?① 得 2x3=4

得同解方程组

?x1?2x2?2x3?2?? x2?2x3?0 ? 2x?43?④ ⑤ ⑥ 由⑥得 x3=2,

由⑤得 x2=2x3=4,

由④得 x1=2?2x3 ?2x2 = ?10, 得 (x1,x2,x3)T=(?10,4,2)T. 2. 求下列齐次线性方程组的基础解系.

? x1? x2 x?3x?2x?0,?123?? x1? x2?(1) ? x1?5x2? x3?0, (2) ??3x1? x2?3x?5x?8x?0;23?1? x?3x2?1?5x3? x4?0,?2x3?3x4?0,?8x3? x4?0,?9x3?7x4?0;

? x1? x2?2x3?2x4?7x5?0,?(3) ?2x1?3x2?4x3?5x4 ?0, (4)

?3x?5x?6x?8x ?0;234?1? x1?2x2?2x3?2x4? x5?0,?? x1?2x2? x3?3x4?2x5?0, ?2x?4x?7x? x? x?0.2345?1【解】(1)

?x1?3x2?2x3?0,??x1?5x2?x3?0, ?3x?5x?8x?0.23?1?1?A?1???33552?r2?r1???1?r?3?3r1?8???1?0???032?42??r3?2r2???1???2???1?0???03202???1 ?0??得同解方程组

7?x??2x?3x??x3,32?12??x1?3x2?2x3?0 ?1??x?x,2x?x?02323??2?x3?x3,?得基础解系为

?7???212?1?. ?T(2) 系数矩阵为

?1?1A???3??1?1?0??0??0?11?13?12005?28?95?700?1??3r2?r1?????r?3r1?r34?r11?7??1??4?0??0??1?0??0??0?12245?7?7?14?1??4r3?r2?????r4?2r24??8?

r(A)?2.∴ 其基础解系含有4?R(A)?2个解向量.

?3?x1???2x3??x2???x?x?5x?x?0?1234?7x??????232x?7x?4x?0??234???x3?x3??x??4?????3??x4???2???1??????7?2??? ?2x4??x3??x4??2??0??????1????1??x4??0???基础解系为

?3???2???7??,?2???1????0????1????2??. ?0????1? (3)

?1?A?2???31352461102582007??r2?2r1??0?r?3?3r1?0??2107???14?7???1?0???01122002127???14??21???1r3?2r2?????0???0

得同解方程组

?x1?x2?2x3?2x4?7x5?0,?x2?x4?14x5?0, ??7x5?0?x5?0.??x3??1??0?取?????,??得基础解系为 ?x4??0??1?(?2,0,1,0,0)T,(?1,?1,0,1,0).

(4) 方程的系数矩阵为

?1?A?1???2224?2?1?7200231?210?1?r2?r1????2?r?3?2r1?1??210?1???1?0???1?0???0200?21?321?3?1???1?3???1r3?3r2?????0???0

R(A)?2,∴ 基础解系所含解向量为n?R(A)=5?2=3个 ?x2???取x4为自由未知量 ????x5???x2??0??1??0?????????x?0,0,1, ?4?????????1????0????0???x5???

?3???2???4???????010??????得基础解系 ?1?,?0?,??1?.

???????0??0??1???1????0????0??3. 解下列非齐次线性方程组.

?x1?x2?2x3?1,?2x1?x2?x3?x4?1,?2x?x?2x?4,?1?23(1) ? (2) ?4x1?2x2?2x3?x4?2,

x1?2x2?3,??2x?x?x?x?1;1234??4x?x?4x?2;23?1x1?x2?x3?x4?x5?7,??x1?2x2?x3?x4?1,??3x1?2x2?x3?x4?3x5??2,?(3) ?x1?2x2?x3?x4??1, (4) ?

x?2x?2x?6x?23,2345??x?2x?x?x?5;234?1?5x?4x?3x?3x?x?12.2345?1【解】

(1) 方程组的增广矩阵为

?1?2(A?b)???1??4?1?0??0??01?1?211?30022042?20?21??42?2r1??r???r3?r1?3r4?4r1?2??1?0??0??01?3?3?3?1?0??0??02?2?2?41?3001??23?r2??r???r4?r2?2??2?2?2101??2?2??0?1??1?r4?r322??????0???4?

