2019版高考数学二轮复习第1篇专题2三角函数解三角形第2讲小题考法 - - 三角恒等变换与解三角形学案
更新时间:2024-01-15 20:59:01 阅读量: 教育文库 文档下载
第2讲 小题考法——三角恒等变换与解三角形
一、主干知识要记牢 1.两组三角公式
(1)两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β. ②cos(α±β)=cos αcos β?sin αsin β. tan α±tan β
③tan(α±β)=.
1?tan αtan β
辅助角公式:asin α+bcos α=a+bsin(α+φ). (2)二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α.
②cos 2α=cosα-sinα=2cosα-1=1-2sinα.
1-cos 2α1+cos 2α22
降幂公式:sinα=,cosα=.
222tan α
③tan 2α=. 2
1-tanα2.正弦定理
=2R(2R为△ABC外接圆的直径).
sin Asin Bsin C==
变形:a=2Rsin A,b=2Rsin B,c=2Rsin C; sin A=,sin B=,sin C=;
2R2R2R2
2
2
2
2
2
abcabca∶b∶c=sin A∶sin B∶sin C.
3.余弦定理
a2=b2+c2-2bccos A, b2=a2+c2-2accos B, c2=a2+b2-2abcos C.
b2+c2-a2a2+c2-b2
推论:cos A=,cos B=,
2bc2aca2+b2-c2
cos C=.
2ab4.三角形面积公式
S△ABC=bcsin A=acsin B=absin C.
二、二级结论要用好
1.在△ABC中,tan A+tan B+tan C=tan A·tan B·tan C. 2.△ABC中,内角A,B,C成等差数列的充要条件是B=60°.
3.△ABC为正三角形的充要条件是A,B,C成等差数列,且a,b,c成等比数列. 4.S△ABC=
121212
abc(R为△ABC外接圆半径). 4R三、易错易混要明了
1.对三角函数的给值求角问题,应选择该角所在范围内是单调的函数,这样,由三角
?π?函数值才可以唯一确定角,若角的范围是?0,?,选正、余弦皆可;若角的范围是(0,π),
2???ππ?选余弦较好;若角的范围是?-,?,选正弦较好.
?22?
2.利用正弦定理解三角形时,注意解的个数,可能有一解、两解或无解.在△ABC中,
A>B?sin A>sin B.
考点一 三角恒等变换与求值
1.三角恒等变换的策略
(1)常值代换:特别是“1”的代换,1=sinθ+cosθ=tan 45°等.
(2)项的拆分与角的配凑:如sinα+2cosα=(sinα+cosα)+cosα,α=(α-β)+β等.
(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦. 2.解决条件求值问题的关注点
(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示. (3)求解三角函数中的给值求角问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.
2
2
2
2
2
2
2
π??1.(2018·邵阳模拟)若角α的终边经过点(-1,2),则sin?α+?( C ) 4??310
A.-
10C.10 10
2-
2
B.-
10 10
310D. 10
+2=2
25=2
5,cos α=5
-1-
-1==-22
+25
解析 由题得sin α=
π?122221210?5,所以sin?α+?=sin α·+cos α·=5×-5×=,故选C.
4?522525210?
?π?2.(2018·延安一模)已知sin?+θ?+3cos(π-θ)=sin(-θ),则sin θcos θ
?2?
+cosθ的值为( C )
1
A. 53C. 5
2B. 5D.
5 5
2
?π?解析 ∵sin?+θ?+3cos(π-θ)=cos θ-3cos θ= ?2?
-2cos θ= sin(-θ),
sin θcos θ+cosθtan θ+13
∴tan θ=2,则sin θcos θ+cosθ===,故222
sinθ+cosθtanθ+15
2
2
选C.
3.(2018·湖北联考)已知3π≤θ≤4π,且 θ=( D )
10π11π
A.或 3313π15πC.或 44
解析 ∵3π≤θ≤4π,∴
37π47π
B.或 121219π23πD.或 66
3πθ
≤≤2π, 22
1+cos θ
+2
1-cos θ6
=,则22
θθ
∴cos >0,sin <0,
22
1+cos θ
+2
1-cos θ
=2
cos
2
θ+2
sin
2
θθθ=cos -sin =222
2
6?θπ?cos?+?=,
?24?2
3?θπ?∴cos?+?=,
?24?2
θππθππ
∴+=+2kπ或+=-+2kπ.k∈Z, 246246π5π
即θ=-+4kπ或θ=-+4kπ,k∈Z,
6619π23π
∵3π≤θ≤4π,∴θ=或,故选D.
66考点二 利用正、余弦定理解三角形
解三角形问题的求解策略 已知条件 解题思路 由A+B+C=π及==,可先求出角C及b,再sin Asin Bsin C两角A,B与一边a 求出c 两边b,c及其夹角由a=b+c-2bccos A,先求出a,再求出角B,C 由余弦定理可求出角A,B,C 由正弦定理=可求出另一边b的对角B,由C=π-(Asin Asin B+B)可求出角C,再由=可求出c,而通过=sin Asin Csin Asin B求角B时,可能有一解或两解或无解的情况 222abcA 三边a,b,c ab两边a,b及其中一边的对角A acab
2sin C-sin B1.(2018·潍坊二模)在△ABC中,a,b,c分别是角A,B,C的对边,且
sin B=
acos B,则A=( C ) bcos AπA. 6πC. 3
2sin C-sin Bacos B解析 ∵=,
sin Bbcos Aπ
B.
