Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints
更新时间:2023-10-04 13:05:01 阅读量: 综合文库 文档下载
- nonlinear推荐度:
- 相关推荐
NDT&EInternational70(2015)9–15ContentslistsavailableatScienceDirectNDT&EInternationaljournalhomepage:www.elsevier.com/locate/ndteintNonlinearultrasonicevaluationofthefatiguedamageofadhesivejointsGuoshuangShuia,n,Yue-shengWanga,n,PengHuanga,JianminQubabDepartmentofMechanics,BeijingJiaotongUniversity,Beijing100044,ChinaDepartmentofCivilandEnvironmentalEngineering,NorthwesternUniversity,Evanston,IL60208-3109,USAarticleinfoArticlehistory:Received24April2014Receivedinrevisedform12November2014Accepted17November2014Availableonline18December2014Keywords:NonlinearultrasonicsFatiguedamageAdhesivejointsNon-destructiveevaluationabstractAnexperimentalmethodbasedonthenonlinearultrasonictechniqueispresentedtoevaluatefatiguedamageofanadhesivejoint.Inthispaper,specimensmadefromAZ31magnesium–aluminumalloybondedthroughanepoxylayeraresubjectedtoafatigueload.Theultrasonicharmonicsgeneratedduetodamagewithintheadhesivelayeraremeasured;andtheacousticnonlinearityparameter(ANP)basedonthefundamentalandsecondharmonicsisdetermined.TheresultsshowthatthenormalizedANPincreaseswiththefatiguecycles.Furthermore,atheoreticalmodelwithdifferentinterfacialcompressionandtensionstiffnessisproposedtointerpretthegenerationofsecondharmonics.&2014ElsevierLtd.Allrightsreserved.1.IntroductionAdhesivejointsarewidelyusedinvariousindustrialapplications,suchassafety-criticalstructuresintheaerospaceandautomotiveindustries.Adhesivelybondedstructuralcomponentsusuallyprovidemanyadvantagesoverconventionalmechanicalfasteners.Amongtheseadvantagesarelowerstructuralweight,lowerfabricationcost,andimproveddamagetolerance[1,2].Forexample,advancesinaerospacetechnologyhavebeenmadepossiblethroughtheuseoflightweightmaterialsandweight-savingstructuraldesigns.Joints,inparticular,havebeenandcontinuetobeareasinwhichweightcanbetrimmedfromanairframethroughtheuseofnovelattachmenttechniques.Withtheincreasinguseofadhesivebondedstructures,corre-spondingmethodsforevaluationandtestingofthestructuralintegrityandqualityofbondedjointshavebeenwidelyinvestigatedanddevelopedforthepurposeofstructuralhealthmonitoring[3–5].Non-destructivecharacterizationforqualitycontrolandremaininglifepredictionhasbeenakeyenablingtechnologyfortheeffectiveuseofadhesivejoints.Conventionallinearultrasonictechniquescandetect?awssuchasdelamination,cracks,andvoidsintheadhesivejoints.However,moreimportanttothebondqualityistheadhesivestrength.Althoughinprinciple,strengthcannotbemeasurednon-destructively,theslightnonlinearityinthematerialmayindicatematerialdegrada-tionortheonsetoffailure[6].Furthermore,microstructuralvariationsCorrespondingauthors.E-mailaddresses:gsshui@bjtu.edu.cn(G.Shui),yswang@bjtu.edu.cn(Y.