得同解方程组

?x1?x2?2x3?1???3x2?2x3?2??x3?2?x3?2,??2?2x3???2, ?x2??3???x1?1?x2?2x3??1.(2) 方程组的增广矩阵为

?2?(A?b)?4???2121?1?2?111?11?r3?r1???2?r?2?2r1?1???2?0???0100?1001?1?21??0 ?0??得同解方程组

?2x1?x2?x3?x4?1,??x4?0 ?x4?0,???2x4?0,?即

?2x1?x2?x3?1, ?x?0.?4令x1?x3?0得非齐次线性方程组的特解

x=(0,1,0,0).

又分别取

?x2??1??0??????,?? ?x3??0??1?T

T

得其导出组的基础解系为

?1??1???,1,0,0?;?2?T?1??2??,0,1,0?,

?2?T∴ 方程组的解为

?1??1???0??2??2???????1x????k1?1??k2?0?.?0??0??1????????0?0??????0??k1,k2?R

?1?(3) 1???1?2?2?21111?111??r2?r1?1?r???3?r1?5???1?0???0?2001001?201???2 ?4??R(A)?R(A)∴ 方程组无解.

(4) 方程组的增广矩阵为

?1?3(A?b)???0??5?1?0r3?r2??r???4?r2?0??012141?10011231?20011231?36?11?2007???23?3r1??r???r4?5r123??12?1?6007???23?,0??0??1?0??0??01?11?11?22?21?22?21?66?67???23?23???23?

分别令

?x3??0??1??0?????????x?0,0,1 ?4?????????1????0????0???x5????x1?x2?x3?x4?x5?0得其导出组?的解为

?x?2x?2x?6x?0345?2?5??1??1????????6?2?2??????k1?0??k2?1??k3?0???????00?????1?????1???0???0??k1,k2,k3?R.

令x3?x4?x5?0,

得非齐次线性方程组的特解为:xT=(?16,23,0,0,0)T,

∴ 方程组的解为

??16??5??1??1?????????23?6?2?2????????x??0??k1?0??k2?1??k3?0?

????????000???????1??????0???1???0???0??其中k1,k2,k3为任意常数.

4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车

间的消耗如下表所示. 车间 消耗系数 车间 1 2 3 0.1 0.2 0.5 0.2 0.2 0 0.45 0.3 0.12 22 0 55.6 x1 x2 x3 1 2 3 出厂产量 (万元) 总产量 (万元) 表中第一列消耗系数0.1,0.2,0.5表示第一车间生产1万元的产品需分别消耗第一,二,三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.

解:根据表中数据列方程组有

?x1? 0.1x1?0.2x2? 0.45x3?22,??x2? 0.2x1?0.2x2?0.3x3?0, ?x3?0.5x1?0.12x3?55.6,??0.9x1?0.2x2? 0.45x3?22,?即 ? 0.2x1?0.8x2?0.3x3?0,

?0.5x?0.88x??55.6,13??x1?100,?解之 ?x2?70,

?x?120;?35. ?取何值时,方程组

??x1?x2?x3?1,??x1??x2?x3??, ?x?x??x??2,23?1(1)有惟一解,(2)无解,(3)有无穷多解,并求解.

【解】方程组的系数矩阵和增广矩阵为

???A?1???111??1;???????B?1???11111???, ?2????1?1?|A|=(??1)2(??2).

(1) 当?≠1且?≠?2时,|A|≠0,R(A)=R(B)=3.

∴ 方程组有惟一解

x1????1,x2?1,x3?(??1)2??2??2(??2).

(2) 当?=?2时,

??2?B?1???1?1?0???01?21?2?3311?213?31??r2?r1???2???4???2??1???3?0???6???0?1??2???1130?211?2???3,?3??11?2?2?r3?r1???1?r?2?2r1?4???2?30

R(A)≠R(B),∴ 方程组无解.

(3) 当?=1时

?1111???r2?r1B?1111?r???3?r1????1111???1?0???01001001??0 ?0??R(A)=R(B)<3,方程组有无穷解.

得同解方程组

?x1??x2?x3?1,?x2?x2, ??x3?x3.?∴ 得通解为

?x1???1???1??1?????????x2?k11?k20?0, k1,k2?R. ????????????0???1????0???x3??6. 齐次方程组

??x?y?z?0,??x??y?z?0, ?2x?y?z?0?当?取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为

???A?1???211???1 ?1????1|A|=(??4)(??1)

当|A|=0即?=4或?=?1时,方程组有非零解.

