二次函数中平行四边形通用解决方法

更新时间:2024-01-20 19:00:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

● 探究

(1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________; ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;

●归纳

无论线段AB处于直角坐标系中的哪个位置,

b)Bd)AB中点为Dy) 时,x=_________,y=___________;当其端点坐标为A(a,,(c,,(x,

(不必证明) ●运用

在图2中,一次函数y=x-2与反比例函数

的图象交点为A,B。

①求出交点A,B的坐标;

②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。

1

以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题. 1 两个结论,解题的切入点

数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。 1.1 线段中点坐标公式

平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点坐标为(

x1?x2y1?y2,). 22证明 : 如图1,设AB中点P的坐标为(xP,yP).由xP-x1=x2-xP,得xP=yP=

y1?y2x?x2y1?y2,所以线段AB的中点坐标为(1,). 222x1?x2,同理2

1.2 平行四边形顶点坐标公式 图1

□ABCD的顶点坐标分别为A(xA,yA)、B(xB,yB)、C(xC,yC)、D(xD,yD),则:xA+xC=xB+xD;yA+yC=yB+yD.

证明: 如图2,连接AC、BD,相交于点E. ∵点E为AC的中点,

∴E点坐标为(

xA?xCyA?yC,). 22xB?xDyB?yD,). 22图2

又∵点E为BD的中点, ∴E点坐标为(

∴xA+xC=xB+xD;yA+yC=yB+yD.

即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.

图3

2 一个基本事实,解题的预备知识

如图3,已知不在同一直线上的三点A、B、C,在平面内另找一个点D,使以A、B、C、D为顶点的四边形是平行四边形.答案有三种:以AB为对角线的□ACBD1,以AC为对角线的□ABCD2,以BC为对角线的□ABD3C.

2

3 两类存在性问题解题策略例析与反思

3.1 三个定点、一个动点,探究平行四边形的存在性问题

例1 已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=

1x-a分别2与x轴、y轴相交于B、C两点,并且与直线AM相交于点N.

(1)填空:试用含a的代数式分别表示点M与N的坐标,则M( ), N( ); (2)如图4,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的面积;

(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,试说明理由.

941891解:(1)M(1,a-1),N(a,-a);(2)a=-;S四边形ADCN=;

4316341(3)由已知条件易得A(0,a)、C(0,-a)、N(a,-a).设P(m,m2-2m+a).

33①当以AC为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得: 45??0?0?a?mm?????32. ,∴???a??15?a?a??1a?m2?2m?a??83??∴P1(

55,-); 28②当以AN为对角线时,得:

45??0?a?0?mm?????32(不合题意,舍去). ,∴???a?15?a?1a??a?m2?2m?a??83??图4

③当以CN为对角线时,得:

41??0?a?0?mm??????32. ,∴???a??3??a?1a?a?m2?2m?a??83??∴P2(-

17,). 281755,-)和P2(-,),使得以P、A、C、N为顶点的四边形

2828∴在抛物线上存在点P1(

是平行四边形.

反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.

3

3.2 两个定点、两个动点,探究平行四边形存在性问题

例2 如图5,在平面直角坐标系中,抛物线A(-1,0),B(3,0),C(0,-1)三点. (1)求该抛物线的表达式;

(2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为 顶点的四边形是平行四边形,求所有满足条件点P的坐标.

12解 :(1)易求抛物线的表达式为y=x2?x?1;

33(2)由题意知点Q在y轴上,设点Q坐标为(0,t);点P在抛物线上, 12设点P坐标为(m,m2?m?1).

33图5

尽管点Q在y轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了.

①当以AQ为对角线时,由四个顶点的横坐标公式得:-1+0=3+m, ∴m=-4,∴P1(-4,7);

5②当以BQ为对角线时,得:-1+m=3+0,∴m=4,∴P2(4,);

3③当以AB为对角线时,得:-1+3=m+0,∴m=2,∴P3(2,-1). 5综上,满足条件的点P为P1(-4,7)、P2(4,)、P3(2,-1).

3反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x轴(y轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q的纵坐标t没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论.

例3 如图6,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;

(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

解:(1)易求抛物线的解析式为y=

12

x+x-4; 2(2)s=-m2-4m(-4

(3)尽管是直接写出点Q的坐标,这里也写出过程.由题意知O(0,0)、B(0,-4). 由于点Q是直线y=-x上的动点,设Q(s,-s),把Q看做定点;设P(m,①当以OQ为对角线时, ?0?s?0?m? 12?0?s??4?m?m?4?2?12

m+m-4). 2∴s=-2?25.

∴Q1(-2+25,2-25),Q2(-2-25,2+25);

图6

4

②当以BQ为对角线时, ?0?m?0?s? 12?0?m?m?4??4?s?2?∴s1=-4,s2=0(舍). ∴Q3(-4,4);

③当以OB为对角线时, ?0?0?s?m? 12?0?4??s?m?m?4?2?∴s1=4,s2=0(舍). ∴Q4(4,-4).

综上,满足条件的点Q为Q1(-2+25,2-25)、Q2(-2-25,2+25)、Q3(-4,4)、Q4(4,-4).

反思:该题中的点Q是直线y=-x上的动点,设动点Q的坐标为(s,-s),把Q看做定点,就可根据平行四边形顶点坐标公式列方程组了. 4 问题总结

这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.

5

如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒. (1)求A、B两点的坐标。

(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.

(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

6

如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

7

如图,在平面直角坐标系xOy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线C1:y=﹣x+bx+c过A、B两点,与x轴另一交点为C.

(1)求抛物线解析式及C点坐标.

(2)向右平移抛物线C1,使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1、C2相交于点D,求四边形AOCD的面积.

(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点M、Q、P、B为顶点的四边形为平行四边形?若存在,直接写出P点坐标;2

不存在,请说明理由.

8

如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧). (1)求抛物线的解析式及点B坐标;

(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为2

顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

9

本文来源:https://www.bwwdw.com/article/1eao.html

Top