-s.Wang).http://dx.doi.org/10.1016/j.ndteint.2014.11.0020963-8695/&2014ElsevierLtd.Allrightsreserved.nduetoagingmayalsocausechangeinthethirdorderelasticcon-stants,whicharerelatedtotheacousticnonlinearparameter(ANP)ofthepolymeradhesive.Ithasbeenobservedthathigherharmonicsofthefundamentalfrequencyaregeneratedwhenaharmonicultrasonicwavepropa-gatesthroughanonlinearmaterial[7].Itisproposedthatthematerialdegradationcreatesnonlinearitywhichcanbedetectedinthewavepropagationcharacteristics[8,9].Severaltheorieshavebeendevel-opedtomodelthisnonlineareffect.Forexample,AchenbachandParikh[10]presentedtheirtheoreticalinvestigationtoobtaininfor-mationontheadhesivebondstrengthfromultrasonictestresults.Usingthepostulatethatfailureoftheadhesivebondisprecededbynonlinearbehaviorattheinterface,theyobtainedanonlinearparameterthatcorrelatestojointstrength.Basedonamicroscopicdescriptionofthenonlinearinterfacebindingforce,aquantitativemethodwaspresentedbyPangrazandArnold[11].Tangetal.[12]measuredtheonsetofnonlinearityinadhesivebondsbysubjectingtostaticloadssimultaneouslywiththeultrasonictesting.Thedegrada-tionoftheadhesivebondwasinducedbycyclicfatigueloading.Thedeteriorationduetocyclicfatigueisidenti?edbythereductionofthelinearportionofthestress–straincurvewithoutanychangeinslopeinthelinearrange.Furthermore,Delsantoetal.[13,14]developedaspringmodeltosimulatetheultrasonicwavepropagationinnon-classical(hysteretic)nonlinearmedia.Vanaverbekeetal.[15]pro-posedamultiscalemodelforthetwo-dimensional(2D)nonlinearwavepropagationinalocallymicrodamagedmedium,andpresentednumericalsimulationsinviewofnondestructivetestingapplications.Anetal.[16]developedarigorousnonlinearspringmodelunderthenormalincidenceofbothlongitudinalandSHwaves.Thenumericalsimulationsshowtheaccuracyandapplicabilityoftheirmodelfora10G.Shuietal./NDT&EInternational70(2015)9–15thinlayerbetweentwosolidsundertheconditionofsmallratioofthicknesstowavelength.Inthemeanwhile,ultrasonicguidedwaveshavebeenusedtoanalyzeadhesiveordiffusionbondedjoints.Forexample,NagyandAdler[17]studiedguidedwavesinadhesivelayersbetweentwohalf-spaces,demonstratingthattheresultingdispersioncurvesarerela-tivelyinsensitivetothepropertiesoftheadhesivelayer.RohklinandWang[18]examinedLambwavesinlap–shearjoints,includingthedevelopmentofananalyticalspringmodel.Roseetal.[19]developeddispersioncurvesfortitaniumdiffusionbondsandexaminedfre-quencyshiftsandspectralpeak-to-peakratiosofdifferentbondedstates.LoweandCawley[20]analyzedthesensitivityofadhesivebondpropertiesonguidedwavesusingathree-layeredmodel.Helleretal.[21]combinedlaserultrasonictechniqueswiththe2DfastFouriertransform(FFT)tocharacterizeadhesivebondproperties.Seifriedetal.[22]usedanalyticalandcomputationalmodelstodevelopaquanti-tativeunderstandingofthepropagationofguidedLambwavesinmulti-layered,adhesivebondedcomponents.Inthispaper,theANPisusedtocharacterizethedegradationofanadhesivejointmadefromepoxyresinbetweentwoaluminumplates.Ultrasonicthrough-transmissiontestswereconductedonsamplescuredundervariousconditions.ThemagnitudeofthesecondorderharmonicwasmeasuredandthecorrespondingANPwasevaluated.TheseexperimentallymeasuredANPs,asfunctionsofdegradation,arethenusedtoquantitativelycharacterizetheconditionoftheadhesivebond.AfairlygoodcorrelationbetweenthefatiguecycleandtheANPisobserved.Furthermore,theexperimentallyobservedsecondhar-monicgenerationisinterpretedbydevelopingananalyticalmodel.TheresultsshowthattheANPcanbeusedasagoodindicatoroftheadhesivestrengthforadhesivejoints.2.ExperimentalprocedureAsshowninFig.1,thetestsampleisanoverlapjointoftwoaluminumplatesbondedtogetherbyanadhesivelayer.Theadhesiveisakindofbisphenolepoxyresinwithepoxyvalueof0.441mol/100g.ThealuminumplateismadeofAZ31magnesium–aluminumalloy,withtheyieldingstress199MPa,elasticmodulus46GPa,Poisson’sratio0.27anddensity1770kg/m3.AsillustratedinFig.1,thebondedareaofthespecimenis30mm?24mm.Theadhesive(bondline)thicknessisgenerallylessthan1mmandtheadherend’sthicknessisabout6.5mm.Thealuminumplateswereanodizedandprimedpriortoapplicationoftheadhesive.Thejointswerethenputintoatemperature/pressureovenforcuring.Theywere?rstlycuredfortwohourswithatemperatureof801C,andthencuredforanothertwohourswithatemperatureof1601C.Allsamplesusedinthisstudywerepreparedunderthesameconditions.AschematicdiagramfortheexperimentalsetupisshowninFig.2.Thetransmittingtransducerwasdrivenbyatoneburstsignalof6cyclesat5MHz.ThereceivingtransducerwasusedtoAdhesive layer3130200454423Fig.1.Dimensionoftwoaluminumplatesbondedthroughanadhesivelayer(unit:mm).(Forinterpretationofthereferencestocolorinthis?gurelegend,thereaderisreferredtothewebversionofthisarticle.)detectthefundamentalandsecondharmonicsoflongitudinalultrasonicwavespassingthroughtheadhesivejoint.Thecentralfrequenciesoftransmittingandreceivingtransducersare,respec-tively,5MHzand10MHz.ThetoneburstsignalwasgeneratedbyRitecSNAP-0.25-7-G2nonlinearmeasurementsystemwiththehigh-powergatedampli?er.Beforedrivingthetransmittingtrans-ducer,thehighvoltagesignalpassedthrougha50Ωtermination,anattenuatorandasetoflow-pass?ltersothatthetransientbehaviorandhighfrequencycomponentfromtheampli?erweresuppressed.Thisnonlinearmeasurementsystemcanprovideamoremonochromaticultrasonicsinewavesignalwithhigherquality,andthiswilldecreasetheacousticnonlinearityfromthesignalconsiderably.Althoughthemulti-re?ectioncantakeplacebetweentheupper/lowersurfaceandinterfaceintheexperimentalsamples,there?ectedwavesreachtheReceiverabout0.6μslaterthanthelastcycleofthewavespassingthroughtheadhesivejointreachtheReceiver.Sothereisnomulti-re?ectivein?uenceinthereceivedsignal.AtypicallongitudinalwavesignalacquiredisshowninFig.3.(Oneshouldnoticethat9.0μsshowninthis?gure,whichisowingtothesettingoftheoscilloscope,isNOTthe?ighttimeofthewave.)Thesamplingrateoftheoscilloscopeis1.25GS/s.Thesignalofanentirelengthconsistsofatransientpartatthebeginning,asteadystateportion,and?nallytheturnoffringingattheend.Tomakesurethatonlythesteady-statepartofthetoneburstsignalwasused,aHanningwindowwasappliedtotheacquiredtime-domainsignalforFastFourierTransform(FFT).Therefore,onlythedatapointswithinthesteady-statepartwereselectedandthentransformedtothefrequencydomainwheretheamplitudesofthefundamentalandhigherorderharmonicsofthedetectedwavesbecomevisible.Fig.4showstheamplitudesofthefundamental(A1)andsecond(A2)harmonicsinthefrequencydomain,respectively.3.ExperimentalresultsDuringtheexperimentalmeasurements,tensamplesweresel-ectedtobefatigued.Thefatigueloadingisparalleltotheadhesivelayer,asshowninFig.2.Themaximumloadfor?veofthesampleswas2.5kN;andthemaximumloadforanother?vewas3.0kN.Thefatiguetestswereinterruptedtoperformthenonlinearultrasonicmeasurementsatdifferentnumbersoffatiguecycles.FollowingRefs.