任意角和弧度制及任意角的三角函数知识点与题型归纳DOC
更新时间:2024-04-03 14:35:01 阅读量: 综合文库 文档下载
●高考明方向
1.了解任意角的概念.
2.了解弧度制的概念,能进行弧度与角度的互化 3.理解任意角的三角函数(正弦、余弦、正切)的定义.
★备考知考情
1.三角函数的定义与三角恒等变换等相结合, 考查三角函数求值问题.
2.三角函数的定义与向量等知识相结合, 考查三角函数定义的应用.
3.主要以选择题、填空题为主,属中低档题.
一、知识梳理《名师一号》P47 知识点一 角的概念
?按旋转方向不同分为正角、负角、零角.
(1)分类?
?按终边位置不同分为象限角和轴线角.
(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
《名师一号》P47 对点自测 1、2
1
注意: 1、《名师一号》P48 问题探究 问题1、2
相等的角终边相同,终边相同的角也一定相等吗? 相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.
角的表示形式是唯一的吗?
角的集合的表示形式不是唯一的,如:终边在y轴的负半轴上的角的集合可以表示为{x|x=k·360°-90°,k∈Z},也可以表示为{x|x=k·360°+270°,k∈Z}. (补充)
2、正角 > 零角 > 负角 3、下列概念应注意区分 小于90°的角;锐角;第一象限的角;0°~90°的角. 4、(1)终边落在坐标轴上的角 1)终边落在x轴非负半轴上的角 {x|x=2kπ,k∈Z}
2)终边落在x轴非正半轴上的角 {x|x=2kπ+π,k∈Z}
终边落在x轴上的角
{x|x=kπ,k∈Z}
3)终边落在y轴非负半轴上的角
π
{x|x=2kπ+2,k∈Z} 4)终边落在y轴非正半轴上的角
3π
{x|x=2kπ+,k∈Z}
2
2
终边落在y轴上的角
π
{x|x=kπ+2,k∈Z}
(2) 象限角 (自己课后完成)
知识点二 弧度的定义和公式
(1)定义:长度等于半径长的弧所对的圆心角 叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算: 360°=2π弧度;180°=π弧度; ②弧长公式:l=|α|r;
11
③扇形面积公式:S扇形=lr和|α|r2.
22
关键:基本公式?180??rad
《名师一号》P47 对点自测 3
注意: 1、《名师一号》P48 问题探究 问题3
在角的表示中角度制和弧度制能不能混合应用? 不能.在同一个式子中,采用的度量制度是一致的, 不可混用.
2、弧长公式与扇形面积公式
(扇形的圆心角为?弧度,半径为r)
3
?1lr 2(补充)(将扇形视为曲边三角形,记l为底,r为高)
知识点三 任意角的三角函数
(1)定义:设α是一个任意角,它的终边与单位圆交
于点P(x,y),则sinα= ,cosα= ,tanα= (x≠0). (补充)
1、广义的三角函数定义 弧长公式l?|?|r 扇形面积公式S?三角函数的定义让角?的顶点与原点O重合,始边与x轴的非负半轴重合,在角?的终边上任取一点,则角?的三角函数值如下:sin??y?ryx?y22cos??xx?rx2?y2tan??yx?x?0?OP?r?x2?y2?r?0?特别地,当OP?r?x2?y2?1时 2、各象限角的三角函数值符号规律: (补充)关键:立足定义 正弦……一二正,横为零 余弦……一四正,纵为零
sin??ycos??xtan??yx?x?0? 4
正切……一三正,横为零,纵不存在 3、特殊角的三角函数值(自己课后完成)
知识点三 任意角的三角函数
(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).
如图中有向线段MP,OM,AT分别叫做角α的 正弦线,余弦线和正切线
.
《名师一号》P47 对点自测 6
注意:
《名师一号》P48 问题探究 问题4
如何利用三角函数线解不等式 及比较三角函数值的大小?
(1)先找到“正值”区间,即0~2π间满足条件的范围,然后再加上周期.
(2)先作出角,再作出相应的三角函数线,最后进行比较
5
∵圆的半径为1,∴∠BAP=2.
π
故∠DAP=2-.
2?π?∴DP=AP·sin?2-2?=-cos2.
??
?π?∴PC=1-cos2,DA=APcos?2-2?=sin2.
??
→=(2-sin2,1-cos2).
