Automatic physical phasing X-ray crystallography
更新时间:2023-07-27 20:53:01 阅读量: 实用文档 文档下载
- automatic推荐度:
- 相关推荐
Phase invariants are important pieces of information about the atomic structures of crystals. There are several mathematical methods in X-ray crystallography to estimate phase invariants. The multi-wave diffraction phenomenon offers a unique opportunity of
AutomaticphysicalphasingX-raycrystallography
S´ergioL.Morelh ao,1, LuisH.Avanci,1andStefanKycia2
12
arXiv:cond-mat/0409487v1 [cond-mat.mtrl-sci] 19 Sep 2004
InstitutodeF´ sica,UniversidadedeS aoPaulo,CP66318,05315-970S aoPaulo,SP,Brazil
Laborat´orioNacionaldeLuzS´ ncrotron/LNLS,CP6192,13084-971Campinas,SP,Brazil
(Dated:February2,2008)
Phaseinvariantsareimportantpiecesofinformationabouttheatomicstructuresofcrystals.ThereareseveralmathematicalmethodsinX-raycrystallographytoestimatephaseinvariants.Themulti-wavedi ractionphenomenono ersauniqueopportunityofphysicallymeasuringphaseinvariants.Inthiswork,theunderneathprincipalsfordevelopinganautomaticproceduretoextractaccuratephase-invariantvaluesaredescribed.Ageneralsystematicprocedureisdemonstrated,inpractice,byanalyzingintensitydatafromaKDPcrystal.
PACSnumbers:61.10.Nz;61.10.Dp
Keywords:X-raydi raction,semiconductors,nanomaterials
I.INTRODUCTION
InX-raycrystallography,thephasesofthedi ractedwavesareroughlyestimatedbymathematicalmethods,knowasDirectMethods1,2,foranalyzingintensitydatasetscomposedofalargenumberofre ections.Thesemethodsexploitalgebraicorprobabilisticrelationshipsamongthephasevalues.Someofsuchrelationshipsaretripletphaseinvariants;theyareinvariantfromthechoiceoforigininthecrystallattice.Experimentalpro-ceduresallowingphysicalmeasurementsofphaseinvari-antsareofgreatinterestsince,inprinciple,theycouldextendthee ciencyoftheDirectMethodstocomplexstructuressuchasproteins.Itwouldhavetobecom-paredtootherproceduresthatareactuallyusedtothesamepurposes,suchasmultipleanomalousdispersionandmultipleisomorphousreplacement3.
Physicalmeasurementsoftripletphaseinvariantsarepossiblebymeansofthree-beamdi raction(3BD)ex-periments4,5wheretheinterferenceofsimultaneouslydi ractedwavesprovideinformationonphasevalues.However,besidesallexperimentalandanalyticaldi -cultiesinvolvedinphasedeterminationfrom3BDex-periments,themostseriousandpracticallimitationofphysical-phasingcrystallography(PPC)isthereducenumberof3BDcasessuitableforphasing.Thereciprocalspaceofcomplexmoleculecrystalsarefullofre ectionswhereisolated3BDcaseshavebecomeevenmorerare;phasinggeneraln-beamcases(n>3)isnotfeasibleatthemomentduetotheoreticalde ciencies.Therefore,itisimportanttomentionthat,regardingcomplexcrystals,theusefulnessofPPCisquitelimitedwhencomparedtotheavailablephasingprocedures.Nevertheless,thereareresearchesfocusedondevelopingandoptimizingexper-imentaldatacollectionproceduresforPPC6.Ontheotherhand,the3BDexperimentso eranuniqueop-portunityforaccuratedeterminationoftripletphasein-variants,andconsequently,forstudyingcrystallinestruc-turesviameasurementsoftheseinvariants.Forexample,dependingontheachievedexperimentalaccuracy,elec-trondensityofchemicalbondingcharges7orevendis-tortionofmoleculesunderappliedelectric eldcanbe
FIG.1:Experimental(opencircles)andsimulated(solidlines) -scansofthe260/11¯2/152three-beamdi ractioninaKDPcrystaltakenatdi erentpolarizationangle,χ(right-handsideofeachscan).[001]isthereferencedirection( =0,seeinset),X-rayphotonenergyis7482eV,andfurtherexper-imentaldetailscanbefoundelsewhere8.Theintensityscaleislinear,butforvisualizationpurposestheordinatesofsomescansareshiftedfromtheiractualvalues,givenattheleft(incps).The -scanatχ=16 (grayscan)wasmistakenlycollectedattheshoulderofthe260re ection( ω=0.003 ,30%oftheFWHM=0.01 ).The exibilityofthe ttingequation,Eq.toreproducethese -scansisexploitedinFig.3(b).