42πD.
3
2c-bacos B∴由正弦定理可得=,
bbcos A即abcos B=(2c-b)bcos A.∴由余弦定理可得
a2+c2-b2b2+c2-a2
ab·=(2c-b)·b·,
2ac2bcb2+c2-a21π
整理可得bc=b+c-a.∴cos A==,∵A∈(0,π),∴A=.故选C.
2bc23
2
2
2
2.(2018·武汉一模)在△ABC中,AB=1,BC=2,则角C的取值范围是( A )
?π?A.?0,?
6???ππ?C.?,? ?62?
解析
?ππ?B.?,? ?42??ππ?D.?,? ?62?
BC11=,所以sin C=sin A,所以0<sin C≤,因AB<BC,C必定为sin Csin A22
AB?π?锐角,故C∈?0,?.
6??
3.(2018·郴州二模)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若(a+b-c)tan C=ab,则角C的值
2
2
2
2
π . 62
2
a2+b2-c21
解析 在△ABC中,由(a+b-c)tan C=ab,整理得=,即cos C=
2ab2tan Ccos C1π5π
,∵cos C≠0,∴sin C=,∵C为△ABC内角,∴C=或,因为ΔABC为锐角2sin C266ππ三角形,∴C=,故答案为.
66
考点三 正、余弦定理的实际应用
解三角形实际问题的常见类型及解题思路
(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.
(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解已知条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.
1.如图,小明同学在山顶A处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,
小明在A处测得公路上B,C两点的俯角分别为30°,45°,且∠BAC=135°.若山高AD=100 m,汽车从B点到C点历时14 s,则这辆汽车的速度约为__22.6__m/s(精确到0.1,2≈1.414,5≈2.236).
解析 因为小明在A处测得公路上B,C两点的俯角分别为30°,45°,所以∠BAD=60°,∠CAD=45°.设这辆汽车的速度为v m/s,则BC=14v.
在Rt△ADB中,AB=在Rt△ADC中,AC=
100==200.
cos∠BADcos 60°
100==1002.
cos∠CADcos 45°
ADAD在△ABC中,由余弦定理,得
BC2=AC2+AB2-2AC·AB·cos∠BAC,
5010222
即(14v)=(1002)+200-2×1002×200×cos 135°,所以v=≈22.6,
7所以这辆汽车的速度约为22.6 m/s.
2.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔高度为__2_650__m.(取2=1.4,3=1.7)
解析 如图,作CD垂直于AB交AB的延长线于点D,
由题意知∠A=15°,∠DBC=45°,∴∠ACB=30°. 又在△ABC中,AB=50×420=21 000, 由正弦定理,得=,
sin ∠Asin∠ACB21 000∴BC=×sin 15°=10 500(6-2).
12∵CD⊥AD,∴CD=BC·sin∠DBC=10 500(6-2)×故山顶的海拔高度h=10 000-7 350=2 650(m).
2
=10 500(3-1)=7 350. 2
BCAB
正在阅读:
2019版高考数学二轮复习第1篇专题2三角函数解三角形第2讲小题考法 - - 三角恒等变换与解三角形学案01-15
电工安全操作规程培训.doc04-07
GB会议电视会场系统工程施工及验收超标准(doc 73页)(正式版)04-12
苏州的识者10-04
赴淮南学习调研心得文档05-30
无极及分析化学第一章05-23
动火作业审批表范本06-06
陈雪清12-07
低首付活动方案03-18
建筑力学电大汇总11-29
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 三角形
- 二轮
- 三角函数
- 三角
- 变换
- 复习
- 数学
- 高考
- 专题
- 2019
- 浦钢冲渣沟结构施工组织设计
- 金山中学2002年高考龙虎榜
- 2014年高考语文模拟试卷及答案解析福建省四地六校2014届高三上学期第二次月考语文试题
- 西门子公司简介及应聘资讯
- jsp实验报告
- 派代2011年服装年会人员
- 大学生职业生涯规划4.2答案
- 质检部门KPI考核
- 土木工程毕业设计参考文献
- 成都市中考满分作文-成都市2003年中考满分作文
- 2017高考化学二轮(通用版)复习逐题对点特训11 Word版含答案
- 1阶段
- 听名校长谈管理 - 图文
- 2018年人教版初一历史下册第一次月考测试题及答案
- 新形势下铁路旅客运输工作的思考
- 人教版二年级数学(下)期末质量监测试题(附:试卷命题意图、参考答案及评分标准)
- 高速公路文明服务心得体会
- SQL Server2008集群安装配置 - 图文
- 安全生产工作者个人先进事迹材料
- 《学前儿童数学教育》课程教学大纲