∴OC=2-sin2,故OP
注意:《名师一号》P48 高频考点 例2 规律方法 1.利用定义求三角函数值.在利用三角函数的定义求角α的三角函数值时,若角α终边上点的坐标是以参数的形式给出的,则要根据问题的实际及解题的需要对参数进行分类讨论.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P的位置无关.
2.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sinα,cosα,tanα)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置,注意终边在坐标轴上的特殊情况.
3.与向量等问题形成的交汇问题,抓住问题的实质,寻找相应的角度,然后通过解三角形求得解.
11
练习:
若一个角α的终边在直线y??3x上, 求10sin??3的值。 cos?
答案:0
注意:立足定义是根本!
三角函数的定义是三角函数的基础,
由三角函数的定义可得同角三角函数的基本关系 及各象限角的三角函数值符号等。 利用三角函数的定义解题时应
先确定点的坐标及点的位置。
(四)以三角函数的定义为载体的创新问题 《名师一号》P49 特色专题
三角函数的概念是考查三角函数的重要工具,在高考命题中很少单独考查,但常结合三角函数的基础知识、三角恒等变换和向量等知识综合考查,涉及的知识点较多,且难度不大.
12
【典例】 如图所示,质点P在半径为2 的圆周上逆时针运动,其初始位置为 P0(2,-2),角速度为1,那么点 P到x轴的距离d关于时间t的函数 图象大致为( )
ABCD
【规范解答】 用t表示出OP与x轴正方向所成的角,然后利用三角函数的定义得到d的函数表达式即可.
π
∵P0(2,-2),∴∠P0Ox=.
4
π
按逆时针转时间t后,得∠POP0=t,∠POx=t-.
4
由三角函数定义,知点P的纵坐标为
?π?2sin?t-4?.
??
??π??
因此d=2?sin?t-4??.
????
13
π??π??
令t=0,则d=2?sin?-4??=2,当t=时,d=0,
????4
故选C.
【名师点评】 解决本题的关键有以下两点: (1)结合圆周运动,准确理解题意,
π
根据三角函数定义,表示出d=2sint-是关键.
4
(2)涉及函数图象判定问题,
结合函数的性质、特殊化思想是快捷求解的有效途径.
练习:《名师一号》P49对应训练
如图,已知l1⊥l2,圆心在l1上、半径为 1 m的圆O在t=0时与l2相切于点A, 圆O沿l1以1 m/s的速度匀速向上移动, 圆被直线l2所截上方圆弧长记为x, 令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )
ABCD
14
解析 圆半径为1,设弧长x所对的圆心角为α,则
αx
α=x,如图所示,cos=1-t,即cos=1-t,则y=cosx
22
x
=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象
2为开口向上,在[0,1]上的一段抛物线.
课后作业
计时双基练P241 基础1-11、培优1-4 课本P48-49变式思考1、2、3;对应训练
预习 第三章 第二节 同角三角函数的基本关系
15
16
正在阅读:
任意角和弧度制及任意角的三角函数知识点与题型归纳DOC04-03
北京八年级下学期期中生物试卷(I)卷04-20
2017全国两会10大热点解读02-08
小学生作文什么的启示04-01
浅析小学语文课堂中的“追问”-教育文档05-09
层次越高的人,越柔软08-02
工程材料题库及答案要点10-04
关于家的作文小学生一年级06-14
专业技术人员时间管理与项目管理.09-05
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 任意
- 三角函数
- 弧度
- 知识点
- 题型
- 归纳
- DOC
- 小学一年级语文教研组工作总结
- 3GPP - LTE - MAC层协议36321-870(Release8) - 图文
- 公共关系综合练习
- 原位杂交实验问题收集
- 2016年春 运动会秩序册(终稿) - 图文
- 2011全国优秀律师事务所申请报告书 - 图文
- 科学社会主义简答题&论述题(含答案)共185题
- MSP430G2553学习笔记
- 观赏鱼用药大全
- midas - civil简支梁模型计算
- 德州市2018小升初数学模拟试题-附详细解析
- 浙江省杭州市西湖高级中学2015届高三10月月考数学(文)试题
- 基层民政政策落实存在的问题与分析
- 小学三年级数学快乐寒假作业
- 最新2020版高考语文第二轮复习试题:字音、字形、成语、语病 -
- 全国压力容器设计单位名录 - 图文
- 四川省雅安中学2017-2018学年高一上学期期中考试生物试题
- 2016-2017学年上九年级物理期末试卷
- 华为公司治理与内部控制
- 刑事讼诉法 各章习题及答案