investigatedbymonitoringafewtripletphases.Notethateachtripletphaseisanabsolutevaluesinceital-readyisthephasedi erencesbetweentwodi ractedX-raywaves,andnotarelativequantitysuchasobtainedinpeakpositionorintensitymeasurements.
Thisworkhasbeenmotivatedbyourdesiredofdevel-opingatLNLSasystematicandpracticalprocedurefordeterminingphaseinvariantswithgoodaccuracy.Exper-imentalandanalyticalproceduresarestilltobeimprovedtopushphasemeasurementsfromthestate-of-arttorou-
Phase invariants are important pieces of information about the atomic structures of crystals. There are several mathematical methods in X-ray crystallography to estimate phase invariants. The multi-wave diffraction phenomenon offers a unique opportunity of
tinelyandautomaticphasingprocedures;otherwiseitwillbeverydi culttonon-expertuserstotakeadvan-tagesofthenewpossibilitieso eredbymeasuringthisphysicalquantity.Datacollectionproceduresarealreadyproposed4,andundergoingimprovement8,buttheac-tualchallengeristhedataanalysisprocedure5.Here,weoutlinetheunderneathprincipalsfordevelopinganau-tomaticproceduretoextractaccuratephasevaluesfrom3BDinterferencepro les.Ageneralsystematicproce-dureisdemonstrated,inpractice,byanalyzing3BDin-tensitydatafromaKDPcrystal,andthemajorsources
oferrorsarepointedout.
II.THEORETICALBASIS
Ingeneral,the3BDintensitypro lesaredominatedbytheinterferenceoftwodi ractedwaves.Itleadstoarelativelysimpleparametricequationthatcanbeusedto tmostoftheexperimentalintensitypro lesandtoextractthephasevalues.Itisgivenby5
I( )=
+u0 u0
(1 b|f(u)|2)|DA|2+|DBC(u)|2+ξDA·DBC(u)+ξDA·DBC(u)G( u)du
(1)
whereDA=D0vAandDBC( )=D0Rf( )eiδTvBC
aretheamplitudesoftheprimaryandsecondaryelec-tricdisplacementwave eldsgeneratedbytheprimaryre ection,A,andbythedetourre ection(alsoknownasUmwegre ection)formedbytwoconsecutivere ections,BandC.Rstandsformaximumamplituderatioofthesewaves.vAandvBCarepolarizationfactorsforlinearlypolarizedincidentradiation.δTisthephasedi erencebetweenthesewaves,whichisthetripletphaseinvari-ant.Agaussianconvolution,G(u)withFWHM=wGandu0=±2.5wG,isnecessarytoaccountforthein-strumentalwidthwG.f( )=wS/[2( 0) iwS]isalinepro lefunction(FWHM=w,wS=±w)describingtheintrinsic3BDpro leasafunctionoftheazimuthalrotationangle .bandξarerelatedtoenergybalancemechanismsamongthedi ractedbeamsandcrystallineimperfections,respectively5.
