截长补短法

更新时间:2023-10-13 12:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《截长补短法》第二课堂活动方案

八年级数学组

八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例.

例1. 已知,如图1-1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.

求证:∠BAD+∠BCD=180°.

分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.

证明:过点D作DE垂直BA的延长线于点E,作DF⊥BC于点F,如图1-2 ∵BD平分∠ABC,∴DE=DF,

EADB图1-1

C在Rt△ADE与Rt△CDF中,

AD?DE?DF ??AD?CD∴Rt△ADE≌Rt△CDF(HL),∴∠DAE=∠DCF. 又∠BAD+∠DAE=180°,∴∠BAD+∠DCF=180°,

B图1-2

FCDA即∠BAD+∠BCD=180°

例2. 如图2-1,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB.

求证:CD=AD+BC.

分析:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即

EEDCBA图2-1

321F4CB图2-2

在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的.

证明:在CD上截取CF=BC,如图2-2 在△FCE与△BCE中,

?CF?CB???FCE??BCE ?CE?CE?∴△FCE≌△BCE(SAS),∴∠2=∠1.

又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°, ∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△FDE与△ADE中,

??FDE??ADE? ?DE?DE??3??4?∴△FDE≌△ADE(ASA),∴DF=DA, ∵CD=DF+CF,∴CD=AD+BC.

例3. 已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.

求证:∠BAP+∠BCP=180°.

分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP=∠EAP,因而此题适用“补短”进行全等三角形的构造.

证明:过点P作PE垂直BA的延长线于点E,如图3-2 ∵∠1=∠2,且PD⊥BC,∴PE=PD, 在Rt△BPE与Rt△BPD中,

12DAPNBC图3-1

?PE?PD ??BP?BP∴Rt△BPE≌Rt△BPD(HL),∴BE=BD.

∵AB+BC=2BD,∴AB+BD+DC=BD+BE,∴AB+DC=BE即

EAPNDC=BE-AB=AE.

B12DC在Rt△APE与Rt△CPD中,

?PE?PD???PEA??PDC ?AE?DC?图3-2

∴Rt△APE≌Rt△CPD(SAS),∴∠PAE=∠PCD 又∵∠BAP+∠PAE=180°,∴∠BAP+∠BCP=180°

例4. 已知:如图4-1,在△ABC中,∠C=2∠B,∠1=∠2.

求证:AB=AC+CD.

分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC至E使CE=CD,或在AB上截取AF=AC.

证明:方法一(补短法)

延长AC到E,使DC=CE,则∠CDE=∠CED,如图4-2

AA12BDC图4-1

∴∠ACB=2∠E,

∵∠ACB=2∠B,∴∠B=∠E,

BD12C在△ABD与△AED中,

??1??2???B??E ?AD?AD?图4-2

E∴△ABD≌△AED(AAS),∴AB=AE. 又AE=AC+CE=AC+DC,∴AB=AC+DC. 方法二(截长法)

在AB上截取AF=AC,如图4-3 在△AFD与△ACD中,

?AF?AC???1??2 ?AD?AD?A12FBDC图4-3

∴△AFD≌△ACD(SAS),∴DF=DC,∠AFD=∠ACD. 又∵∠ACB=2∠B,∴∠FDB=∠B,∴FD=FB. ∵AB=AF+FB=AC+FD,∴AB=AC+CD.

上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。让掌握学生掌握好“截长补短法”对于更好的理解数学中的化归思想有较大的帮助。

本文来源:https://www.bwwdw.com/article/1d4f.html

Top