(i) 当?=4时,

?4?A?1???214?11??r2?r1???1???1???1?4???241?14?3?3?1??r2?4r1??1?r?3?2r1?1???1??r3?r2??1???1???1?0???04?15?94?30?1??5?3???1??1?0???11r2??5???01?r3?3??0?1?0???0

得同解方程组

?1???3??x1????x1?4x2?x3?0????x?k12???.?????3x2?x3?0??3???x3?????1?k?R

(ii) 当?=?1时,

??1?A?1???21?1?11??r2?r1???1???1???1??1???2?11?1?1?r2?r1???1?r?3?2r1?1???1?0???0?101?1??0 ?3??

?x1??2x3,?x1?x2?x3?0???x2??3x3, ??x2?3x3?0?x?x3?3∴ (x1,x2,x3)=k2(?2,?3,1).k∈R

7. 当a,b取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.

?x1?2x2?3x3?x4?1?x1?x2?x3?x4?0??x2?2x3?2x4?1?x1?x2?2x3?3x4?1?(1) ? (2) ?

3x?x?x?2x?a?x?(a?3)x?2x?b123434??2?2x?3x?x?bx??6?3x?2x?x?ax??1234234?1?1TT

【解】方程组的增广矩阵为 (1)

?1?1?(A?b)??3??2?1?0??0??021?132?10032?1?13?1?3?6?13?2b?14?27b?21??r2?r113?3r1??r???r4?2r1a???6??1?0??0??0?1?0??0??02?1?7?12?1003?1?10?73?1?30?141b?2?14?27b?521??03?7r2??r???r4?r2a?3???8???0?.a?3???2a?2?11??0????a?3???8?

(i) 当b≠?52时,方程组有惟一解

x1?x3??a33?4(a?1)b?52?,,x2?a?33?26(a?1)b?52.,a?318(a?1)b?52x4??2(a?1)b?52

(ii) 当b=?52,a≠?1时,方程组无解.

(iii) 当b=?52,a=?1时,方程组有无穷解. 得同解方程组

?x1?2x2?3x3?x4?1???x2?x3?4x4?0 (*) ??3x?27x??434??x1?2x2?3x3?x4?0?其导出组??x2?x3?4x4?0的解为

??3x3?27x4?0??x1?2x4,??x2?13x4??x3??9x4,?x?x.?44?x1??2?????x213???k??.?x3???9?????x?1??4?k?R

非齐次线性方程组(*)的特解为

?5??3?x?1???35????x2????3?. 取x4=1,

?x3???23?????x?4??3??1???∴ 原方程组的解为

?5??3??2??????35?13x??3??k??.??9???23??????1??3??1???k?R

(2)

?1?0(A?b)???0??3?1?0??0??0?1?0??0??011?12110?1110012(a?3)112a?1?212a?10120a?3120a?112?2a0??1r3?r2?????r4?3r1?b??1?0??14?r2??r???

b?1???1?0??1?.b?1??0?(i) 当a?1≠0时,R(A)=R(A)=4,方程组有惟一解.

?b?a?2??a?1??x1???a?2b?3????x2????a?1?. ?x3???b?1?????x4??a?1???0??(ii) 当a?1=0时,b≠?1时,方程组R(A)=2

(iii) 当a=1,b= ?1时,方程组有无穷解. 得同解方程组

?x1?x2?x3?x4?0, ?x?2x?2x?1.34?2取

?x1??x2??????x3?x4?1,?2x3?2x4?1,x3?x3,x4?x4,

∴ 得方程组的解为

?x1??1??1???1?????????x2?2?21???k???k?????.12?x3??1??0??0?????????x0???1??0??4?k1,k2?R

?1?8. 设A?2???31232??4,求一秩为2的3阶方阵B使AB=0. ?6??【解】设B=(b1 b2 b3),其中bi(i=1,2,3)为列向量,

AB?0?A(b1?Abi?0?b1b2b3b2b3)?0(i?1,2,3)

为Ax=0的解. ?1?求2???31232??x1????4x2=0的解.由 ???6????x3???1?A?2???31232??r2?2r1??4?r?3?3r1?6???1?0???01002??0 ?0??得同解方程组

?x1??x2?2x3,?x2?x2, ??x3?x3,?∴ 其解为

?x1???1???2???????x2?k11?k20.??????????0???1???x3??k1,k2?R

??1???b1?1;????0????2???b2?0;????1???0???b3?0,

????0??则

??1?B?1???0?2010??0 ?0??9.已知?1,?2,?3是三元非齐次线性方程组Ax=b的解,且R(A)=1及

?1??1??1????????1??2?0,?2??3?1,?1??3?1,

??????????0???0???1??求方程组Ax=b的通解.