Essentially,theanalyticalprobleminaccuratephasedeterminationresidesonhowtoadjustthevectorofpa-rameters,p=[w,R,ξ,b, 0,wG],withoutcompromisingtheextractedvaluesforδT.Here,asimpleandfastevo-lutionaryalgorithm(DEA)9hasbeenusedfor ttingtheexperimentalpro leswheretheimprovementsofthe t-tingsareguidedbyamean-absolutedeviationfunction,E(p).Thebasicstrategyisthento ndoutthemini-mumofE(p)asafunctionofδT,i.e.E0(δT),whilepiskeptwithinreasonablerangesofallowedvalues.TheminimumoftheE0(δT)curve, E0/ δT=0,providetheexperimentalvalueforδT.
Instrumentalbroadeninge ectsontheinterferencepro les,asillustrativelyshowninFig.2(a),canreduceaccuracywhencombinedwiththeuncertaintyoftheRparameter,whichisinfactthemajorsourceofinaccu-racy,asdemonstratedinFig.2(b).TheE0(δT)curvesinFig.2(b)isjustshowingthatitisnotpossibletoextractanaccuratevalueofE0(δT)fromasingle -scanwhenRisunknown.
Thebeststrategy,thatwecouldelaborate,forac-curatedeterminationoftripletphasesiscomposingpolarization-dependentsetsofazimuthalscans,astheoneinFig.1,andthen,searchforthevalueofRthatprovides E0/ δT=0ascloseaspossibleofasameδTvalue.Herethissearchstrategyhasbeenappliedintwosetsofazimuthalscans:asimulatedonethatisfreeofinstrumentale ectssuchasstatisticnoiseandsamplemisalignments,andanotherthatistheexperimentaldatainFig.1.TheE0(δT)curvesofthesimulated -scansforseveralvaluesofRareshowninFig.3(a)whileFig.3(b)showstherespectiveE0(δT)curvesfortheexperimentaldata.
IV.
CONCLUSIONS
III.RESULTSANDDISCUSSIONS
Thedataanalysespresentedherehavedemonstratedthatsystematicandreliablephasingproceduresarefea-sible.However,accuracycanbeimprovedbyoptimizingtheincidentX-raybeamopticsregardingenergyresolu-tionandangulardivergences,mainlyinthehorizontalplane.Agoodinstrumentalprecisionisalsorequiredaswellaslownoiseintheintensitydata.
Acknowledgments
Fig.1showssetof3BDdatacollectedatBrazilianSyn-chrotronLightLaboratory(LNLS)withthepolarimeter-likedi ractometerdescribedelsewhere8.Itiscomposedofseveral -scanstakenatdi erentpolarizationanglesχ,asindicatedinFig.1.
ThisworkhasbeensupportedbytheBrazilianSyn-chrotronLightSource(LNLS)underproposalNo.D12A
Phase invariants are important pieces of information about the atomic structures of crystals. There are several mathematical methods in X-ray crystallography to estimate phase invariants. The multi-wave diffraction phenomenon offers a unique opportunity of
FIG.2:(a)Simulatedinstrumentalbroadeninge ectson -scans.SimulationparametersusedintoEq.
(1):δT= 2.6 ,χ=32 ,andp=[0.0012 ,1.0,0.8,0.0,67.683 ,wG]wheretheinstrumentalwidthvalues,wG,areindicatedbyarrows. = 0.(b)TheoreticalaccuracyinphasemeasurementsasafunctionoftheinstrumentalwidthwG,andamplituderatioR.TheE0(δT)curveswereobtainedby ttingthepro lesin(a)withwG=0.001 (opencircles)andwG=0.006 (closedcircles).The ttingshavebeencarriedoutbytheDEAwithintheallowedranges:p=[0.0008 :0.0012 ,R,0.2:1.0,0.0, 0±0.012 ,0.001 :0.007 ]whereR=1.0(blacklines)orR=[0.6:1.4](graylines).De nitiononthe E0/ δT=0positiongivestheaccuracyonδT.