[23,24],theANPoftheadhesiveisde?nedbyβ?8A2A2e1T1hk2whereA1istheamplitudeofthefundamentalharmonicwave;A2istheamplitudeofthesecondharmonicwave;histhepropaga-tiondistance;andkisthewavenumber.Forlongitudinalwaveswitha?xedfrequencyanda?xedtransmittingdistance,theANP,β,isonlyproportionaltoA2=A21.Therefore,inthismeasurement,weuse,forconvenience,arelativeANPde?nedasβ0?A2A2e2T1Becausetherewillbesomelevelofvariabilityassociatedwiththeinitialmicrostructureofeachspecimen,themeasuredANPswillbenormalizedbythevalue(β00)measuredineachundamagedspeci-menbeforeanymechanicalloadisapplied.Thisnormalizationprocedureremovessomeofthevariabilityassociatedwiththeinitialmicrostructuresofeachspecimen,enablesadirectcomparisonoftheacousticnonlinearityevolutionofallthespecimenstested,andnormalizesthenonlinearityassociatedwiththetransmittingpiezo-electrictransducers.TheevolutionofthenormalizedANP,β0=β00,asafunctionofthenormalizedfatiguelifeisshowninFig.5(a)forspecimens1–5withthemaximumloadof2.5kN.Here,thefatigueG.Shuietal./NDT&EInternational70(2015)9–1511RitecSNAP-0.25-7-G2 OscilloscopeRF Burst High PowerReceiver ReceiverReceiverOutRF MonitorInput 1Input 2Computer50termAttenuatorHigh PassFilterPAS-0.1-40PreamplifierLow PassFilterTransmitterFatigue loadingReceiverFig.2.Experimentalsetupfornonlinearmeasurementofanadhesivejoint.0.10
0.05
toconsistentlyconductthenonlinearmeasurement.Butfortu-nately,ourdataexplicitlyshowthedependenceoftheANPonthefatiguecycles.ComparisonofFig.5(a)and(b)showsthatthemaximumloadhasalittlein?uenceonthemagnitudeofthenormalizedANP.Magnitude (V)0.00
4.TheoreticalmodelanddiscussionInordertointerpretthegenerationofhigherharmonics,wepresentanonlinearmodeloftheadhesivelayerinthissection.TheultrasonicwavepropagationthroughtheadhesivejointintheabovemeasurementsmaybeillustratedinFig.6.Twoidenticalsemi-in?nitelinearelasticsolids(adherends1and2)arejoinedtogetherbyathinadhesivelayerwiththicknessh.Laméconstant,shearmodulusandmassdensityoftheadherendsareλ,μandρ,respectively;andthosefortheadhesivelayerareλ,μandρ,respectively.Foranincidentharmoniclongitudinalwavewithfrequencyωpropagatingperpendi-culartotheadhesivelayer,itwillbere?ectedbytheadhesivelayeraswellastransmittedthroughtheadhesivelayer.Wedenotetheincident,re?ectedandtransmittedwavesasP0,P1andP3,respectively,andthoseintheadhesivelayerasP2andP4.Maevaetal.[1]indicatedthatthereareexpectedtobetwopossiblesourcesofnonlinearityinanadhesivelybondedstructure.The?rstsourceistheadhesivematerialitself.Thesecondsourcemightbestructuralnonlinearitiesintheadhesivebondline,includingweakbondsorzerovolume(closed)disbonds.Aftersomeexperi-mentation,itbecomesapparentthatthematerialnonlinearityhaslittlerelevancetoagreatmanyadhesionproblems;itisanindicationofthestateofthematerialitselfotherthananindicatorofthebondstrength[1].Thestructuralnonlinearityis,however,oftenthoughtofasbeingdirectlylinkedtothestrengthorweaknessofthebonditself.Theextremeexampleofthisisthecaseofanunbonded,clappinginterface,whichhasbeenstudiedtheoreticallyandexperimentallyforsometime[1].Structuralnonlinearitiesinadhesivelybondedjointsmayariseinanumberofways.Commontoalloftheseisthelocationofthestructuraldefect,typicallyintheverythinlayerofadhesivebonding[1].Duringin-serviceconditionsadhesivejointscansufferfromanumberofdefectsduetoloading,environmentalattackorother-0.05