【解】Ax=b为三元非齐次线性方程组

R(A)=1?Ax=0的基础解系中含有3?R(A)=3?1=2个解向量.

?1?1??0??????1??3?(?1??2)?(?2??3)?0?1??1,??????0????0???1?1??0??????1??2?(?1??3)?(?2??3)?1?1?0,??????1?0????1??

由?1,?2,?3为Ax=b的解??1??3,?1??2为Ax=0的解,

且(?1??3),(?1??2)线性无关??1??3,?1??2为Ax=0的基础解系.

?1?12?(?1??2)?(?2??3)?(?1??3)?

?1??1??1??1??2?1??1??1?????0?1?1??0?,?????222??1?????0???0???1?????2?∴ 方程组Ax=b的解为

x??1?k1(?1??3)?k2(?1??2)?1??2??0??0?????????0??k1?1?k20.?????1????0???1?????2?k1,k2?R

10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.

??2?(1) ξ1=?1?,????0???1????2??(2) ξ1=?0?,???3????1???3???ξ2=0;

????1???2????3??ξ2=?2?,???5????3???1????2??ξ3=?1?.

???2????2??【解】 ??2???(1) ξ1=1????0???3???ξ2=0设齐次线性方程组为Ax=0

????1??由?1,?2为Ax=0的基础解系,可知

?x1???2k1?3k2???2??3??x1???????????x?k11?k20?x2?x2?k1

??????????????k2?0???1??????x3???x3???令 k1=x2 , k2=x3

?Ax=0即为x1+2x2?3x3=0.

?1??2?(2) A(?1?2?3)=0?A的行向量为方程组为(x1x2x3x4x5)?0??3???12?325?31???2?1??0的解. ?2??2??x1?2x2?3x4?x5?0??即?2x1?3x2?2x3?5x4?3x5?0的解为 ?x?2x?x?2x?2x?02345?1?1?2???1?2?3?2021352?1?r3?r1????3?r?2?2r1??2???1?0???0?2100213?1?1?1???1 ??1??得基础解系为?1=(?5 ?1 1 1 0)T ?2=(?1 ?1 1 0 1)T

A=?方程为

??5x1?x2?x3?x4?0, ??x?x?x?x?0.1235???5??1?1?111100?? 1?11. 设向量组?1=(1,0,2,3),?2=(1,1,3,5),?3=(1,?1,a+2,1),?4=(1,2,4,a+8),?=(1,1,b+3,5)

问:(1) a,b为何值时,?不能由?1,?2,?3,?4线性表出?

(2) a,b为何值时,?可由?1,?2,?3, ?4惟一地线性表出?并写出该表出式. (3) a,b为何值时,?可由?1,?2,?3,?4线性表出,且该表出不惟一?并写出该表出式. 【解】

??x1?1?x2?2?x3?3?x4?4 (*)

?1?0A?(A?b)???2??3?1?0??0??0113511121?1a?21?1a?21122a?5124a?81??13?2r1??r???r4?3r1b?3??5??1?0??0??011001?1a?10120a?11??1?b??0?1??1r3?r2?????r4?2r2b?1??2?

(1) ?不能由?1,?2,?3,?4线性表出?方程组(*)无解,即a+1=0,且b≠0.即a=?1,且b≠0.

(2) ?可由?1,?2,?3,?4惟一地线性表出?方程组(*)有惟一解,即a+1≠0,即a≠?1.

(*) 等价于方程组

?x1?x2?x3?x4?1??x2?x3?2x4?1?(a?1)x3?b??(a?1)x4?0??x4?0x3?ba?1x2?x3?1?ba?1?1?a?b?1

a?1b2b?b?x1?1???0???1??a?1?a?1?a?1????2ba?1?1?a?b?1a?1?2?ba?1?3(3) ?可由?1,?2,?3,?4线性表出,且表出不惟一?方程组(*)有无数解,即有 a+1=0,b=0?a=?1,b=0.