FIG.3:Absolute-meandeviationasafunctionofδT,E0(δT),obtainedfor(a)thesimulatedscansand(b)theexperimentalscansinFig.1.Allcurvesarenormalizedbyitsminimumvalueandaddtoanintegerforbettervisualization.Thecurveswithminimaequalto1,2,3,4,5,and6correspondtothosescanswithχ=8 ,12 ,16 ,20 ,24 ,and32 ,respectively.Allowedrangeisp=[0.0010 :0.0014 ,R,0.0:1.0,0.0:3v2, 0±0.012 ,0.001 :0.006 ]wheretheRvaluesorrangesareshowninthe gureforeachcase,andv2changestheupperlimitofthebrangewiththepolarizationangle;herev2=sin2χ.
-XRD1-1264,FAPESP(proc.No.02/10387-5),andCNPq(proc.No.301617/95-3and150144/03-2).
12
34
5
Electronicaddress:morelhao@p.br.
K.Banerjee,Phys.Teach.2,5(1960)
H.A.HauptmannandJ.Karle,NobelLecturesinChem-istry,Singapoure:WordScienti c(1992)
J.R.Helliwell,J.SynchrotronRad.9,1(2002)S.L.Morelh aoandS.Kycia,Phys.Rev.Lett.89(1),015501(2002)
S.L.Morelh ao,ActaCryst.A59,470(2003)
6
7
89
Q.Shen,S.Kycia,andI.Dobrianov,ActaCryst.A56,268
(2000)
S.L.Morelh ao,L.H.Avanci,andS.KyciainStudyofcrys-tallinestructuresbyphysicaldeterminationoftripletphaseinvariants,presentedattheSRMS-4,Grenoble,August23-25,2004.S.L.Morelh ao,J.SynchrotronRad.10,236(2003)
M.Wormingtonet.al.,Phil.Trans.R.Soc.Lond.A357,2827(1999)
正在阅读:
Automatic physical phasing X-ray crystallography07-27
煤矿各工种岗位责任制10-12
应急物资管理制度03-18
12海道测量数据管理(第十二章)03-30
周年庆活动策划周年庆活动方案07-30
第6章 离子聚合10-23
《化学反应速率和化学平衡》测试题105-17
人民版七年级思想品德上册教学计划12-26
新闻传播中的噪音及降噪方法研究07-08
可爱的指压板作文150字07-07
- 1A Novel Approach for Automatic Palmprint Recognition
- 2Augmented . Automatic . Automating . Axioms .
- 3Chapter 6 The Total Physical Response
- 4Automatic belief revision in sneps
- 5A Framework for Automatic Adaptation of Tunable Distributed
- 6Mental - Ray - 教程精解
- 7Using Prosody in Automatic Segmentation of Speech
- 8AUTOMATIC VIDEO STRUCTURING BASED ON HMMS AND AUDIO VISUAL INTEGRATION
- 9Automatic reconstruction of colored 3d models
- 10Automatic tooling design for rotary draw bending of tubes
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- crystallography
- Automatic
- physical
- phasing
- ray
- 农村基础设施论文:农村基础设施 公共产品 投资机制 地方政府责任
- 九年级中考化学高频知识点专题复习练习--碳和碳的氧化物专题练习
- 文化遗产保护的数字化展示与传播
- AE水墨特效制作笔记
- 初中几何证明题思路
- 2014考研英语阅读题源15篇
- 全国儿童文学报刊网上投稿地址大全
- 《国际脑血管病杂志》2008年征订启事
- 2014-2015学年第一学期期中调研卷试卷分析
- 美国-奖学金-美国留学本科奖学金申请种类解析
- 青海省西宁五中2011-2012学年高二下学期期中考试语文试题
- 军事理论课结业论文
- 酒厂可行性研究报告
- 职场杨石头老师的经典语录
- 企业安全生产责任书
- 内页3 沟通艺术与关系协调 李革增 学员版
- 行测数量关系公式大全
- 南阳师院学前教育专业男生专业认同感的研究
- 几种策划书的写作要点
- 马克思主义哲学经典文本导读