-0.10
8.5
9.0
9.5
10.0
10.5
11.0
11.5
Time(μs)
Fig.3.Receivednonlinearultrasonicwaves.lifemeansthefatiguecyclenormalizedtothetotalcyclesofthewholespecimen’slife.Thespecimens1–5failedat80,91,560,281and97cycles,respectively.ShowninFig.5(b)istheevolutionofthenormalizedANPasafunctionofthenormalizedfatiguelifeforspecimens6–10withthemaximumloadof3.0kN.Forthisgroup,thespecimens6–10failedat111,91,310,102and280cycles,respectively.ItisshowninFig.5thatthenormalizedANPincreaseswiththefatiguelifeforbothsituations.Particularly,wecanseethattherateofincreaseappearstobegreaterintheearlystages,whichimpliesthatthesenonlinearultrasonicmeasurementscanbeusedtoquantitativelycharacterizetheearlydamageoftheadhesivejoints.Themeasureddatafordifferentspecimensshowincreasingscatterwithincreasingfatiguecycles,whichismostlikelyduetounc-ertaintiesinmaterialpropertiesandcureoftheadhesion.Infact,thereisaninherentrandomnessintheevolutionoffatiguedamageduringtesting,whichshouldmanifestitselfasacorre-spondingrandomnessintheresultingacousticnonlinearity.Formeasurementprocedureinthelaterstageoffatigue,thedeforma-tionassociatedwiththeincreasedfatiguecyclemakesitdif?cult12G.Shuietal./NDT&EInternational70(2015)9–15100
Fundamental harmonics2.0c1.8inom80
1.6cinroahmr 1.4
laathne601.2 dmnoad1.0
censuf Second harmonics ff40
0.8o oe de0.6
udtiultpilp200.4mmAA0.2
0
0.0
2
4
6
8
10
12
14
Frequency ( MHz )
Fig.4.Amplitudesofthefundamentalandsecondharmonicsoftheultrasonicwaves.3.5
Allometric fitting curve Specimen 13.0
Specimen 2 Specimen 3 Specimen 4PN2.5
Specimen 5A dezilam2.0
roN1.5
1.0
020406080100Fatigue life (%)
3.5
Allometric fitting curve Specimen 63.0
Specimen 7 Specimen 8 Specimen 9P Specimen 10N2.5
A dezilam2.0
roN1.5
1.0
020406080100Fatigue life (%)
Fig.5.NormalizedANPasafunctionofthepercentageoffatiguelifewiththemaximumloadof2.5kN(a)and3.0kN(b).yAdherend 2 (upper half-space)P3Adhesive
hlayer
P2P4P0Px1Adherend 1 (lower half-space)Adherend 2disbondAdhesivelayercracks
voidAdherend 1
kissing bond
yP3P0P1xFig.6.Wavepropagationintwoadherendsjoinedbyanadhesivelayer(a),typicaldefectsinanadhesivelayerappearingduringin-serviceconditions[25](b),andillustrationofthetheoreticalnonlinearmodel(c).reasons.Thesedefectsmayincludevoids,cracks,disbond,kissingbondetc.asillustratedinFig.6(b)[25].Theoverallstrengthofthejointdependsonthebehaviorsofthesedefectsunderloading.Obviously,thetensileandcompressionalbehaviorsofthejointwillbedifferent.Forinstance,inthecrack,disbondorkissingbondregion,apotentialmechanismfornonlinearityistheopeningandclosingofthecontactasthewavepasses;thesocalled“clapping”or“slapping”mechanism,ormoregenerally,contactacousticnonlinearity[26].Forperfectly?atsurfacesincontactthisresultsinabi-linearstiffnessresponse(withzeroorlowstiffnessinthetensileregionandhighstiffnessinthecompressiveregion).Morerealistically,forroughsurfacesincontact,therewouldbeamoregradualshiftfromalow-stiffness,low-loadregiontoahigh-stiffness,high-loadregion[26].Ifapurelysineharmonicultrasonicwaveisincidentonadefectedadhesivelayerwithsuchastiffnessnonlinearitythere?ectedandtransmittedwaveswillcontainaresponseincludinghighharmonics;andthedegreeofharmonicgenerationprovidesinformationabouttheextenttowhichthedefectbehavesnonlinearly[26].BasedontheaboveanalysisofwhichthedetailscanbefoundinRefs.