?x1?k2?2k1??x1?x2?x3?x4?1?x2?k1?2k2?1??方程组(*)??

x?x?2x?1x?k3431?2??x4?k2?k1,k2,k3,k4为常数.

∴??(k2?2k1)?1?(k1?2k2?1)?2?k1?3?k2?4

?x1?x?2?12. 证明:线性方程组?x3?x?4??x5?x2?a1?x3?a2?x5?a4?x1?a55?x4?a3有解的充要条件是?ai?0.

i?1【解】

?1?0?A??0??0??1??1?0??0??0?0??1?0??0??0?0??1?0??0??0??0??11000?1100?1?11000?110000?11000?11000?110?10?110000?11000?11000?11000?110000?11000?11000?11000?11a1??a2?r2?r1a3??????a4?a5????a2?r5?r2a3??????a4?a1?a5??a1a2a3a4a1?a2a1??a2?a3??a4?5?a?i?i?1???????????a5??a1

方程组有解的充要条件,即R(A)=4=R(A)

5??ai?1i?0得证.

13. 设?是非齐次线性方程组Ax=b的一个解,ξ1,ξ2,?,ξn?r是对应的齐次线性方程组的一个基础解系.证明

*(1)?,ξ1,?,ξn?r线性无关;

****(2)?,?+ξ1,?,?+ξn?r线性无关.

【 证明】

(1) ?*,ξ1,?,ξn?r线性无关?

k??k1ξ1???kn?rξn?r?0成立,

*当且仅当ki=0(i=1,2,…,n?r),k=0

A(k??k1ξ1???kn?rξn?r)?0?kA??k1Aξ1???kn?rAξn?r?0**

∵ξ1,ξ2,?,ξn?r为Ax=0的基础解系

?A?i?0*(i?1,2,?,n?r)

*?kA??0由于A??b?0 ?k?b?0?k?0..

由于ξ1,ξ2,?,ξn?r为线性无关

k1ξ1?ξ2?k2???kn?r?ξn?r?0?ki?0*∴?,ξ1,ξ2,?,ξn?1线性无关.

(i?1,2,?,n?r)

***(2) 证?,?+ξ1,?,?+ξn?r线性无关.

?k??k1(??ξ1)???kn?r(??ξn?r)?0成立

***当且仅当ki=0(i=1,2,…,n?r),且k=0

k??k1(??ξ1)???kn?r(??ξn?r)?0

***即

(k?k1???kn?r)??k1ξ1???kn?rξn?r?0

*由(1)可知,?,ξ1,?,ξn?1线性无关.

*即有ki=0(i=1,2,…,n?r),且

k?k1?kn?r?0?k?0

***∴?,?+ξ1,?,?+ξn?r线性无关.

14. 设有下列线性方程组(Ⅰ)和(Ⅱ)

?x1?x2?2x4??6?x1?mx2?x3?x4??5??(Ⅰ)?4x1?x2?x3?x4?1 (Ⅱ) ?nx2?x3?2x4??11

?3x?x?x?3?x3?2x4?1?t123??(1) 求方程组(Ⅰ)的通解;

(2) 当方程组(Ⅱ)中的参数m,n,t为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换

?1?4???31?1?10?1?1?2?10?6??1??1?0??3????01?5?40?1?1?276?6??1??25?0??21????01010?10?22?1?6??5??4??

?100?1?2? ???010?1?4????001?2?5??由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组

?x?1?x4?0?x2?x4?0 ??x3?2x4?0得方程组(*)的基础解系

?1???1?1????2?

??1????2???令x?44?0,得方程组(Ⅰ)的特解 ??????5?

??0??于是方程组(Ⅰ)的通解为x???k?,k为任意常数。

(2) 方程组(Ⅱ)的增广矩阵为

?1m?1?1?5??44m?3n0??0n?1?2?11?????0n0??001?21?t????001系数矩阵与增广矩阵的秩均为3,令

?4x?1?(4m?3n)x2?0?nx2?4x4?0 ??x3?2x4?0方程组(**)的基础解系为

012?t??4?10?t??

?21?t?? *)(**) (

本文来源:https://www.bwwdw.com/article/1ipp.html

Top