[1,26],weproposeanonlinearmodelbyassumingthatthedamageoftheadhesivelayerwilldecreaseitstensionmoduluswhilekeepingitscompressionmodulusunchangedduringin-service.Thatis,thetensionandcompressionmodulioftheadh-esivelayerwillbedifferent.Forsimplicityinmathematics,theadhesivelayerof?nitethicknessisreplacedbyamasslessinter-facewithzerothickness,asshowninFig.6(b).Consequently,theinterfaceismodeledasacontinuousarrayofspringswithdifferenttensionandcompressionstiffness.Attheinterface,theboundaryG.Shuietal./NDT&EInternational70(2015)9–1513conditioncanbewrittenas(σyexT?KtΔuyexT;σy;ΔuyZ0σyexT?KàΔuyexT;σy;Δuyr0;e3TwhereσyexTisthenormalstressesattheinterface;ΔuyexTisthedisplacementdiscontinuityattheinterface;andKtandKàarestiffnessoftheinterfaceintensionandcompression,respectively.Whentheultrasonicwavepropagatesthroughtheinterface,thesystemwillbehavenonlinearlybecauseofthedifferenttensionandcompressionstiffness.AsshowninFig.6(c),foranincidentharmoniclongitudinalultrasonicwaveP0propagatinginthey-directionwithfrequencyωandamplitudeAe0T,itcanbewrittenasuey0T?RenAe0Teiζo;e4Twhereζ?kyàωtwiththewavenumberk?ω=candcbeingthelongitudinalwavevelocityintheadherend.Whenthisharmonicultrasonicwaveisincidentontheabovebilinearinterface,there?ectedandtransmittedwaveswillcontainaresponseatthedrivefrequencyaswellasthehigherharmonicsduetononlinearity.ThereforethetransmittedwaveP3canbewrittenas:&ue1y3T?Re∑Ae3T'imζe5T?0memSimilartotheexperimentalway,wede?nedarelativeANPβ0basedontheamplitudeofthefundamentalharmonicwaveAe3Tt1andthatofthesecondharmonicwaveAe3T2forthetransmittedwaveP3,thatisβ0Ae3Tt?h23Ti2e6TAe1Thesolutionofβ0tispresentedinAppendixA.Here,weconsiderthespecimenusedinourexperiment,i.e.twoadherendsofAZ31bondedthroughanepoxylayer.TherelativeANP,β0t,varyingwithKà=KtisshowninFig.7.WhenKà=Kt?1,theANPiszero,whichmeansthatthereisnointerfacialdamageinthissituation.Whendamageappearswithintheadhesivelayer,thetensilestiffnessKtoftheinterfacewilldecrease,leadingtotheincreaseofKà=KtandthustheincreaseoftheANP.ThereforewecanconcludethattheANPcanbeusedtocharacterizethechangeofinterfacetensilestiffnessorthedegradationoftheadhesivelayerindirectly.5
Data based on theoretical model
4
)1-mm(3
't PNA e2
vitaleR1
0
1
2
3
4
5
67
K -
/ K
+
Fig.7.TheoreticalANPasafunctionoftheratioofcompressionstiffnesstotensilestiffness.Indamagemechanics,thedamagevariableDisusedtorepresentthedevelopmentofmicrostructuraldamageinacontinuumsense.ThisvariablecanbederivedfromthereductionoftheelasticmodulussimplyasD?1àE=E0,whereE0istheelasticmoduluswithoutdamage.Forthepresentproblem,thedamagevariableDcanbeexpressedbyusingthetensionstiffnessKtandcompressionstiffnessKàasD?1àKt=Kà.FinallywecangettherelationbetweenthedamagevariableDandtherelativeANPβ0tasshowninFig.8.WecanseethatthedamagevariableincreaseswiththerelativeANPincreasing.ManyresearcheshavebeenreportedabouttherelationbetweenmaterialdamagevariableDandfatiguecycles[27–29].Asimpleempiricalformulaswasproposedin[29], ????c!mD?1à1àNNf;e7Twherecandmareparameterstobedeterminedinanexperimentalway;NandNfarefatiguecyclesandfatiguelife,respectively.ThisequationwillbeappliedinthispapertointerprettheexperimentalresultsoftherelationbetweentheANPandfatiguecycle.WefoundinourexperimentthattheANPdoesnotvanishbeforethespecimenisloaded,i.e.β0a0whenN?0.ThisimpliesthatinitialdamagedoesexistandshouldbeconsideredinestablishingtherelationbetweenthedamagevariableDandrelativefatiguecyclesN=Nf.Therefore,wemodifyEq.(5)as ????c!mD?1àe1àDN0T1àNfe8TwhereD0istheinitialdamagevariableregardingtothewholeadh-esivestructurewhenN?0.WecanseethatEq.(6)satis?estwonecessaryconditions:D?D0whenN?0andD?1whenN?Nf.ConsideringEq.(6)andthedatainFig.8,wecangettherelationbetweenthenormalizedANPβ0t=β0t0andrelativefatiguecyclesN=Nf.Forexample,ifwetakeD0?0:1,m?0:25andc?0:003,wecangettherelationbetweenthenormalizedANPandrelativefatiguecyclesbasedonthetheoreticalmodel.Fig.9showstheexperimentmea-surementresultswiththemaximumloadof3.0kN(seeFig.5b)andthedatabasedonthetheoreticalmodel.ItisseenthattheANPbasedonthetheoreticalmodelincreasesconsistentlywiththemeasuredresults.Wecancometotheconclusionthatdifferentstiffnessoftheinterfaceintensionandcompression,causedbythedamageintheadhesivelayer,isoneofthesourcesforthenonlinearityofultrasonicwavestransmittingthroughtheadhesivestructure.Thisprovidesusa1.0
Data based on theoretical model Fitting curve0.8
D ,elb0.6
airav eg0.4
amaD0.2
0.0
0.00.51.01.52.02.53.03.54.04.5Relative ANP '
-1
t ( mm )
Fig.8.Damagevariableasafunctionofrelativenonlinearityparameter.
- 1Nonlinear pricing with self-control preferences
- 2A convex optimization-based nonlinear filtering algorithm wi
- 3Robotic fault detection using nonlinear analytical redundancy
- 4Common Criteria for Information Technology Security Evaluation ....pdf
- 5evaluation-of-activity-based-learning-of-tmail-nadu
- 6mobility performance evaluation of planetary rover with similarity model experiment
- 7Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glass Transition
- 8The Success of Advanced Learning Technologies for Instruction Research and Evaluation of Hu
- 9CONCEPT PAPER ON THE NEED FOR A GUIDELINE ON THE EVALUATION OF DRUGS FOR THE TREATMENT OF GASTROESOP
- 10The Success of Advanced Learning Technologies for Instruction Research and Evaluation of Hu
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- ultrasonic
- evaluation
- Nonlinear
- adhesive
- fatigue
- damage
- joints
- 0205城市用地功能组织和布局分析实验任务书 - 图文
- 数据库设计综合练习题及答案
- 数学教学中应怎样处理好算理和算法的关系
- XX课程教学大纲(模板)
- 省重点领域首台套认定扶持办法
- 知道并描述各种地形地貌的特点
- 仁爱英语八年级下册Unit5Topic2知识点总结及词汇测试(新版) - 图文
- STM32建工程详细方法步骤
- 数字信号处理试卷
- 微信怎么找回前一天被删聊天记录 这个方法试过吗
- 运筹学期末复习题
- LTE之RS、PA、PB详解
- 顺丰优选库存控制组库区维护标准 - 图文
- 2014年北京市清华附中高一上学期物理期末试卷与解析
- 2015级《大学生职业生涯发展与规划》作业
- CEMS系统在火电厂中的应用及存在问题分析
- ABB变频器主从控制在工业上的应用
- 湘仪TDZ5-WS离心机操作规程(SOP)
- 膳食调查报告
- 铸造可行性报告